
ple
is-
lu-

ith
fore
is
of

ls
is

out
as a
fore
nal
ay
be
g in
m,
i-
Slope Propagation in Static Timing Analysis
David Blaauw, Vladimir Zolotov, Savithri Sundareswaran*, Chanhee Oh and  Rajendran Panda

Motorola Inc. Austin, TX, *Motorola India Electronics Ltd., Bangalore, India

1  Abstract

Static timing analysis has traditionally used the PERT method for
identifying the critical path of a digital circuit. Due to the influence of
the slope of a signal at a particular node on the subsequent path delay, an
earlier signal with a signal slope greater than the slope of the later signal
may result in a greater delay. Therefore, the traditional method for tim-
ing analysis may identify the incorrect critical path and report an opti-
mistic delay for the circuit. We show that the circuit delay calculated
using the traditional method is a discontinuous function with respect to
transistor and gate sizes, posing a severe problem for circuit optimiza-
tion methods. We propose a new timing analysis algorithm which
resolves both these issues. The proposed algorithm selectively propa-
gates multiple signals through each timing edge in cases where there
exists ambiguity regarding which arriving signal represents the critical
path. The algorithm for propagating the corresponding required times is
also presented. We prove that the proposed algorithm identifies a cir-
cuit’s true critical path, where the traditional timing analysis method
may not. We also show that under this method circuit delay and node
slack are continuous functions with respect to a circuit’s transistor and
gate sizes. In addition, we present a heuristic method which reduces the
number of signals to be propagated at the expense of a slight loss in
accuracy. Finally, we show how the proposed algorithm was efficiently
implemented in an industrial static timing analysis and optimization tool,
and present results for a number of industrial circuits. Our results show
that the traditional timing analysis method underestimates the circuit
delay by as much as 38%, while that the proposed method efficiently
finds the correct circuit delay with only a slight increase in run time.

2  Introduction

Two approaches are commonly used to verify the timing of a digital
circuit: dynamic simulation and static timing analysis. A disadvantage of
dynamic simulation is that it requires the user to generate a set of input
vectors which exhaustively exercise all possible paths in a circuit. It is
therefore applicable only to small circuits and tends to be error prone.
For large designs, static timing analysis has become the predominant
method for timing verification. Static timing analysis also has become
the core engine used inside circuit optimization tools such as transistor
and gate sizing tools [2], [6] and logic synthesis tools.

In static timing analysis, the so-called arrival times orsignals, which
represent the latest time a signal can transition at a node due to a signal
change at a circuit input, are propagated forward through a circuit from
inputs to outputs. Similarly, the so-calledrequired times, which repre-
sent the latest time a signal can transition at a node in order to meet per-
formance constraints, are propagated from circuit outputs to inputs. An
arriving signal consists of both thecrossing time,when the signal
reaches the 1/2 Vdd point, and the slope of the signal. As signals are
propagated across a gate, their crossing times and slopes are updated.

In recent years, extensive research has focused on how to efficiently
and accurately calculate propagation delays and slopes for gates in a cir-
cuit [1], as well as on methods to eliminate false paths, which are unreal-
izable due to logic and timing correlations in a circuit [7], [8]. However,
the essential principle of static timing analysis has remained largely
unchanged since it was proposed in the eighties by [5], [4] and is still
based on two fundamental assumptions:

The first assumption is that, when calculating the delay of a gate, only
one input of the gate is switching at a time. This results in a calculated

gate delay that may be smaller than the actual delay when multi
inputs switch simultaneously, and may therefore yield an overly optim
tic timing analysis report. In [9], this problem was discussed and a so
tion was proposed.

The second assumption is that at each node, the arriving signal w
the latest crossing time results in the longest path delay and is there
propagated forward, while all earlier arriving signals are not. Th
assumption is the topic of this paper. The traditional implementation
propagating only the latest arriving signal is referred to as thelatest
propagation algorithm (LPA).

LPA selects one signal for forward propagation out of all signa
arriving at a node. The basic problem with LPA is that it makes th
selection based only on the crossing time of the arriving signals with
regard to their slopes. The slope of a signal at a node, however, h
direct impact on the delay of subsequent gates in its path, and there
affects the overall path delay of the signal. Given two signals, the sig
with an earlier crossing time might well have a larger overall path del
if it has a significantly larger signal slope. Such a signal would not
propagated under LPA and its path would remain undetected, resultin
an underestimation of the worst circuit delay. To illustrate this proble
we have shown in Figure 1(a) a simple two-input circuit with two poss

A
E

G2 G3

D

 B

C

G1
(a)

(b) (c)

(d)

Figure 1. Error in calculated circuit delay with LPA method

A

B
AB

w(G1)

Te
338



uit
are

we
3

that
ay
e

d
we
e-
is
ro-

g

nd
puts

ut-
nd
out
the

its

ic
utput

ts

the

ith

h

its
ble signal paths, one originating from input A (signal A) and one origi-
nating from input B (signal B). Figure 1(b) shows the Spice waveforms
and the associated crossing time and slope of the two signals at node D.
Since the crossing time of signal B (0.7ns) is later than that of signal A
(0.64ns), LPA propagates signal B through gate G3 resulting in a total
path delay of 0.82ns as shown in Figure 1(c). However, the slope of
arrival signal A (1.36ns) is larger than that of signal B (0.1ns), and would
result in a significantly larger delay of gate G3 if signal A was propa-
gated instead of signal B. The total path delay of signal A would there-
fore be 0.95ns, as shown in Figure 1(c). For this simple circuit,
traditional timing analysis using LPA reports a worst circuit delay of
0.82ns, while the actual worst circuit delay is 0.95ns. Although LPA cor-
rectly calculated the path delay of signal B, it did not detect that signal A
resulted in a longer path delay than signal B and therefore identified the
wrong critical path and underestimated the total circuit delay. It should
be noted that this error is independent of the delay model provided the
model accounts for the influence of signal slope on gate delay, as is the
case for all modern delay models. In the above example, the circuit was
simulated with Spice.

Besides underestimating the total circuit delay, LPA poses problems
to circuit optimization algorithms since it results in discontinuities in the
calculated worst circuit delay with respect to transistor and gate sizes in
the circuit. This is illustrated in Figure 1(d) where the worst circuit delay
is shown as a function of the size of gate G1. A sudden change in the cal-
culated circuit delay occurs when the size of G1 is increased such that
the crossing time of signal B at node D becomes earlier than that of sig-
nal A. At this point, the signal propagated by LPA switches from signal
A to signal B and the slope used to calculate the delay of gate G3
changes abruptly from 0.1ns to 1.36ns. This results in a sudden increase
in the delay of G3 and hence in the worst circuit delay. Of course, the
actual delay of the circuit is a continuous and smooth function of gate
sizes, and the observed discontinuity is purely an artifact of LPA.

Such discontinuities pose a severe problem for efficient gradient-
based optimization methods, which rely on the continuity and smooth-
ness of their objective function [3]. Discontinuities tend to trap such
optimization methods far from an optimal circuit solution. To address
this problem, a recently proposed optimization method [2] propagates
the latest arriving signal, but modifies its input slope to be the maximum
slope of all signals arriving at a node. This guarantees the continuity of
the objective function, but can significantly overestimate circuit delay. In
the example of Figure 1, the propagated arrival signal would have a
crossing time of 0.7ns and a slope of 1.36ns, resulting in an overestima-
tion of circuit delay and a sub-optimal optimization result.

Increasingly, designers are using automated sizing and logic synthesis
tools which result in optimized circuits with highly balanced path delays.
In such balanced circuits, the signals converging at a particular node are
likely to have crossing times very close to one another. However, they
may have dramatically different slopes, and LPA is therefore more likely
to select the wrong signal for forward propagation and report an optimis-
tic worst circuit delay. Hence, there is a critical need to address this issue
in static timing analysis.

In this paper, we propose a new signal propagation method which is
guaranteed to identify the worst circuit delay correctly. The algorithm
uses the propagation of multiple signals in cases where there is ambigu-
ity regarding which signal results in the longest path delay. An associ-
ated algorithm for backward propagation of required times is also
presented to allow the calculation of slacks for all nodes in the circuit.
We shall prove that the proposed algorithm identifies the correct worst
delay of the circuit and also that the calculated worst circuit delay is con-
tinuous with respect to gate/transistor sizes. Since the proposed algo-
rithm increases the number of propagated signals and required times, it
increases the run time of the analysis compared to the LPA method.
However, we show that for digital circuits an upper bound can be calcu-
lated for the added delay due to differences in the slope of signals, and
we use this proposed bound to reduce the number of propagated signals.
With this bound, the increase in the run time over LPA proves to be small
in practice. Based on experiments on several industrial circuits, we show
that LPA can underestimate the worst path delay by as much as 38%. We

also demonstrate the occurrence of discontinuities in the worst circ
delay when sizing using LPA and show how these discontinuities
removed with the proposed propagation algorithm.

The remainder of this paper is organized as follows: In Section 2
present a formal formulation of the timing analysis problem. In Section
we present the newly proposed propagation algorithms, and prove
they correctly identify the worst circuit delay. We also present a del
bound for reducing the run time for digital circuits. In Section 4 w
present our results, and in Section 5 our conclusions.

3  Problem Formulation

In this section, we present a formal definition of a timing graph an
the latest propagation algorithm. For the purpose of our discussion,
do not include the elimination of false paths due to logic or timing corr
lations in a circuit in our formulation. The problem addressed in th
paper is orthogonal to the problem of false path elimination, and our p
posed solution can be applied to these methods as well.
Definition 1. A timing graph is defined as a directed graph havin
exactly one source and one sink node:G={N,E,ns,nf}, where
N={n1,n2,...,nk} is a set of nodes,E={e1,e2,...,el}is a set of edges,

is a source node, and is a sink node. Each edge

is simply an ordered paire=(ni,nj) of nodes.
The nodes in the timing graph correspond to nets in the circuit, a

the edges in the graph correspond to the connections between gate in
and outputs. Although circuits in general have multiple inputs and o
puts, we can trivially transform them to graphs with a single source a
sink by adding a virtual source and virtual sink. We also assume with
loss of generality that signal crossing times are measured at 50% of
signal level.

Each edgeE is assigned two functions: a delay functionde=de(sI),
which represents the signal propagation delay from a gate’s input to
output, and a slope functionse=se(sI), which represents the slope of the
signal at the gate’s output. Both are functions of the gate input slopesI
and have the following property which reflects the fact that for a log
gate, a faster input slope produces a lesser gate delay and faster o
slope.
Property 1. If slope sa<sb then delay de(sa)<de(sb) and slope
se(sa)<se(sb).

Below we give a definition of a path in the timing graph G and of i
path delay.
Definition 2 A pathP of Timing GraphG={N,E,ns,nf} is a sequence of
its nodesP=(na,nb,...,nz) such that each pair of adjacent nodesng andnh
has an edgeegh=(ng,nh).

A path P=(na,nb,...,nz) defines a sequence of edges(eab,ebc,...,eyz).
Given the slopesa at the first nodena of pathP, we can determine the sig-
nal slopes for all the nodes on the path using the equationsj=sij (si) recur-
sively, wheresj is the to-be-determined slope at nodenj, si is the slope at
the predecessor nodenj, andsij is a slope function of the edgeeij . After
the signal slope at each node of a path is determined, the delay of
path is determined using the following definition:

Definition 3. The path delaydP of path P is defined as ,

wheredij(si) is a delay of an edgeeij on pathP with input slopesi, and
the summation is over all edges belonging to pathP.

Finally, among all paths terminating at a node, we define the path w
the maximum crossing time as the critical path up to that node:
Definition 4. A path having the maximum delay among all paths wit
the same ending node is called critical.

The critical path of the sink nodenf of a timing graph is referred to as
the critical pathof the timing graph, and its path delay,d(G), is referred
to as the delay of the timing graph. The main objective of timing analysis
is to find the correct critical path in a timing graph and to compute

ns N∈ nf N∈ e E∈

dij si( )

eij P∈
∑

339



e
nput

it

n

y

2.

f

e
ion
es

est
at

e, is
ds
e

ival
an
h.
ion
pe

ws
pe-
for
rce

re
ard
5

ol-
ge
delay. It is clear that this critical path is the limiting factor for the perfor-
mance of a circuit, and that its delay must be decreased in order to
increase circuit performance. We will now show that the actual delay of
a timing graph is a continuous function with respect to gate delays. This
property is important for circuit optimization methods, since many of
such methods rely on their objective function being continuous.
Theorem 1. If the edge delay and slope functions are continuous with
respect to some parameters, then the timing graph delay is also continu-
ous with respect to these parameters.
Proof. The delay of each path in a graph is a finite sum of finite compo-
sitions of delay and slope functions of individual edges. Hence, the path
delay is a continuous function with respect to the parameters of the slope
and delay functions. The total graph delay is the maximum of all path
delays in the timing graph and is therefore also continuous, since the
maximum operation is a continuous function.

The most obvious technique for finding the critical path of a given
timing graph is to simply enumerate all paths from its source to sink,
compute their delays, and select the path with the worst delay. However,
since the worst-case number of paths in a circuit is exponential with cir-
cuit size, this approach is infeasible for modern circuits. The traditional
approach for finding the critical path in a circuit is based on the PERT
algorithm and uses the propagation of signals from the source node to
the sink node. We define a signal as follows:
Definition 5. A signal Sn at a noden is a quadrupletSn={n, TA, s, P}

wheren is the node at which the signal is situated,TA is its crossing time
at the noden, s is its slope at the noden, andP=(ns, na, ..., n) is the sig-
nal propagation path from the source nodens to the node of interestn.

The traditional timing analysis algorithm iterates through each node
in a timing graph in topological order, selecting the signal with the latest
crossing time from among all incident signals for forward propagation.
As a signal is propagated forward, its crossing time is increased by gate
delaydij(si) and its slope is replaced withsij (si), wheresi is the slope of
the selected signal. We have referred to this algorithm as the latest prop-
agation algorithm (LPA) to reflect its selection criteria. Note that in LPA,
only one signal is propagated across each edge, and each node in the tim-
ing graph is visited exactly once. Although in our notation a signal at a
particular node records its entire path to that node, in practice a signal
only needs to record its predecessor node. So, traditional timing analysis
has a run time complexity that is linear with the number of edges in the
timing graph. The latest propagation algorithm is presented below in
Figure 2.

In Section 1, we already presented a small example circuit for which
the latest propagation algorithm identifies the wrong critical path in the
timing graph. We now show below in Lemma 1 that, given two signals at
a particular net, the path delay of any path from this net to the sink node
of the timing graph will be greater for the signal with the slower signal
slope. We then show in Theorem 2 that if this signal with the slower
slope also had an earlier arrival time, this signal can cause LPA to fail.
We prove that the existence of such a signal is a necessary and sufficient
condition for the existence of a graph with this signal on which LPA
fails. From this we show, in Theorem 3, that the graph delay calculated
by LPA can be discontinuous with respect to the gate sizes.

Lemma 1.Given two signalsSa={n, Ta, sa, Pa} andSb={n, Tb, sb, Pb} at
noden, wheresa<sb then for any signal pathQ from noden to nodez the
path delayda(Q) of signalSa is always less then the path delaydb(Q) of
signalSb.
Proof. Lemma 1 follows directly from Property 1 of delay and slop
functions, the recurrent dependence of gate output slopes on gate i
slopes, and the additive property of path delay in Definition 3.
Theorem 2.If, for some nodeni of timing graphG, LPA selects the sig-
nal Slatest=(ni,Tlatest,slatest,Platest) and the slopeslatest is less than the
slopesk of another signalSik=(ni,Tk,sk,Pk) propagated toni, then we can
construct a new graphH, containing all nodes and edges inG that have
already been visited by LPA, such that inH Sik is critical butSlatestis not.
Proof. We first constructH such that it contains only the nodes fromG
that have been visited by LPA. To completeH, we then add a sink node
nf and an edgeek=(nk, nf) for each nodenk of H that does not have an
outgoing edge (including nodeni). To all edgesek we assign delay func-
tionsdi(s)=0, except forei=(ni, nf). We now calculate the maximum path
delay of the set of all paths that do not pass through nodeni, and denote
it asdmax. For edgeei=(ni, nf) we assign a delay functiondi(s) such that
di(slatest)=dmax and di(sk)=dmax+Tlatest-Tk+∆, where∆ > 0. Note that
this delay function does not violate Property 1. From this construction
is clear that signalSik will arrive at the sink node of timing graphH later
than signalSlatest.

From Theorem 2 we obtain the following corollary:
Corollary 1. There exist timing graphs for which LPA computes a
incorrect critical path and delay.
Theorem 3.It is possible to construct a Timing Graph G with edge dela
functionsde depending continuously on a certain edge parameterxe, but
such that the timing graph delayd(xe) computed by LPA is a discontinu-
ous with respect toxe.
Proof. We use the timing graph H constructed in the proof of Theorem
Assuming that the edge delay functionde of subpathPlatest depends
strongly and monotonically on parameterxe., we setx=x0 such that the
path delays of subpathSlatestandPki are equal. Then, a small variation o
x aroundx0 will result in a variation of the graph delay by∆.

4  Proposed Propagation Algorithm

In order to perform a timing analysis which correctly identifies th
critical path and delay of a timing graph, we propose a new propagat
algorithm. The algorithm propagates multiple signals forward in cas
where there is ambiguity regarding which signal results in the long
path delay. Only if two arrival signals are incident on a node, such th
one of the signals has both an earlier crossing time and a faster slop
this signal pruned from the analysis. We prove that this algorithm fin
the correct critical path and graph delay for any timing graph. Also, w
show that the algorithm propagates the minimal set of necessary arr
signals. It is not possible to propagate fewer signals without incurring
incorrect critical path and circuit delay for some general timing grap
However, given some additional properties of the signal propagat
through digital circuits, we can bound the delay added due to the slo
difference between two signals. In Section 3.2 we show how this allo
us to significantly reduce the number of propagated signals for this s
cific class of timing graphs. In Section 3.3 we present the algorithm
propagating a required time backward from the sink node to the sou
node. This is necessary to calculate slacks for all circuit nodes.

4.1  Arrival Signal Propagation

The proposed arrival propagation algorithm is shown below, in Figu
3. Note that in steps 2.2 and 2.3, a set of signals is propagated forw
instead of a single signal as in LPA. We now prove in Theorem 4 and
that the proposed algorithm identifies the correct critical path, in Cor
lary 2 that the calculated graph delay is a continuous function of ed

1. Assign to the source noden0 the signalS0={n0, T0, s0, P0}
whereT0=0, P0=(n0)

2. Visit each node,i, in the graph in topological order doing the
following:
2.1. For each incoming edgeeki to nodei from nodek with sig-

nal Sk=(nk, Tk, sk, Pk), create a new signalSki=(ni, Tki, ski,
Pki) whereTki=Tk+dki(sk), ski=ski(sk), Pki=(Pk , ni)

2.2. From all signalSki select signalSlatest=(ni, Tlatest, slatest,
Platest), whereTlatest= max(Tki)

2.3. Assign the computed signalSlatest to nodeni.

Figure 2.  Traditional arrival signal propagation algorithm.
340



fur-

s,
fi-
ris-

put
the
is

e,
ill
t all
nal

te
for
ou-
lds

r-
ns

f a

a
he

g-

-
of
tly

This
aph
s

f
as
delays, and in Theorem 6 that the number of propagated arrival signals is
minimal.

Theorem 4.For any timing graphG and for any of its nodesni, any sig-
nalSij={n i, Tij , sij , Pij} that is pruned by the proposed algorithm does not
have the latest crossing time at any nodenl following nodeni.
Proof. If, in the proposed algorithm, we prune signalSij={n i, Tij , sij , Pij},
then at this nodeni there exists another signalSik={n i, Tik, sik, Pik} such
thatTij<Tik andsij<sik. Since bothSij andSik propagate through the same
edges after nodeni, and from the property of the slope function, it fol-
lows that at any nodenl after nodeni the slopeslj of signalSlj will be less
than the slopeslk of Slk. From this and the property of the edge delay
function it follows that the edge delay along the path of signalSlj from
nodeni to nodenl will always be less than the edge delay along the same
path for signalSlk. Since the crossing time is the summation of edge
delays from nodeni to nodenl, and sinceTij<Tik at nodeni, it follows that
Sij  will always be earlier thanSik.
Theorem 5.The proposed algorithm correctly calculates the critical path
and delay of a timing graph.
Proof. From Theorem 4, it follows that the proposed algorithm never
prunes a signal that could be critical. Hence, all potentially critical sig-
nals are propagated to the sink node, where the critical path and graph
delay are determined by identifying the latest signal from the set of prop-
agated potentially critical signals.
Corollary 2 . The timing graph delay computed by the proposed algo-
rithm is a continuous function of any parameters of the edge delay or
slope function if these functions are, in turn, continuous functions of the
chosen parameters.
Proof. It follows from the fact that the algorithm correctly computes the
timing graph delay, and from Theorem 1 that the calculated timing graph
delay is a continuous function of the parameters of the edge delay and
slope functions.
Theorem 6. If, for some nodeni of timing graphG, the proposed algo-
rithm selects the signalSij=(ni,Tij ,sij ,Pij ), we can construct a new graph
H containing all nodes and edges inG that have already been visited by
the algorithm, such that the critical path ofH includes the pathPij .
Proof. The proof for this theorem is similar to that of Theorem 2, and is
omitted for brevity.

Theorem 6 shows that if, at the time of pruning at nodeni, there is no
information available regarding the timing graph beyond nodeni, it is
necessary for the algorithm to propagate all selected signals. It is there-
fore impossible to reduce the number of propagated signals further with-
out possibly incurring a wrong solution. If, however, certain properties
(which we discuss in the next section) can be assumed for this portion of

the timing graph, the number of propagated signals can be reduced
ther.

4.2  Reduction in Propagated Signals

If the proposed algorithm is used for the analysis of digital circuit
we can utilize some well-known properties of such circuits to signi
cantly reduce the number of propagated signals. Let us consider two
ing signalsSia andSib that are applied to a digital gate resulting in two
falling output transitionsSja andSjb, as shown in Figure 4(a). We define
the following property:
Property 2. For a digital gate connecting input nodeni with output node
nj, if two input signal waveformsSia andSib are related such that at any
point along their transitionSia is earlier thanSib, then for all time points
along the output waveformsSja andSjb, waveformSja will be earlier than
Sjb.

If signal Sib is later thanSia at all points along its transition, it follows
that at every point in time, the voltage of signal waveformSib will be less
than the voltage of waveformSia (assuming a rising input transition).
Digital gates have the property that at any instance in time, a lesser in
voltage results in a lesser instantaneous drive current that charges
output load of the gate. Since the output voltage waveform of a gate
simply the integral of this drive current divided by the load capacitanc
it is clear that a gate with a lesser driving current at all time points, w
also have a less complete transition and therefore a later waveform a
points. In other words, a digital gate can only produce an output sig
waveformSjb that is earlier than signalSja, if the input signalSib is ear-
lier than signalSia on at least one time instance along its transition. No
that Property 2 is stronger than Property 1, and that it may not hold
certain analog circuits or for circuits where parasitic inductance and c
pling capacitance dominate the signal delay. However, Property 2 ho
for all standard digital circuits for which static timing analysis is pe
formed, including very high performance and deep-submicron desig
as illustrated by the waveforms in Figure 4(a) from a typical gate o
0.13um, 2Ghz digital processor.

We now consider two signalsSia andSib at a nodeni with the same
crossing time but with different slopes,sia andsib, signalSib having the
slower slope, as shown in Figure 4(b). We would like to calculate
boundδ on the difference in crossing times of these two signals at t
sink nodenf. To do this, we first replace signalSib with a signalSic, such
that signalSic has the same slope as signalSia and completes its transi-
tion at the same point in time as signalSib. Note that signalSic is later
than signalSib at all points along its transition. Based on Property 2, si
nal Sic will be later than signalSib at all points along its transition at the
next nodenj, and by recursion, also at nodenf. Therefore,Sic has a later
crossing time at nodenf than signalSfb and therefore the difference in
crossing times ofSia andSic at nodenf is an upper bound on the differ-
ence in the crossing times ofSia andSib at nodeni. SinceSia andSic have
identical slopes, it is clear that the boundδ is exactly the difference in
the crossing times ofSia andSic at nodeni, which is(sib - sia) / 2.

Using δ, we can prune from the propagation any signalSia={n i, Tia,
sia, Pia} if another signalSib={n i, Tib, sib, Pib} exists such thatTib - Tia >
δ, or Tib - Tia > (sia - sib) / 2. In this case, signalSia is earlier than signal
Sib to such an extent that the added delay ofSib in the path fromni to nf
will not render it critical. Use of this condition in step 2.3 of the pro
posed algorithm limits the propagated signals to a small window
crossing times preceding the latest crossing time and significan
reduces the number of signals propagated through the timing graph.
condition guarantees the correct calculation of the critical path and gr
delay for circuit where the gates comply with Property 2, which hold
for all digital circuits. The proof is omitted for brevity. Note that even i
Property 2 does not hold, the obtained timing result will be at least

1. Assign to source noden0 the signal setC0={S0}, whereS0={n0,
T0, s0, P0}, T0=0, P0=(n0)

2. Visit each nodeni in topological order and compute its signal set
Ck=(Sk1,Sk2,...) as follows:
2.1. For each incoming edgeeki=(nk,ni) from nodek with signal

set Ck={Sk1, Sk2,...} create a new signal set
Cki=(Ski1,Ski2,Ski3,...), with Skij=(ni,Tkij,skij,Pki), where
Tkij=Tkj+dki(skj), skij=ski(skj), Pki=(Pk, ni).

2.2 Assign to nodeni signal setCi, consisting of the union of
signal setsCki.

2.3 Remove from the signal setCi any signalSij={n i, Tij , sij , Pij}
if Ci has another signalSik={n i, Tik, sik, Pik} such asTij<Tik
andsij<sik

Figure 3.  Proposed Signal Propagation Algorithm.
341



ode

ig-

ical

is-

ere
rial
ded
ps.
A

em-
as

ear

the
sed
ty of
he
ver
ical
eth-
ow
ux
he
ed
accurate with LPA, since the signal with the latest crossing time is
always be propagated.

We now examine the runtime complexity of the proposed algorithm.
In step 2.3, a subset of all signals incident on a node is selected to be
propagated forward. This operation involves the sorting of all signals
according to their crossing time and is thusO(N log N), whereN is the
number of signals incident on the node. The sum of all of signals propa-
gated across an edge in step 2.1 is in the worst case equal to the sum of
all path lengths in a circuit. Therefore, the overall complexity of the pro-
posed algorithm is exponential in the worst case, since the number of
paths in a circuit is exponential with the size of the graph. This, however,
would require that the signal order in terms of decreasing crossing time
and increasing signal slope is identical, thereby not allowing any prun-
ning. In practice, this is unlikely, and we find that for industrial circuits
the number of signals that are propagated in the proposed algorithm is
increased only slightly when compared with LPA.

4.3  Backward Propagation of Required Times

Many optimization algorithms require the calculation of node slacks
for all nodes in a circuit. To accomplish this, required times must be
propagated backward from sink nodenf to source noden0, and the slack
at each node must be calculated as the difference between the required
time and the crossing time of a signal. As required times are propagated
backward across edges, their crossing times are decremented by the edge
delay. For each signal that is propagated forward, it is therefore neces-
sary to have an associated required time that is propagated backward
such that this required time is decremented by the same delays as the
crossing time of its forward propagated signal was incremented. This
way, the arrival signal and associated require times are updated with the
same edge delays as they are propagated, and remain consistent. A pos-
sible implementation involves storing multiple edge delays for each edge
in the timing graph, and tagging each edge delay and associated arrival
signal and required time with a unique identifier.

For an arrival signalSia that is pruned at nodeni, a new required time
Tia must be created during the backward propagation as shown in Figure

5. For this purpose, we select from among the propagated signals at n

ni the signalSip with a slopesip that has the least slope greater thanSia of
all propagated signals. The required timeTip of signalSip is then propa-
gated backward asTia. In Figure 5, required timeTic is selected from
among the two propagated required timesTib andTic. Using the above
criteria for creating the required time of a pruned signal, the selected s
nal Sip has a greater slope than the pruned signalSia. Therefore, the
required timeTip will overestimate the delay between nodeni and nf,
meaning thatTip will be earlier than the exact required time ofSia, result-
ing in an over-estimation of the slacks on the pathPai of signalSia. This
guarantees the important condition that the slack along the sub-crit
path ofSia is always higher than the slack of the critical path at nodeni.

5  Results

The proposed algorithms were implemented in an industrial trans
tor-level static timing analysis and optimization tool. Both thebasic
algorithm presented in Figure 3 and theextendedalgorithm which
reduces the number of propagated arrival signals for digital circuits w
implemented. The algorithms were tested on a number of indust
designs ranging in size from 780 to 12,500 transistors. These inclu
circuit blocks from high-performance microprocessors and DSP chi
In Table 1, we show the circuit delay calculated by the traditional LP

method and the proposed exact method from this paper. The table d
onstrates that the LPA method underestimates the circuit delay by
much as 38% for the decoder circuit and by 19% on average. It is cl
that this is a significant error that can not be ignored.

In Table 2, the run time and the number of propagated signals for
traditional LPA method, the proposed basic method, and the propo
extended method are shown. The exact method has a run time penal
4.1 - 17.8% over the traditional LPA method. On the other hand, t
extended method reduced the run time penalty to only 1.2 - 9.9% o
the LPA method. In all cases, the extended method produced ident
results with the basic method, as expected. Finally, the proposed m
ods were also used in transistor size optimization. In Figure 6, we sh
the area/delay trade-off produced during the optimization of circuit m
for both the LPA and the proposed method. The discontinuities in t
circuit delay are evident towards the end of the trade-off curve produc

Figure 4. Bound on added path delay

Sia

Sib

Sic

(a)

(b)

Sia

Sib
Sja

Sjb

(sib-sia)/2

Circuit # transistors
Total Circuit Delay in nS

LPA New %Error in LPA

mux 784 0.88 0.99 10%

adder 1,074 0.55 0.87 36%

decoder 1,490 2.11 3.47 38%

contr3 3,190 2.63 3.22 18%

reg 4,902 3.83 4.66 17%

contr2 11,112 8.49 9.26 8%

contr1 12,519 2.07 2.26 8%

Table 1. Effect of slope propagation on estimated delay

Figure 5. Propagation of required times.

Sa

Sb

Sc

Sb, Sc
342



is
its

ead
s,

e-
cor-
o

ible
ific
a-
ut
ng
ga-
ro-
nd
he

tual
sed
y

al
by LPA. The trade-off curve produced by the proposed method is free of
such discontinuities.

6  Conclusions

In this paper we have shown that the traditional timing analys
approach can significantly underestimate the delay of a circuit, due to
method of propagating arrival signals. We also showed that this can l
to discontinuities in the circuit delay as a function of its transistor size
which creates difficulties for circuit optimization tools. We therefore pr
sented a new algorithm that addresses this problem and is proved to
rectly calculate the critical path in a circuit and its circuit delay. We als
showed that this algorithm propagates the minimum number of poss
arrival signals for a general timing graph. Then, based on the spec
properties of digital logic gates, we showed that the number of prop
gates arrival signals can be further reduced for digital circuits, witho
incurring an error. Finally, we presented the algorithm for propagati
the required times in a manner consistent with the arrival signal propa
tion to enable the calculation of node slacks at all circuit nodes. The p
posed algorithms were implemented in an industrial timing analysis a
optimization tool and were tested on a number of processor circuits. T
results show that the traditional method can underestimate the ac
delay of a circuit by as much as 38%. We also show that the propo
algorithms increase the run time of timing analysis only marginally b
10%.

7  References

[1] Ayman I. Kayssi, Karem A. Sakallah, Trevor N.Mudge The
Impact of Signal Transition Time on Path Delay Computation,
IEEE Transactions on circuits and systems-II: Analog and digit
signal processing, Vol. 40, No. 5, May 1993

[2] Chandu Visweswariah, Andrew R.Conn, Formulation of Static
Circuit Optimization with Reduced Size, Degeneracy and
Redundancy by Timing Graph Manipulation, Proc. IEEE/ACM
ICCAD, 1999, pp.244-251.

[3] Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization,
Academic Press, New York, 1983.

[4] Hitchcock, R.B. Timing verification and the Timing Analysis
program, Proc., IEEE/ACM DAC, 1982, pp.594-604

[5] Jouppi, N.P. Timing analysis for nMOS VLSI, IEEE/ACM
Design Automation Conf., 1983, pp. 411-418

[6] J.P.Fishburn, A.Dunlop, “TILOS: A posynomial programming
approach to transistor sizing”, ICCAD, Nov 1985

[7] S.Devadas, K.Keutzer, S.Malik, “Computation of Floating Mode
Delay in Combinational Circuit: Theory and Algorithms”, IEEE
Trans. on Computer Aided Design, Dec 1993.

[8] Y.Kukimoto, W.Gosti, A.Saldanha, R.Brayton, “Approximate
Timing Analysis of Combinatorial Circuits under XBD0 Model”,
ICCAD, 1997, pp. 176-181

[9] H.Yalcin, J.P.Hayes, “Event propagation conditions in circuit
delay computation”, ACM Transactions on Design Automation
of Electronic Systems, July 1997

circuit

#signals propagated(%
increase over LPA)

Run time in Seconds   (%
increase over LPA)

LPA New
New,

Pruned
LPA New

New,
Pruned

mux 1614 1836(13.8) 1744(8.1) 1.7 1.9(11.8) 1.8(5.9)

adder 1524 1597(4.8) 1541(1.1) 4.9 5.1(4.1) 5.0(2.0)

decoder 2636 2732(3.6) 2638(0.1) 3.25 3.37(3.7) 3.29(1.2)

contr3 4863 5476(12.6) 5276(8.5) 8.3 8.6(3.6) 8.4(1.2)

reg 32130 35150(9.4) 32584(1.4) 15.1 16.8(12.3) 15.9(5.3)

contr2 92792 98288(5.9) 93511(0.8) 35.6 41.9(17.8) 39.1(9.9)

contr1 58215 59820(2.8) 58595(0.7) 32.5 34.4(6.1) 33.7(3.9)

Table 2.  Performance Comparison

Figure 6.  Circuit Optimization with LPA and new method

LPA

Proposed algorithm
343


