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1 Abstract gate delay that may be smaller than the actual delay when multiple
inputs switch simultaneously, and may therefore yield an overly optimis-
Static timing analysis has traditionally used the PERT method foftiC timing analysis report. In [9], this problem was discussed and a solu-
identifying the critical path of a digital circuit. Due to the influence of tion was proposed. o o ) )
the slope of a signal at a particular node on the subsequent path delay, anThe second assumption is that at each node, the arriving signal with
earlier signal with a signal slope greater than the slope of the later sign#fe latest crossing time results in the longest path delay and is therefore
may result in a greater delay. Therefore, the traditional method for timpropagated forward, while all earlier arriving signals are not. This
ing analysis may identify the incorrect critical path and report an opti-2ssumption is the topic of this paper. The traditional implementation of
mistic delay for the circuit. We show that the circuit delay calculatedPropagating only the latest arriving signal is referred to aslaest
using the traditional method is a discontinuous function with respect t@ropagation algorithm (LPA). _ _
transistor and gate sizes, posing a severe problem for circuit optimiza- LPA selects one signal for forward propagation out of all signals
tion methods. We propose a new timing analysis algorithm whicharTiving at a node. The basic problem with LPA is that it makes this
resolves both these issues. The proposed algorithm selectively propg€lection based only on the crossing time of the arriving signals without
gates multiple signals through each timing edge in cases where thef@gard to their slopes. The slope of a signal at a node, however, has a
exists ambiguity regarding which arriving signal represents the criticaflirect impact on the delay of subsequent gates in its path, and therefore
path. The algorithm for propagating the corresponding required times igffects the overall path delay of the signal. Given two signals, the signal
also presented. We prove that the proposed algorithm identifies a ciith an earlier crossing time might well have a larger overall path delay
cuit's true critical path, where the traditional timing analysis methodif it has a significantly larger signal slope. Such a signal would not be
may not. We also show that under this method circuit delay and nodBropagated under LPA and its path would remain undetected, resulting in
slack are continuous functions with respect to a circuit’s transistor an@n underestimation of the worst circuit delay. To illustrate this problem,
gate sizes. In addition, we present a heuristic method which reduces th¢e have shown in Figure 1(a) a simple two-input circuit with two possi-
number of signals to be propagated at the expense of a slight loss in A
accuracy. Finally, we show how the proposed algorithm was efficiently
implemented in an industrial static timing analysis and optimization tool,
and present results for a number of industrial circuits. Our results show
that the traditional timing analysis method underestimates the circuit
delay by as much as 38%, while that the proposed method efficiently
finds the correct circuit delay with only a slight increase in run time.
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Two approaches are commonly used to verify the timing of a digital 1.4
circuit: dynamic simulation and static timing analysis. A disadvantage of 1.z
dynamic simulation is that it requires the user to generate a set of inpu g,
vectors which exhaustively exercise all possible paths in a circuit. It is
therefore applicable only to small circuits and tends to be error prone.
For large designs, static timing analysis has become the predominar ™
method for timing verification. Static timing analysis also has become *##
the core engine used inside circuit optimization tools such as transisto a.ze
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and gate sizing tools [2], [6] and logic synthesis tools. 9.0 |
In static timing analysis, the so-called arrival timessignals which - . .00 L
represent the latest time a signal can transition at a node due to a sign L7 bLs" bha' bl Lho' Lds  oiee o oder bose Lies Lss
change at a circuit input, are propagated forward through a circuit from tine in ng tine in ns
inputs to outputs. Similarly, the so-calledquired timeswhich repre- (b) ©
sent the latest time a signal can transition at a node in order to meet per- ", ., Te

formance constraints, are propagated from circuit outputs to inputs. An
arriving signal consists of both therossing time,when the signal
reaches the 1/2 Vdd point, and the slope of the signal. As signals are
propagated across a gate, their crossing times and slopes are updated.
In recent years, extensive research has focused on how to efficiently 7%
and accurately calculate propagation delays and slopes for gates in a cir- #-%2 |
cuit [1], as well as on methods to eliminate false paths, which are unreal- .ssa_|
izable due to logic and timing correlations in a circuit [7], [8]. However, a.a00_| W(Gy)
the essential principle of static timing analysis has remained largely 4, 7sa_|
unchanged since it was proposed in the eighties by [5], [4] and is still -z,
based on two fundamental assumptions: 1.488 l 1.E|=ea l 2.2|BB I 2.6'.98 l a.alaa l S.JBB l 3.E|HBB l 4.2|BB l 4.6'.88 l
The first assumption is that, when calculating the delay of a gate, only %)
one input of the gate is switching at a time. This results in a calculated

1.188 _|
1.858 _|

1,868 _|

Figure 1. Error in calculated circuit delay with LPA method
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ble signal paths, one originating from input A (signal A) and one origi-also demonstrate the occurrence of discontinuities in the worst circuit

nating from input B (signal B). Figure 1(b) shows the Spice waveformsdelay when sizing using LPA and show how these discontinuities are

and the associated crossing time and slope of the two signals at node i2moved with the proposed propagation algorithm.

Since the crossing time of signal B (0.7ns) is later than that of signal A The remainder of this paper is organized as follows: In Section 2 we

(0.64ns), LPA propagates signal B through gate G3 resulting in a totghresent a formal formulation of the timing analysis problem. In Section 3

path delay of 0.82ns as shown in Figure 1(c). However, the slope ofve present the newly proposed propagation algorithms, and prove that

arrival signal A (1.36ns) is larger than that of signal B (0.1ns), and wouldhey correctly identify the worst circuit delay. We also present a delay

result in a significantly larger delay of gate G3 if signal A was propa-bound for reducing the run time for digital circuits. In Section 4 we

gated instead of signal B. The total path delay of signal A would therepresent our results, and in Section 5 our conclusions.

fore be 0.95ns, as shown in Figure 1(c). For this simple circuit, .

traditional timing analysis using LPA reports a worst circuit delay of 3 Problem Formulation

0.82ns, while the actual worst circuit delay is 0.95ns. Although LPA cor-

rectly calculated the path delay of signal B, it did not detect that signal A In this section, we present a formal definition of a timing graph and

resulted in a longer path delay than signal B and therefore identified thihe latest propagation algorithm. For the purpose of our discussion, we

wrong critical path and underestimated the total circuit delay. It shouldlo not include the elimination of false paths due to logic or timing corre-

be noted that this error is independent of the delay model provided thiations in a circuit in our formulation. The problem addressed in this

model accounts for the influence of signal slope on gate delay, as is thEaper is orthogonal to the problem of false path elimination, and our pro-

case for all modern delay models. In the above example, the circuit wgsosed solution can be applied to these methods as well.

simulated with Spice. Definition 1. A timing graphis defined as a directed graph having
Besides underestimating the total circuit delay, LPA poses problemexactly one source and one sink nod&={N,E,n,ng, where

to circuit optimization algorithms since it results in discontinuities intheN:{nllnz,,__,q(} is a set of nodesE={e;,e,.....g}is a set of edges,

calculated worst circuit delay with respect to transistor and gate sizes ip] [N is a source node, and, 1N is a sink node. Each azlgeE

the circuit. This is illustrated in Figure 1(d) where the worst circuit delay 's ’ f ’

is shown as a function of the size of gate G1. A sudden change in the cap simply an ordered paé=(n;,n;) of nodes.

culated circuit delay occurs when the size of G1 is increased such that The nodes in the timing graph correspond to nets in the circuit, and

the crossing time of signal B at node D becomes earlier than that of sighe edges in the graph correspond to the connections between gate inputs

nal A. At this point, the signal propagated by LPA switches from signaland outputs. Although circuits in general have multiple inputs and out-

A to signal B and the slope used to calculate the delay of gate Guts, we can trivially transform them to graphs with a single source and

changes abruptly from 0.1ns to 1.36ns. This results in a sudden increasik by adding a virtual source and virtual sink. We also assume without

in the delay of G3 and hence in the worst circuit delay. Of course, théoss of generality that signal crossing times are measured at 50% of the

actual delay of the circuit is a continuous and smooth function of gataignal level.

sizes, and the observed discontinuity is purely an artifact of LPA. Each edgeE is assigned two functions: a delay functidg=d(s),

Such discontinuities pose a severe problem for efficient gradientyhich represents the signal propagation delay from a gate’s input to its
based optimization methods, which rely on the continuity and smoothgytput, and a slope functiog=s4(s), which represents the slope of the

ness of their objective function [3]. Discontinuities tend to trap suchgjgna) gt the gate’s output. Both are functions of the gate input slope
optimization methods far from an optimal circuit solution. To address

this problem, a recently proposed optimization method [2] propagate@nd have the following property which reflects the fact that for a logic

the latest arriving signal, but modifies its input slope to be the maximungate‘ a faster input slope produces a lesser gate delay and faster output

: . : P lope.

slope of all signals arriving at a node. This guarantees the continuity
the objective function, but can significantly overestimate circuit delay. In roperty 1. If slope sy<sp then delay do(sy)<de(sy) and slope
the example of Figure 1, the propagated arrival signal would have 86(S2) <Se(Sp)-
crossing time of 0.7ns and a slope of 1.36ns, resulting in an overestima- Below we give a definition of a path in the timing graph G and of its
tion of circuit delay and a sub-optimal optimization result. path delay.

Increasingly, designers are using automated sizing and logic synthedRgfinition 2 A path P of Timing GraphG={N,E,n,ns} is a sequence of
tools which result in optimized circuits with highly balanced path delays.its nodesP=(ng,ny,...,n,) such that each pair of adjacent noagandny
In such balanced circuits, the signals converging at a particular node afgys an edgeyr=(Ng,ny).

likely to have crossing times very close to one another. However, they A path P=(n,,Ny,....n) defines a sequence of edg@snene---§y)-

may have dramatically different slopes, and LPA is therefore more likely... ' h ,
to select the wrong signal for forward propagation and report an optimisg"ven the slope, at the first node, of pathP, we can determine the sig-

tic worst circuit delay. Hence, there is a critical need to address this issUé?! slopes for all the nodes on the path using the equais(s)) recur-
in static timing analysis. sively, wheres; is the to-be-determined slope at nages; is the slope at

In this paper, we propose a new signal propagation method which ithe predecessor noda ands; is a slope function of the edgg. After
guaranteed to identify the worst circuit delay correctly. The algorithmthe signal slope at each node of a path is determined, the delay of the
uses the propagation of multiple signals in cases where there is ambiggath is determined using the following definition:
ity regarding which signal results in the longest path delay. An associ-
ated algorithm for backward propagation of required times is alsdefinition 3. The path delaydp of path P is defined as Z d4i(s)
presented to allow the calculation of slacks for all nodes in the circuit. o 0P
We shall prove that the proposed algorithm identifies the correct wor WRY ] o .
delay of the circuit and also that the calculated worst circuit delay is cor?—khered”(&) S a_delay of an edge; on pgthP with input slopes;, and
tinuous with respect to gateftransistor sizes. Since the proposed alghle Summation is over all edges belonging to path .
rithm increases the number of propagated signals and required times, jt Finally, among all paths terminating at a node, we define the path with
increases the run time of the analysis compared to the LPA metho%e maximum crossing time as the critical path up to that node:

However, we show that for digital circuits an upper bound can be calcuP€finition 4. A path having the maximum delay among all paths with
r{ae same ending node is called critical.

lated for the added delay due to differences in the slope of signals, a The critical path of the sink f o timi his referred
we use this proposed bound to reduce the number of propagated signals.N€ critical path of the sink nodg of a timing graph is referred to as

With this bound, the increase in the run time over LPA proves to be smafin€ critical pathof the timing graph, and its path delay(G), is referred
in practice. Based on experiments on several industrial circuits, we shof as the delay of the timing graphihe main objective of timing analysis
that LPA can underestimate the worst path delay by as much as 38%. W to find the correct critical path in a timing graph and to compute its
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delay. Itis clear that this critical path is the limiting factor for the perfor- Lemma 1. Given two signalsS;={n, T,, s,, Ps} andS;={n, Ty, s,, Py} at
mance of a circuit, and that its delay must be decreased in order tgoden, wheres,<sy, then for any signal pat® from noden to nodez the

increase circuit performance. We will now show that the actual delay of,5th dela: of sianalS. is alwavs less then the path de of
a timing graph is a continuous function with respect to gate delays. Thigignalso ¥o(Q) gnals, y P Q)

property is important for circuit optimization methods, since many of .
such methods rely on their objective function being continuous. Proof. Lemma 1 follows directly from Property 1 of delay and slope

Theorem 1 If the edge delay and slope functions are continuous withfunctions, the recurrent dependence of gate output slopes on gate input

respect to some parameters, then the timing graph delay is also conting/oPesand the additive property of path delay in Definition 3.

ous with respect to these parameters. Theorem 2.If, for some noden; of timing graphG, LPA selects the sig-

Proof. The delay of each path in a graph is a finite sum of finite compo-N@l Satest(Ni, TiatestSatestPlates? @Nd the SIOPeSes; is less than the

sitions of delay and slope functions of individual edges. Hence, the patblopes, of another signaf,=(n;,T,,S.Pi) propagated tm;, then we can

delay is a continuous function with respect to the parameters of the slopgnstruct a new grapH, containing all nodes and edgesGrthat have

and delay functions. The total graph delay is the maximum of all pathaiready been visited by LPA, such thatir§ is critical butSaestis not.

delays in the timing graph and is therefore also continuous, since theyoof, We first construcH such that it contains only the nodes fran

maximum operat_lon ISa co_ntlnuous f_un(_:tlon_ " . _that have been visited by LPA. To compléfewe then add a sink node
The most obvious technique for finding the critical path of a givenp and an edge=(n, 1y) for each noden, of H that does not have an

timing graph is to simply enumerate all paths from its source to sink . ) - .

compute their delays, and select the path with the worst delay. Howevetr?,UthIng edge (including nods). To all edges, we assign dglay func-
since the worst-case number of paths in a circuit is exponential with cirlonsdi(S)=0, except forg=(n;, ny). We now calculate the maximum path
cuit size, this approach is infeasible for modern circuits. The traditionafielay of the set of all paths that do not pass through mpcend denote
approach for finding the critical path in a circuit is based on the PERTit asdy,,, For edges=(n; ny) we assign a delay functiogi)(s) such that
algorithm and uses the propagation of signals from the source node ®(Satesd=dmax and 6i(S)=dmaxt Tiatest Tk+ 2, WhereA > 0. Note that

the sink node. We define a signal as follows: _ this delay function does not violate Property 1. From this construction it
Definition 5. A signal §, at a noden is a quadruple§,={n, Ta, S, P} s clear that signa% will arrive at the sink node of timing graph later
wheren is the node at which the signal is situatég,is its crossing time  {han signaBsest

at the node, sis its slope at the node, andP=(ng, n,, ..., n)is the sig- From Theorem 2 we obtain the following corollary:

nal propagation path from the source nogo the node of interest Corollary 1. There exist timing graphs for which LPA computes an
The traditional timing analysis algorithm iterates through each nodéncorrect critical path and delay.

in a timing graph in topological order, selecting the signal with the latesfTheorem 3.1t is possible to construct a Timing Graph G with edge delay

crossing time from among all incident signals for forward propagationfunctionsd, depending continuously on a certain edge paramefdiut

As a signal is propagated forward, its crossing time is increased by gatich that the timing graph delalfx;) computed by LPA is a discontinu-
delayd(s) and its slope is replaced witf)(s), wheres; is the slope of ;5 with respect tg,,

the selected signaiVe have referred to this algorithm as the latest prop-prqof. We use the timing graph H constructed in the proof of Theorem 2.

agation algorithm (LPA) to reflect its selection criteria. Note that in '-PA’Assuming that the edge delay functicly of subpathP, depends
only one signal is propagated across each edge, and each node in the t'gﬂ, atest

ing graph is visited exactly once. Although in our notation a signal at a ongly and monotonically on parametgy, we Sex=xo such that.the
particular node records its entire path to that node, in practice a sign&@th delays of subpatjyesandPy; are equal. Then, a small variation of
only needs to record its predecessor node. So, traditional timing analystsaroundxy will result in a variation of the graph delay by

has a run time complexity that is linear with the number of edges in the . .

timing graph. The latest propagation algorithm is presented below i¥t Proposed Propagation Algorithm

Figure 2.

In Section 1, we already presented a small example circuit for which In order to perform a timing analysis which correctly identifies the
the latest propagation algorithm identifies the wrong critical path in thecritical path and delay of a timing graph, we propose a new propagation
timing graph. We now show below in Lemma 1 that, given two signals a@lgorithm. The algorithm propagates multiple signals forward in cases
a particular net, the path delay of any path from this net to the sink nodehere there is ambiguity regarding which signal results in the longest
of the timing graph will be greater for the signal with the slower signalpath delay. Only if two arrival signals are incident on a node, such that
slope. We then show in Theorem 2 that if this signal with the slowerone of the signals has both an earlier crossing time and a faster slope, is
slope also had an earlier arrival time, this signal can cause LPA to faithis signal pruned from the analysis. We prove that this algorithm finds
We prove that the existence of such a signal is a necessary and sufficighe correct critical path and graph delay for any timing graph. Also, we
condition for the existence of a graph with this signal on which LPA show that the algorithm propagates the minimal set of necessary arrival
fails. From this we show, in Theorem 3, that the graph delay calculatedignals. It is not possible to propagate fewer signals without incurring an
by LPA can be discontinuous with respect to the gate sizes. incorrect critical path and circuit delay for some general timing graph.

However, given some additional properties of the signal propagation
through digital circuits, we can bound the delay added due to the slope

1. Assign to the source nodg the signalS={no, To, S Po} difference between two signals. In Section 3.2 we show how this allows
whereTy=0, Py=(ng) us to significantly reduce the number of propagated signals for this spe-
2. Visit each nodei, in the graph in topological order doing the  cific class of timing graphs. In Section 3.3 we present the algorithm for
following: propagating a required time backward from the sink node to the source
2.1. For each incoming edgg; to nodei from nodek with sig- node. This is necessary to calculate slacks for all circuit nodes.
nal S=(ny, Ty, Se P, create a new sign&i=(n;, Ty, Si» . . .
PL) Where Ty =Tyt dy(S), Sa=Sii(Sd, Pe=(Pis 1) 4.1 Arrival Signal Propagation
2.2. From all signal; select signaBates(Mi: Tiatest Satest The proposed arrival propagation algorithm is shown below, in Figure
Platest: WhereT|atesi= max(Ty;) 3. Note that in steps 2.2 and 2.3, a set of signals is propagated forward
2.3. Assign the computed sigriiestto noden;. instead of a single signal as in LPA. We now prove in Theorem 4 and 5
that the proposed algorithm identifies the correct critical path, in Corol-
Figure 2. Traditional arrival signal propagation algorithm. lary 2 that the calculated graph delay is a continuous function of edge
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delays, and in Theorem 6 that the number of propagated arrival signalsike timing graph, the number of propagated signals can be reduced fur-
minimal. ther.

1. Assign to source nod®, the signal seCy={Sp}, whereS§={ng, 4.2 Reduction in Propagated Signals

To. S0 Pt To=0, Po=(no) If the proposed algorithm is used for the analysis of digital circuits,
2. Visit each nodey; in topological order and compute its signal set  we can utilize some well-known properties of such circuits to signifi-

C&(Sc1Sez,---) as follows: cantly reduce the number of propagated signals. Let us consider two ris-

2.1. For each incoming edgg=(n, n;) from nodek with signal ing signalsS, andSy, that are applied to a digital gate resulting in two

set C={Sk;, Sc..} Create a new signal set falling output transitions§, andS,, as shown in Figure 4(a). We define
Coi=(Sui1 Seio Sein..)), With  Sei=(ni Toi S Pui),  where the following property:
TEI-_%EEZISE(ZS’;?;IS’SK-)_SK-(S;(-) ,;?(‘_E(é,k' qk)” P Property 2. For a digital gate connecting input nodewith output node
= 1 v SKI)TKI ’ (. ) . . . .
29 Aséignjto nodjeni sfgnal s:atCi, consisting of the union of n;, if two input signal waveforms§, andS, are related such that at any
signal set<; point along their transitioiy, is earlier thargy, then for all time points
i

2.3 Remove from the signal s&t any signal§;={n;, Ty, §;, Py} along the output waveforng, andS,, waveformS, will be earlier than

if C i =n:. T ) <. b:

Znilshigkamther SINEN: T S Pr such asTy<Ti If signal Sy, is later tharS, at all points along its transition, it follows

! that at every point in time, the voltage of signal wavef&gwill be less

than the voltage of waveforr§, (assuming a rising input transition).
Digital gates have the property that at any instance in time, a lesser input
o . ) voltage results in a lesser instantaneous drive current that charges the
Theorem 4.For any timing grapl@ and for any of its nodes;, any sig-  gutput load of the gate. Since the output voltage waveform of a gate is
nal §;={n;, T, sj, P} that is pruned by the proposed algorithm does not simply the integral of this drive current divided by the load capacitance,
have the latest crossing time at any nodellowing noden;. it is clear that a gate with a lesser driving current at all time points, will
Proof. If, in the proposed algorithm, we prune siggi{n;, T, 5, Py}, also have a less complete transition and therefore a later waveform at all
then at this node; there exists another sign§l={n, Ty, Sy Py} such points. In other words, a digital gate can only produce an output signal

that T;;<Tj, ands;<sy. Since bott§; andSy propagate through the same vyaveformﬁb thatis earlier than S|.gn§a, It the input s!gnalsb 1S ear
o lier than signalS, on at least one time instance along its transition. Note
edges after nodg;, and from the property of the slope function, it fol- c .
| that at d aft den the sl of signalS: will be | that Property 2 is stronger than Property 1, and that it may not hold for
ows that at any noda, after noden; the slopes; of signalS; will be less o analog circuits or for circuits where parasitic inductance and cou-
than the slopesy of Sy. From this and the property of the edge delay pjing capacitance dominate the signal delay. However, Property 2 holds
function it follows that the edge delay along the path of sighalrom  for all standard digital circuits for which static timing analysis is per-
noden; to noden, will always be less than the edge delay along the samdormed, including very high performance and deep-submicron designs
path for signalS,. Since the crossing time is the summation of edgeas illustrated by the waveforms in Figure 4(a) from a typical gate of a

delays from node; to noden;, and sincel;<Tj, at noden;, it follows that 0.13um, 2Ghz digital processor. .
; : We now consider two signal§, and Sy at a noden; with the same
S;j will always be earlier tha§y.

Theorem 5.The proposed algorithm correctly calculates the critical pathCrossmg time but with dlﬂgreht slopes, ands, SIQnaI.S'b having the
and delay of a timing graph. slower slope, as shown in Figure 4(b). We would like to calculate a

Proof. From Theorem 4, it follows that the proposed algorithm never20undd on the difference in crossing times of these two signals at the
prunes a signal that could be critical. Hence, all potentially critical sig-Sink nodeny. To do this, we first replace signg, with a signalSc, such.
nals are propagated to the sink node, where the critical path and grapfat signalS has the same slope as siggl and completes its transi-
delay are determined by identifying the latest signal from the set of proption at the same point in time as sigr&l. Note that signal,. is later
agated potentially critical signals. than signal§,, at all points along its transition. Based on Property 2, sig-

Corollary 2. The timing graph delay computed by the proposed algoa) 5 will be later than signa$y, at all points along its transition at the

rithm is a (;ont_inuous functi_on of any parameters of the edg_e delay %ext noden;, and by recursion, also at nodge Therefore §; has a later
slope function if these functions are, in turn, continuous functions of the P ’ c

chosen parameters crossing time at nodg; than signalSy, and therefore the difference in

Proof. It follows from the fact that the algorithm correctly computes the Crossing times of; andS; at noden is an upper bound on the differ-
timing graph delay, and from Theorem 1 that the calculated timing grapkence in the crossing times §f, andS, at noden;. SinceS, andS. have
delay is a continuous function of the parameters of the edge delay ardentical slopes, it is clear that the boudds exactly the difference in
slope functions. the crossing times &, andS; at noden;, which is(sy, - 55) / 2
Theorem 6 If, for some noden; of timing graphG, the proposed algo- Using 3, we can prune from the propagation any sig8gt{n;, Tia.
rithm sglepts the signa;=(n;, Tj;,s;j,P;), we can construct a new graph Sa» Pia} if another signa§,={n;, Ty, Sp, Pip} eXists such thafy, - Ty >

H containing all nodes and edges@that have already been visited by & of Ty, - Tia > (Sia - Sp) / 2. In this case, signa, is earlier than signal

the algorithm, such that the critical pathtbfncludes the patRy. S, to such an extent that the added delaysgfin the path fromm to y
Proof. The proof for this theorem is similar to that of Theorem 2, and is_, . R . o
' will not render it critical. Use of this condition in step 2.3 of the pro-

omitted for brevity. ; - ; :

. . . . posed algorithm limits the propagated signals to a small window of
. Theor.em 6 shows that i, a}t the tlm.e c_)f pruning at nogehere ISno crossing times preceding the latest crossing time and significantly
information available regarding the timing graph beyond nogét is  yequces the number of signals propagated through the timing graph. This
necessary for the algorithm to propagate all selected signals. It is thereondition guarantees the correct calculation of the critical path and graph
fore impossible to reduce the number of propagated signals further withdelay for circuit where the gates comply with Property 2, which holds
out possibly incurring a wrong solution. If, however, certain propertiesfor all digital circuits. The proof is omitted for brevity. Note that even if
(which we discuss in the next section) can be assumed for this portion @froperty 2 does not hold, the obtained timing result will be at least as

-

Figure 3. Proposed Signal Propagation Algorithm.
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5. For this purpose, we select from among the propagated signals at node
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B-888 S n; the signalS, with a slopes;, that has the least slope greater tigof
B2 e e e all propagated signals. The required timgof signalsp is then propa-
a.1ea a. z2al 8.ze8 8. 488 a.5es 8. &688 B. 708 . . . .
time in ng gated backward a$j,. In Figure 5, required timdj; is selected from
A I @ among the two propagated required tinTgsand Tj.. Using the above
criteria for creating the required time of a pruned signal, the selected sig-
Sa / nal §, has a greater slope than the pruned siggal Therefore, the
| > required timeT;, will overestimate the delay between nodeand ny,
meaning thaT;, will be earlier than the exact required time$, result-
Sio | ing in an over-estimation of the slacks on the pghof signalS,. This
i > guarantees the important condition that the slack along the sub-critical
5 Y path ofS, is always higher than the slack of the critical path at mode
C
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> 5 Results
losai2l
) e The proposed algorithms were implemented in an industrial transis-
] tor-level static timing analysis and optimization tool. Both tha&sic
Figure 4. Bound on added path delay algorithm presented in Figure 3 and testendedalgorithm which
reduces the number of propagated arrival signals for digital circuits were
accurate with LPA, since the signal with the latest crossing time idmPlemented. The algorithms were tested on a number of industrial
designs ranging in size from 780 to 12,500 transistors. These included

always be propagated. =2 . ; 3
We now examine the runtime complexity of the proposed algorithm.c'rcu't blocks from high-performance microprocessors and DSP chips.

In step 2.3, a subset of all signals incident on a node is selected to yB Table 1, we show the circuit delay calculated by the traditional LPA
propagated forward. This operation involves the sorting of all signals

according to their crossing time and is thOéN log N) whereN is the Total Circuit Delay in nS
number of signals incident on the node. The sum of all of signals propa- | circuit |# transistors
gated across an edge in step 2.1 is in the worst case equal to the sum o LPA New %Error in LPA
all path lengths in a circuit. Therefore, the overall complexity of the pro- =
posed algorithm is exponential in the worst case, since the number of mux 784 0.88 0.99 10%
paths in a circuit is exponential with the size of the graph. This, however, adder 1,074 0.55 0.87 36%
WO(;Il'd require that thT sllgnal'or_ger {_n tTrr:;]s ofbdecr(ias”lng_crossmg time [ decoder 1,490 211 3.47 38%
and increasing signal slope is identical, thereby not allowing any prun-
ning. In practice, this is unlikely, and we find that for industrial circuits contr3 3,190 2.63 3.22 18%
the number of signals that are propagated in the proposed algorithm is|  reg 4,902 3.83 4.66 17%
increased only slightly when compared with LPA. contr2 11,112 8.49 9.26 8%
. - . 0,
4.3 Backward Propagation of Required Times contrl | 12519 | 207 2.26 8%

o ) ) ) Table 1. Effect of slope propagation on estimated delay
Many optimization algorithms require the calculation of node slacks

for all nodes in a circuit. To accomplish this, required times must be .
propagated backward from sink nodeto source nodey, and the slack ~ Method and the proposed exact method from this paper. The table dem-
. onstrates that the LPA method underestimates the circuit delay by as

ﬁ:neeagg dnt?]iecmgnbetf,'ﬁ'ecgia;eg ?]zlthssdr'gelrﬁr';cdeﬂtr)ﬁé\’svﬁg trrlg rsq;t" ch as 38% for the decoder circuit and by 19% on average. It is clear
9 gnal. d propag at this is a significant error that can not be ignored.

backward across edges, their crossing times are decremented by the e 9%, Table 2. the run time and the number of propagated signals for the
delay. For each signal that is propagated forward, it is therefore Neces: Jitional LISA method, the proposed basic method, and the proposed
sary to have an associated required time that is propagated baclw tended method are srlmwn The exact method has é run time penalty of
such that this required time is decremented by the same delays as t S . 17.8% over the traditiénal LPA method. On the other hand. the
crossing time of its forward propagated signal was incremented. Thi%ﬁ(tended method reduced the run time penallty to only 1.2 - 9 9%' over
way, the arrival signal and associated require times are updqted with tl?ﬁe LPA method. In all cases, the extended method produced. identical
same edge delays as they are prgpagate_d, and remain consistent. A PEZults with the basic method, as expected. Finally, the proposed meth-
fS'bIe |rr_1pl_ementat|on |nvolves_stor|ng multiple edge delays for'each Edggﬁis were also used in transistor size optimization. In Figure 6, we show
g;;;‘:l gr:én?eglrj?gg t?nr;((ja tﬁgﬁ'g%ﬁ%ﬁg (iec(jjgr?ti?iglray and associated amvle area/delay trade-off produced during the optimization of circuit mux
For an arrival signat, that is pruned at node .a new required time for both the LPA and the proposed method. The discontinuities in the
a T ~ '~ circuit delay are evident towards the end of the trade-off curve produced
Tia must be created during the backward propagation as shown in Figure
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by LPA. The trade-off curve produced by the proposed method is free o§ Conclusions
such discontinuities.

#signals propagated(% | Runtime in Seconds (%
increase over LPA) increase over LPA)
circuit
New, New,
LPA New Pruned LPA New Pruned
mux | 1614| 1836(13.8) 1744(8.1) 1|/ 1.9(11|8) 1.8(F.9)
adder| 1524 1597(4.4) 1541(1.1) 4|9 5.1(4{1) 5.0(2.0)
decodef 2636 2732(3.¢) 2638(0.1) 3125 3.37(3.7) 3.29(1.2)
contr3| 4863| 5476(12.¢) 5276(8.5) 8[3 8.6(3)6) 8.4(1.2)
reg | 32130 35150(9.4) 32584(1}4) 15.1 16.8(1R.3) 15.9(5.3
contr2 | 92792 98288(5.9) 93511(0(8) 3%.6 41.9(1]7.8) 39.1(9.9)
contrl | 5821% 59820(2.8) 58595(0(7) 32.5 34.4(6.1) 33.7(3.9)
Table 2. Performance Comparison
1000
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Figure 6. Circuit Optimization with LPA and new method
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In this paper we have shown that the traditional timing analysis
approach can significantly underestimate the delay of a circuit, due to its
method of propagating arrival signals. We also showed that this can lead
to discontinuities in the circuit delay as a function of its transistor sizes,
which creates difficulties for circuit optimization tools. We therefore pre-
sented a new algorithm that addresses this problem and is proved to cor-
rectly calculate the critical path in a circuit and its circuit delay. We also
showed that this algorithm propagates the minimum number of possible
arrival signals for a general timing graph. Then, based on the specific
properties of digital logic gates, we showed that the number of propa-
gates arrival signals can be further reduced for digital circuits, without
incurring an error. Finally, we presented the algorithm for propagating
the required times in a manner consistent with the arrival signal propaga-
tion to enable the calculation of node slacks at all circuit nodes. The pro-
posed algorithms were implemented in an industrial timing analysis and
optimization tool and were tested on a number of processor circuits. The
results show that the traditional method can underestimate the actual
delay of a circuit by as much as 38%. We also show that the proposed
algorithms increase the run time of timing analysis only marginally by
10%.
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