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Abstract
Power supply noise increases the circuit delay, which may lead to

performance failure of a design. Decoupling capacitance (decap)
addition is effective in reducing the power supply noise, thus mak-
ing the supply network more robust in presence of large switching
currents. Traditionally, decaps have been allocated in order to mini-
mize the worst-case voltage drop occurring in the power grid. In
this paper, we propose an approach for timing-aware decap alloca-
tion which uses global time slacks to drive the decap optimization.
Non-critical gates with larger timing slacks can tolerate a relatively
higher supply voltage drop as compared to the gates on the critical
paths. The decap allocation is formulated as a non-linear optimiza-
tion problem using Lagrangian relaxation, and modified adjoint
method is used to efficiently obtain the sensitivities of objective
function to decap sizes. A fast path-based heuristic is also imple-
mented and compared with the global optimization formulation.
The two approaches have been implemented and tested on
ISCAS85 benchmark circuits and with grids of different sizes.
Compared to uniformly allocated decaps, the proposed approach
utilizes 35.5% less total decap to meet the same delay target. For the
same total decap budget, the proposed approach is shown to
improve the circuit delay by 10.1% on an average.

1 Introduction
Power supply networks are essential in providing the devices on

a die with a reliable and constant operating voltage. Due to on-chip
and package interconnect parasitics, the supply voltage delivered to
devices on a die exhibits both spatial and temporal fluctuations.
With technology scaling and decreasing nominal supply voltage,
gate delay is becoming increasingly sensitive to supply variations as
the headroom between the supply voltage Vdd and device threshold
voltage Vth is consistently getting reduced [1]. Therefore, it is
extremely important to model the impact of power supply noise on
circuit performance and improve the robustness of the power deliv-
ery network from the aspect of circuit timing.

Capacitance between the power and ground distribution net-
works, commonly referred to as decap, provides local charge stor-
age and is helpful in mitigating the voltage drop in the presence of
rapidly switching current transients. Parasitic capacitance between
metal lines of the power distribution grid, device capacitance of the
non-switching transistors and N-Well substrate capacitance occur
naturally in a power distribution network and act as implicit decou-
pling capacitance. Unfortunately, the amount of the naturally occur-
ring decoupling capacitance is not sufficient to meet stringent
power supply integrity constraints and designers have to often add
substantial amount of explicit decoupling capacitance on the die at
various strategic locations.

Gate capacitance of n or p type devices is normally used as the
explicit decap. These explicitly added decaps not only result in area
overhead, but also increase the leakage power consumption of the
chip due to their gate leakage current. With technology scaling, gate
leakage has become a significant percentage of the overall leakage

power and has been cited as a significant limitation on the maxi-
mum amount of decap that can be introduced [2]. Hence, the goal of
the designers is to meet the desired performance and signal integrity
constraints with the least possible total amount of explicitly added
decaps.
A number of methods have been proposed to allocate explicit

decap in order to confine the voltage drops in the power grid within
a pre-specified bound. The decap allocation problem was formu-
lated as a non-linear optimization problem in [3][4][5] with con-
straints on the worst-case voltage drops. An adjoint sensitivity
based method [9] was used in [4][5] to obtain the sensitivities of
decaps to the power supply noise metric. Decap allocation methods
tend to be computationally intensive because of expensive transient
power grid and adjoint grid simulations. The method in [5] proposes
a partitioning-based approach to reduce the power grid simulation
runtime during decap allocation.

All the above mentioned approaches aim at restricting the volt-
age drop at all the supply nodes within a pre-specified margin for a
given total decap budget. However, in high performance designs,
circuit performance is a more pressing concern and the above
approaches, although optimal for supply noise reduction, may not
be optimal for optimizing circuit performance. For instance, in a
logic block, only the delay of gates on the critical and near-critical
paths are of concern and the gates having larger timing slacks can
afford relatively higher voltage drops. To address this issue, two
recent approaches [6][7] have been proposed for timing aware
reduction of power supply noise. The approach in [6] requires enu-
meration of all critical paths and then formulates the problem as a
non-linear optimization problem. However, this approach is compu-
tationally intensive, requiring many adjoint circuit simulations
(equal to the number of gates in the enumerated paths) during each
optimization iteration. The approach in [7] uses a prediction and
correction based algorithm for power noise reduction. In the predic-
tion step, the amount of decap at various locations is predicted
based on switching frequency and placement of standard cells. The
correction step involves gate sizing to improve timing after place-
ment. However, this approach is heuristic-based and may lead to
over-design in certain scenarios.

In this paper, we propose an approach that is based on global
static timing analysis of a circuit and does not require the enumera-
tion of circuit paths. The approach naturally incorporates timing
slacks at the gates in the decap allocation algorithm. The objective
of the proposed approach is to improve the overall circuit perfor-
mance, given a total decap budget. Rather than confining the volt-
age drop at all the nodes in a power grid within a pre-specified
bound, the proposed approach automatically reduces the voltage
drop near the timing critical regions while non-critical gates may
have relatively higher voltage drops. Arrival time constraints are
handled using Lagrangian relaxation and the relaxed subproblem is
solved efficiently using the modified adjoint sensitivity method. We
show how the sensitivities of the node voltages with respect to the
decap sizes can be computed with a single adjoint simulation, sig-
nificantly improving the runtime of the algorithm. We also propose
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a fast and accurate heuristic to allocate decaps for improving circuit
performance. We implemented the proposed approaches and tested
them on benchmark circuits and power grids of different sizes. We
demonstrate that, on average, the proposed approach improves the
timing delay by 10.1% for a given decap budget or the amount of
required decap by 35.5% for a given delay target, compared to uni-
form decap allocation. The results also show that the heuristic
approach results in slightly lesser delay/ decap reduction with sig-
nificantly smaller runtimes.

The remainder of the paper is organized as follows. Section 2
presents the global decap minimization formulation using
Lagrangian relaxation. Section 3 presents the proposed path-based
heuristic approach. Experimental results are presented in Section 4
and conclusions are drawn in Section 5.

2 Proposed Global Optimization Approach

A typical power supply network model of a chip consists of ideal
supply voltage sources, power and ground wires modeled as a linear
RLC network, time varying current sources representing switching
transistors, and decoupling capacitances [8]. Each logic block in the
design is simulated at nominal supply voltage to obtain the current
drawn by the blocks over time. Each block of non-linear devices is
then replaced by its time-varying current distributed among its
power grid supply points. Figure 1 shows a combinational logic cir-
cuit in a power grid consisting of two metal layers. For clarity, only
the Vdd distribution grid is shown. The ideal voltage sources, time-
varying currents and decaps are not shown in the figure.

The objective of the proposed optimization problem is to allocate
decaps such that the circuit delay in each clock cycle is less than a
pre-specified clock period, T Conversely, the optimization can be
formulated to minimize the decap allocation while meeting a speci-
fied delay constraint. The optimization variables are the decap sizes
C, attached to power grid nodes n. The proposed approach is a post-
placement method and we assume that the white space available for
decap insertion is known. Furthermore, the placement information
of gates is assumed to be available. Since the voltage variations in a
power grid are typically very slow compared to the transition time
of a switching gate [10], we make the simplifying assumption that
the supply voltages are constant during the switching transition of a
gate.

The next subsection describes the problem formulation for the
global timing aware decap allocation.

2.1 Gate Delay Model

Consider a combinational circuit comprising of g gates with the
power and ground supplies at a gate i denoted as Vddi and Vssi
respectively. Two fictitious nodes src and sink are added to the cir-
cuit. All the primary inputs are connected to the src node and all the

M I

primary outputs are joined together to form the sink node. The sink
node connecting all the POs is labeled as node 0 and all other gates
are numbered in the reverse topological order. Let the arrival time at
the output of a gate i be denoted by ai. Let input(i) be the set of indi-
ces of gates driving the inputs of gate i and let output(i) be the set of
indices of gates in the fanout of gate i. For example in Figure 2,
g=4, input(O)={ 1,2}, output(3)={ 1,2}.

The delay of a gate i from one of its inputs j, Dji, and output tran-
sition time, trji, are represented as a linear function of the voltage
drops in supply voltages at the gate i and the driver gate driving the
node j. This linear approximation have been shown to be accurate
for power supply variations within a range of +lO0% in [11].

Dj= D0 +k ++AVdd+lAVss+mAVdd +n .AVss1 (1)

0
tri= t + AVdd + qAVss +rjiAVdd +s..AVssj (2)

Vj E input(i)
where, Dji° is the delay of gate i from inputj under ideal supply

voltages; trjio is the transition time at the output of gate i under ideal
supply voltages; AVddi and AVssi are power voltage drop and
ground bounce respectively at gate i; k, 1, m, n, p, q, r and s are con-
stants obtained by simulating the gate delay over a range of supply
voltages and performing multi-variable linear regression.

Traditional standard cell libraries are composed of two dimen-
sional tables with table entries representing delay and transition
times for different load-transition time combinations. For the pro-
posed algorithm, the cell library is re-characterized for different
input slope-output load combinations to also incorporate the delay
coefficients k through s, along with the nominal delay and transition
time entries, Dji0 and trji . For a given set of transition time, load
capacitance and supply voltages at a gate and its driver, the delay is
computed appropriately by table look-up and interpolation for delay
coefficients and using equations (1) and (2).

In the next section, we state the primal optimization problem
(PP) for decap allocation under timing constraints, followed by the
Lagrangian relaxation formulation. The discussions are focussed on
the decap minimization problem with constraints on circuit delay.
The problem of circuit timing improvement with constraints on total
decap can be solved in a similar manner.

2.2 Primal Problem

The variables in the primal problem are the decap sizes Cns and
arrival times at the output of gates, ais. The objective of the primal
problem (PP) is to minimize the total decap area:

N-1
minimize Y Cn

n =O

Vdd1

(3)

Vdd3

IVss2

Figure 1. A combinational circuit in a power distribution network Figure 2. A combinational circuit under non-ideal supply voltages

758



8A-2

where, N is the total number of decap candidate locations. The max-
imum decap sizes are bounded based on the white space available at
each candidate decap location, n:

O < Cn < Cmaxn (4)

The constraint on arrival times, ais, are stated as follows (For
simplicity in explanation, but without loss of generality, we do not
differentiate between rise and fall transitions):

aj < T Vj E input(O)

a +D1 <a. Vj E input(i)A(l<i<g) (5)

where, T is the pre-specified delay requirement of the given circuit.

The delay of gates, D.,, are expressed as a linear function of sup-
ply voltages as shown in (1). The supply voltages, on the other
hand, are a function of decap sizes, and are given by the following
modified nodal analysis (MNA) relation [12]:

G + c]x[k] = I[k] + cx[k- 1] (6)

where, x is the vector of unknowns: node voltages, inductor currents
and currents from voltage sources; I is the vector of current and
voltage sources; G and C are the conductance and capacitance
matrices of the power grid; k is the simulation time; and h is the
time step for simulation.

The primal problem is difficult to solve in the current form
because of the large number of unknowns and constraints in the
problem. Also, it requires a prohibtively large number of circuit
simulations to compute the sensitivity of the objective function (3)
to decap sizes. In the next subsection, we describe the use of
Lagrangian relaxation to remove the constraints and present a for-
mulation that reduces the number of required simulations.

2.3 Lagrangian Relaxation Problem

Lagrangian relaxation is a standard technique to eliminate diffi-
cult constraints in an optimization problem [13]. For our purpose, a
non-negative Lagrange multiplier, X)i, is associated with each input-
output pair (j,i) for gate i, and the corresponding arrival time con-
straint is incorporated into the objective function. For a given set of
Lagrange multipliers, the problem in Section 2.1 can be expressed
as the following Lagrangian relaxation problem:

minimize
N-1 g

S n E o(a -T) +
E E)-(a1+DJi-ai)

n = 0 j c input(O) i 1 j c input(i)

subject to:

O< Cn < Cmaxn

D.. Dg +k.1AVdd1 + I.1AVss- + mjiAVddj + n AVssi
Vj E input(i)

LG+ cjx[k] = i[k] + cx[k - 1 ]

For a given set of Lagrange multipliers A, the above problem has
two sets of variables: arrival times, a and decap sizes C. Kuhn-
Tucker conditions [13] state that if (a*, C*) is at the optimal solu-
tion to the above problem, then the derivative of the objective func-
tion with respect to all the variables must be zero:

a objective
aai

a = a*, C = C*

and hence,

z Xji
j c input(i)

0

(7)
Z

Xik Vi
k c output(i)

This condition states that at the optimal solution, the sum of
Lagrange multipliers from the inputs of a node i is equal to the sum
of Lagrange multipliers emanating from node i to all its fanout
gates. Let Qx be the set ofLagrange multipliers satisfying the above
condition in (7). Thus, if we search the Lagrange multipliers only in
the set Qx, we can eliminate arrival time variables ai from the
objective function. The simplified objective function for such
choices of Lagrange multipliers is expressed below:

N-1 g
: Cn- ±+ jiDji (8)

n = 0 j c input(O) i 1 j c input(i)

Substituting the expression for Dji from (1) into (8), we get the
objective function as follows:
N-1

ECnn
n = O

E XjoT
j c input(O)

+ E
i 1 j c input(i)

(9)

g g

E Ui AVdd,+ Z Pi AVssi
wi=er

where,

(xi = E Rj kji E Xik mik
j c input(i) k c output(i)

and pi = E Xji * Iji+ Z xik* nik
j c input(i) k c output(i)

(10)

(11)

Thus, given the optimal value of A, we can solve the above sim-
plified Lagrangian relaxation problem to arrive at the optimal solu-
tion. With the simplified objective function in (9), removal of
arrival time variables and arrival time constraints, the Lagrangian
problem is much easier to solve as compared to the Primal Problem.
The next subsection describes the solution of the Lagrangian prob-
lem for a given set of Lagrange multipliers.

2.4 Solving the Lagrangian Relaxation

To solve the Lagrangian subproblem described in the previous
subsection, we need to compute the sensitivities of the objective
function expressed in (9) to decaps C,. Adjoint sensitivity [9] is the
preferred method when sensitivity of one measurement response to
multiple parameters is required. On the other hand, direct sensitivity
method is efficient in computing the sensitivity of multiple mea-
surement responses to a single parameter. In our case, as shown in
objective function in (9), we require the sensitivity of worst supply
voltage values at each gate, to changes in all the decap sizes. Thus,
using either the adjoint or the direct method in its standard form will
require multiple power grid simulations. For instance, using the
direct sensitivity method would require N transient power simula-
tions, where N is the number of decaps. On the other hand, the
adjoint sensitivity method would require one original power grid
simulation and g adjoint network simulations, where g is the num-
ber of gates in the combinational circuit. We therefore use a modi-
fied adjoint sensitivity method [14] which uses the principle of
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superposition and computes the sensitivities of multiple measure-
ment variables to multiple circuit parameters in only one adjoint
simulation. Since, the objective function in (9) is a linear function of
voltage drops at all the gate locations, the principle of superposition
holds and the modified adjoint sensitivity method can be used to
solve the Lagrangian relaxation problem, as explained in the next
subsection.

2.4.1 Sensitivity Computation
We first describe the sensitivity computation of worst voltage

drop, AVddi, at a single gate location i. The power grid is simulated
with a given current profile and the derivative of the voltage wave-

form across all the capacitors, V"(t) is stored. The time point of the
occurrence of the worst voltage drop at the supply node of gate i is
observed. Let ti denote the time of occurrence of the worst drop at
gate i. Then, the adjoint power grid network is constructed with all
the voltage sources shorted to ground and all the current sources
removed from the network. The adjoint network is excited back-
wards in time with unit delta, 6(t-ci) current waveform applied at
supply node of gate i. The voltage waveform at all the supply nodes
of all the decaps, denoted by TW(t), is then observed and stored.

Lastly, the convolutions between V"(t) and TW(t) provide the sensi-
tivity of worst case voltage drop at the gate i to all the decap sizes.
Since there are g gates in the design, this method will require g dif-
ferent adjoint grid simulations, one for each gate, to compute the
sensitivity of the voltage drops at all the gates.

However, the objective function of Lagrangian relaxation sub-
problem in (9) consists of a linear combination of voltage drops
AVddi and AVssi, weighted by constants (i and Pi. As mentioned in
the last subsection, the principle of superposition is therefore used
and all the current excitations are applied simultaneously to the
adjoint circuit. Let [X] be a gxl vector (g is the total number of
gates), representing the time of occurrence of worst drop at all the
gates. In the adjoint network, for every gate i, a current source, rep-
resented by a scaled delta function, ui6(t-ti) for power grid (and
Pi6(t-ti) for ground grid) is applied and time-varying voltage
responses at the decaps TW(t) are observed. Then, the convolutions
between the derivative of voltages across the decaps in the original
grid and voltages across the decaps in the adjoint grid provide the
required sensitivities. Thus, the sensitivity of (9) to Ci is given as
follows:

AT RAT

slack

'. sink
0

'-'--, s4= rat4 - a4

Figure 3. Slack computation using required arrival times

i from its inputj. If the circuit consists of only one prominent criti-
cal path under supply variations, then at the optimal solution point,
only the Lagrange multipliers along the critical path will remain
non-zero, while all other As associated with the non-critical paths
will be zero. We propose to update the set of Lagrange multipliers
based on the gate criticality or in other words, the timing slack
available at each node.

At the start of the algorithm, we assume that every gate delay is
critical and as an initial guess, all the Lagrange multipliers are non-
zero and satisfy condition (7). Then the Lagrangian relaxation sub-
problem is solved optimally as described in Section 2.4 based on the
given set of Lagrange multipliers. In the next iteration, timing slack
is computed at each node in the circuit based on new arrival times
(AT) and new required arrival times (RAT) as shown in Figure 3.
Each Lagrange multiplier Xji is decreased in proportion to the slack
available at the output of gate i as follows:

k+l k k
Xj I Xji Pk Si VI <i<g,j e input(i) (13)

where, Xjik and sik is the value of Lagrange multiplier in iteration k;

sik is the slack at the output of gatej in iteration k; Pk is the step-size
in iteration k.

2.6 Overall Optimization Flow

The overall optimization flow for the algorithm is presented in
Figure 4. We start with all Lagrange multipliers as non-zero such
that the condition in (7) is satisfied. Then, the Lagrangian relaxation

aCobjective= 1+ ,((T -t) V(t) dt

where, T is the duration of original grid simulation; n is the power
grid node where decap Cn is connected; Tn(t) is the voltage wave-
form at node n in the adjoint network and Vn(t) is the voltage wave-
form at node n in the original network.

The gradients of the objective function to decap values obtained
in this manner can be used to solve the Lagrangian relaxation prob-
lem using the conjugate gradient method [13].

2.5 Finding the Optimal X

The previous subsection described the modified adjoint method
to find the optimal solution given a set of Lagrange multipliers X. In
this subsection, we present a method for obtaining the optimal set of
As based on timing slacks available in the circuit. The Lagrange
multiplier Xji intuitively represents the criticality of the delay of gate

(12)

Figure 4. Overall optimization flow
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Figure 5. Optimization flow of the path based greedy algorithm

problem is formulated and values of voltage drop coefficients (X

and pi are obtained. The voltage drop coefficients are used to pro-
vide current excitations to the adjoint network. Convolution is per-
formed between the original and adjoint network waveforms to
obtain the sensitivities of the objective in the Lagrangian subprob-
lem. Using these sensitivities, the Lagrangian subproblem is solved
optimally for the given set of Lagrange multipliers. Lagrange multi-
pliers are then updated based on the slack available at gates in the
combinational circuit and the procedure is repeated until the conver-
gence of Lagrange multipliers.

3 Greedy Path-Based Approach
The Lagrangian subproblem described in the prior subsections

involves updating the Lagrange multipliers in each major iteration
and solving the Lagrange relaxation subproblem within each such
iteration. In this subsection, we present a path based greedy heuris-
tic to reduce the number of iterations. This approach is fast and has
been found to give a favorable trade-off in terms of run time and
optimization quality compared to the optimal results.

The optimization flow for the greedy approach is illustrated in
Figure 5. At the start of the optimization, all the decaps are assigned
a small value. Power grid is simulated with these decap values to
obtain the worst voltage drops at all the gates in the circuit. Static

1.9 -

1.8 -

1.7 -

1 .6 -

1.5 - nominal delay

1.0 1.5 2.0 2.5 3.0

Total Decap (nF)
3.5 4.0

Figure 6. Decap area vs circuit delay tradeoff curve for c432

timing analysis is performed on the circuit with the voltage drops to
obtain the path with maximum delay. In the Lagrangian relaxation
based algorithm, this amounts to setting all the Lagrange multipliers
to 1 in the critical path and 0 in the non-critical paths. Path delay is
formulated as a linear function of voltage drops using (1). Gradient
of the path delay to all the decaps is then computed using the results
from original and adjoint grid simulations. Based on the gradients, a
small amount of decap AC is allocated in the best search direction.
The new allocated capacitance values are stamped in the MNA
coefficient matrix (G+C/h) and original grid is re-simulated to
obtain the new worst voltage drops at the gates. STA is again per-
formed to obtain the critical path in the circuit which may have
changed due to decap insertion in the previous iteration. The pro-
cess is repeated until the decap budget has been exhausted. In every
iteration, only a small amount of decap is available to the optimizer
for allocation.

4 Experimental Results

The proposed Lagrangian relaxation-based and heuristic decap
allocation algorithms were implemented in C++ and tested on
ISCAS85 benchmark circuits with power grids of different sizes.
For the experiments, two power grids, Gridl and Grid2, consisting
of 4 metal layers were constructed using pitches and widths of an
industrial microprocessor in 0.13pt technology. Gridl is a M2-M5
power grid of 700ptx700pi die-area consisting of 10,804 nodes,
17,468 elements, 12 Vdd C4s and 12 Vss C4s. Grid2 is a M2-M5
1.2mmxl.2mm grid with 17,530 nodes, 29,746 elements, 28 Vdd
C4s and 28 Vss C4s. To model package impedance, an inductance

Circuit Delay runtimes

grid ckt gates decaps budget no uniform global greedy reduction global greedy
decaps optim. optim. optim. optim.

Gridl c432 212 476 2.38nF 1.498ns 1.798ns 1.621ns 1.640ns 9.84% 1lm15s Im15s
Gridl c499 553 595 2.98nF 1.233ns 1.480ns 1.308ns 1.394ns 11.62% 9m41 s 1m57s
Gridl c1355 654 793 3.97nF 1.839ns 2.207ns 1.878ns 1.913ns 14.90% 1lm43s 2m58s
Gridl c 1908 543 579 2.89nF 2.088ns 2.506ns 2.25 Ins 2.256ns 10.17% 20m24s 25.83s
Gridl c2670 1043 1190 3.57nF 1.622ns 1.946ns 1.754ns 1.764ns 9.86% 52m33s 8m41 s
Grid2 c3540 1492 1559 7.79nF 2.30lns 2.76 Ins 2.498ns 2.564ns 9.52% lO9m59s 23m49s
Grid2 c5315 2002 2217 6.65nF 2.080ns 2.769ns 2.409ns 2.416ns 9.97% 221m24s 61m18s
Grid2 c6288 3595 3712 8.15nF 5.186ns 6.223ns 5.820ns 6.48% >4hrs 188m36s
Grid2 c7552 2360 2571 7.18nF 2.975ns 3.571ns 3.262ns 8.65% >4hrs 63mO3s

Table 1. Experimental results showing delay reduction for a given decap budget
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nom. delay Decap Allocated %decap
delay constr. uniform optim. redn.

Gridl c432 1.498ns 1.640ns 3.55nF 2.38nF 32.98%
Gridl c499 1.233ns 1.394ns 3.49nF 2.98nF 17.60%
Gridl c1355 1.839ns 1.913ns 6.65nF 3.97nF 40.33%
Gridl c1908 2.088ns 2.256ns 6.15nF 2.89nF 52.92%
Grid2 c2670 1.622ns 1.764ns 6.96nF 3.57nF 95.80%
Grid2 c3 540 2.301ns 2.564ns 10.04nF 7.8OnF 22.37%
Grid2 c5315 2.080ns 2.416ns 12.2OnF 6.65nF 45.56%
Grid2 c6288 5.186ns 5.820ns 9.74nF 8.15nF 16.31%
Grid2 c7552 2.978ns 3.262ns 13.26nF 7.18nF 45.85%

Table 2. Experimental results showing decap reduction for a timing
constraint

of UnH was connected in series with a resistance of 0.1mQ at each
C4 location in the grid. The benchmark circuits were synthesized
using 0. 13pi standard-cell library and placed using Cadence Silicon
Ensemble. Some of the white space available was chosen to be the
candidate for decap allocation and the decap in each candidate loca-
tion was modeled as a capacitor connected to the power grid nodes
over the region. For the gates in the modeled power grid region, the
peak currents were approximated using a triangular waveform of
Ins duration. The gate peak currents were scaled to cause an appre-
ciable (15%) worst-case voltage drop in the grid. Preconditioned
conjugate gradient method was applied for optimization, using the
LANCELOT non-linear solver [15].

Figure 6 shows the delay-decap trade-off curve for circuit c432
placed in test-grid Gridl. The dotted line represents the nominal
delay of the circuit under ideal supply voltages. The figure shows
the effectiveness of the proposed timing-aware approach in improv-
ing the circuit delay. Table 1 presents the improvement in circuit
delay for a fixed decap budget. Column 1 and 2 show the circuit
name and its power grid. Column 3 and 4 show the number of gates
in the circuit and number of candidate decap locations in the layout.
The total decap budget is shown in column 5. Columns 6, 7, 8 and 9
show the circuit delay under ideal voltage supplies, delay with uni-
form decap distribution, delay obtained after Lagrangian optimiza-
tion and delay after application of the heuristic, respectively. It
should be noted that the uniform decap allocation, Lagrangian opti-
mization and greedy heuristic utilize the same total decap budget.
The greedy heuristic-based approach gave near-optimal results for
all the circuits. Column 10 shows the percentage improvement in
circuit delay by Lagrangian optimization over uniform decap allo-
cation. On an average, the circuit delay was observed to improve by
10.11% for the given decap budget. The last two columns show the
runtimes of the Lagrangian-based optimization and the greedy heu-
ristic. The Lagrangian-based optimization, although optimal, had
considerably larger runtimes compared to the greedy algorithm. The
Lagrangian-based optimization could not converge within 4 hours
of runtime for two largest circuits. Runtimes can be improved by
using a better non-linear solver and by accelerating the transient
power grid simulations using moment-based solvers [16].

Table 2 presents the comparison of total decap budget required to
meet a pre-specified timing budget using the heuristic method. Col-
umn 3 states the circuit delay with ideal supply. The constraint on
circuit delay under power supply fluctuations is shown in column 4.
Columns 5 and 6 show the amount of total decap required to meet
the given timing constraint under uniform distribution of decaps and
the decaps allocated by the proposed heuristic approach. Column 6

shows the percentage reduction in total decap area compared to uni-
form decap distribution, which is 35.51% on an average.

5 Conclusion

In this paper, we proposed an approach for timing aware decou-
pling capacitance allocation which utilizes the timing slacks avail-
able at the gates in a design. The decoupling capacitance allocation
is formulated as a non-linear optimization problem and Lagrange
relaxation in conjunction with the modified adjoint method is used
for optimization. We also presented a fast and near-optimal greedy
heuristic for timing-aware decap allocation. The approach has been
implemented and tested on ISCAS85 benchmark circuits and power
grids of different sizes. Compared to uniformly allocated decaps,
the proposed approach utilizes 35.51% less total decap to meet the
same delay target. For the same total decap budget, the proposed
approach is shown to improve the circuit delay by 10.11%.
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