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Abstract

Leakage power minimization is critical to semiconductor design in
nanoscale CMOS. On the other hand increasing variability with scaling
adds complexity to the leakage analysis problem. In this work we seek to
achieve tractability in Monte Carlo-based statistical leakage analysis. A
novel approach for fast and accurate statistical leakage analysis consider-
ing inter-die and intra-die components is proposed. We show that the
optimal way to select samples, to capture intra-die variation accurately, is
according to the probability distribution function of total process varia-
tion. Intelligent selection of samples is performed using a Quasi Monte
Carlo technique. Results are presented for benchmarks with sizes varying
from approximately 5,000 to 200,000 gates. The largest benchmark with
198461 gates is evaluated in 3 minutes with the proposed approach com-
pared to 23 hours for random sampling with comparable accuracy. Com-
pared to a conventional analytical approach using Wilkinson’s
approximation, the proposed technique offers superior accuracy while
maintaining efficiency. State dependence and multiple sources of varia-
tion are considered and the approach is scalable with number of process
parameter variables for standard cell characterization cost. We also show
reduction in sample size to meet target accuracy for computing leakage
distribution due to the inter-die component only when compared to ran-
dom selection of samples.

Categories and Subject Descriptors

J.6 [Computer Applications] Computer-Aided Design - computer-
aided design (CAD).

General Terms

Algorithms, Verification
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1. Introduction

As circuit design moves to smaller technology nodes the standby
power dissipation of devices is of critical concern. According to the 2007
ITRS roadmap circuit leakage control is a challenge for both high perfor-
mance and low power design. For high performance design increasing
design complexity and leakage scaling makes it difficult to control static
power while meeting performance requirements. For low power design
increase in leakage power is most challenging. Thus accurate and effi-
cient leakage analysis is crucial for the designer. On the other hand
increasing process variation with scaling adds complexity to leakage
analysis. A promising solution is to perform statistical analysis of leak-
age and use this to guide leakage optimization and design changes.

Current approaches to calculate full-chip leakage power can be classi-
fied into two main categories. The first category of methods are analyti-
cal in nature. These attempt to model full chip leakage using a standard
distribution, most commonly a lognormal distribution. The moments of
this distribution are computed by matching moments with an expression
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involving summation of leakage distributions at the gate level[1-4]. In [1]
a lognormal distribution is used to approximate the leakage current of
each gate and the total leakage is obtained by summing the lognormals. A
low rank quadratic approximation to capture non-lognormal leakage dis-
tributions is proposed in [2]. It is noted that a 20% error is observed when
modeling leakage distributions as purely lognormal using a linear
approximation. The authors in [3] attempt to capture high level character-
istics of a candidate chip design for early mode leakage estimation. In [4]
the authors propose a systematic characterization of leakage related
parameter variations. A quadratic model of the logarithm of leakage cur-
rent is also proposed. Traditionally these approaches have provided the
desired accuracy. However they make assumptions about either the
nature of the statistical distribution of process variation parameters or the
nature of the dependence of standard cell leakage on the underlying vari-
ables for handling process variation. The process variation parameters
are assumed to have a standard distribution, most commonly Gaussian,
or the logarithm of standard cell leakage is assumed to be a linear or qua-
dratic sum of the variables modeling process variation. It is not clear that
these assumptions will still hold true considering secondary effects in
process variation and a growing number of variation sources at technol-
ogy nodes below 45nm.

The second category of methods fall into the classification of Monte
Carlo based techniques involving selection of samples in the process
variation space and using these samples to compute leakage distribution.
Monte Carlo techniques can handle non-standard distribution of process
parameters and lookup tables for dependence of standard cell leakage on
process variables. Therefore they do not require simplifying assumptions
about the dependence of leakage on process parameters or the nature of
process parameter distribution, making them highly scalable. Also the
inherent parallelism in evaluating Monte Carlo samples make these tech-
niques amenable to multi-core and Graphics Processing Unit (GPU)
computing. However Monte Carlo techniques typically require a large
sample size rendering them expensive. There is a need for smart selection
of samples to reduce the number of samples that require evaluation with-
out compromising accuracy. In [5] the author describes such techniques,
known as variance reduction techniques. These techniques need to be tai-
lored to the system under consideration for efficient reduction in sample
size. In the context of integrated circuits it has been shown that a suitable
choice of these techniques can lead to significant sample size reduction
for statistical timing analysis[6]. We study the applicability of such tech-
niques for leakage analysis in this work.

There are two main contributions in this paper. To the best of our
knowledge this work is the first to study sample size reduction for statis-
tical leakage analysis using a Monte Carlo based approach. We consider
intra-die variation, state dependence and multiple sources of process
variation. Second, we address the issue of standard cell characterization,
which is largely ignored in literature. Statistical circuit leakage analysis
involves characterization of standard cells at grid points in the process
variation space. This is illustrated in the schematic for a traditional flow
in Figure 1. Although characterization is only performed once in the
design flow for a library the number of grid points grows exponentially
with the number of process variation parameters. There is a need to select
samples to reduce characterization cost while meeting target accuracy in
leakage analysis.

We first consider the problem of leakage analysis for the case of inter-
die variation involving multiple process variation parameters. For this we

154

111



Traditional flow Proposed flow

Obtain transistor/device Obtain transistor/device
SPICE leakage model SPICE leakage model

v v

Characterize cell library Characterize cell library
at grid points in process at QMC samples in inter-die
variation space process variation space

! v

Generate Monte Carlo At each sample add values
samples in multi parameter per cell/element type for
variation space leakage distribution.

)

LUT interpolation at each
sample per cell/element type
Add for leakage distribution|
Figure 1. Traditional and proposed leakage analysis flow for global
variation with multiple sources.

propose to use a Quasi Monte Carlo technique [7] for selecting samples
in the process variation space. We show that for a large benchmark cir-
cuit there is significant reduction in sample size to meet target accuracy
when compared to a random selection of samples for computing leakage
distribution. Standard cell characterization needs to be performed only at
these samples which reduces the cost of standard cell leakage character-
ization. Next we propose a solution for the case of the total leakage dis-
tribution considering inter-die and intra-die components which is the
major contribution of this paper. We recognize that this problem can be
formulated as selecting samples for inter-die variation and computing the
local distributions at each of these samples due to intra-die variation.
Computation of the moments of the local distribution requires additional
samples in the neighborhood of each inter-die sample. The number of
these additional samples can be prohibitively high. We propose tech-
niques for efficient selection of the samples. The key ideas are as fol-
lows. First we show that the optimal way to select samples to compute
local distributions accurately is to select samples according to the proba-
bility distribution function of total process variation. Second, the selec-
tion of samples is performed intelligently by using the Quasi Monte
Carlo technique. Experiments are performed on benchmark circuits syn-
thesized in a 45nm commercial technology. State dependence informa-
tion is also considered. We compare our technique with 3 approaches 1)
random sampling, 2) a technique referred to as Methodl, and 3) a tradi-
tional analytical approach based on [1]. Methodl involves smart selec-
tion of inter-die samples but no intelligence or reuse of samples for intra-
die variation. For the largest benchmark considered with 198461 gates,
the proposed approach requires 3 minutes whereas random sampling and
Methodl complete the task in 23 hours and 18.4 hours, respectively. We
also achieve accurate results for estimation of p, o, and the 95th percen-
tile of chip leakage distribution for all benchmarks considered with low
runtime.

The paper is organized as follows. Section 2 describes Quasi Monte
Carlo approach, which is a standard technique to reduce sample size for
Monte Carlo analysis. Section 3 proposes a leakage analysis technique
for the case of inter-die variation using a Quasi Monte Carlo technique.
Section 4 addresses leakage analysis for total leakage analysis involving
inter-die and intra-die variation using smart samples. Results and conclu-
sions are presented in Sections 5 and 6 respectively.

2. Smart Sampling for Leakage Analysis

Monte Carlo-based leakage analysis involves selecting samples in the
process variation space to obtain a statistical distribution of circuit leak-
age. This is mapped to the standard mathematical problem of Monte
Carlo (MC), which is to estimate the integral of a function using samples
in its domain. There are standard techniques for variance reduction of

MC, including Quasi Monte Carlo techniques. These techniques are
detailed in [5].

2.1 Quasi Monte Carlo

The standard Monte Carlo (MC) method addresses the problem of
approximating the integral of a function f{x) over the s-dimensional

hypercube C’ = [0, 1)’ where x represents a point in an s-dimensional

space. The MC estimate of the integral is given by the arithmetic mean of
f; which are values of the function f{x) evaluated at #» samples distributed

throughout the hypercube. The error bound of a method to numerically
estimate an integral using a sequence of samples is mathematically
related to a measure of uniformity for the distribution of the points called
“discrepancy”. A sequence with the smallest possible discrepancy has the
property that when used to evaluate the mean it achieves the smallest
possible error bound. Sequences constructed to reduce discrepancy are
called Low Discrepancy Sequences (LDSs). Quasi Monte Carlo tech-
niques are characterized by their use of LDSs to generate samples. LDSs
are deterministic sequences, i.e., there is no randomness in their genera-
tion. Intuitively these sequences are well dispersed through the domain of
the function, minimizing any gaps or clustering of points. Figure 2 illus-
trates that quasi random sequences generate samples with lower discrep-
ancy compared to pseudo random sequences (sequences with properties
similar to “truly” random sequences). Sobol, Faure, and Niederreiter are
LDSs that have been studied extensively. In this work we consider Sobol
sequences, which are known to be simple to construct. Interested readers
can refer to [7] for a construction of the Sobol sequence. In the context of
circuits Quasi Monte Carlo techniques have been studied for statistical
timing analysis [6] where results indicate that the techniques are a good
fit and are amenable to multi-core and GPU computing. This work is the
first to study the application of Quasi Monte Carlo (QMC) techniques for
statistical leakage analysis.

3. Leakage Analysis for Inter-Die Variation with Smart
Sampling

In this section we first describe the steps in an industrial leakage anal-
ysis flow. A typical industrial flow circuit leakage analysis involves char-
acterization of a standard cell library and computation of circuit leakage
using the characterized data as explained in Section 3.2. Further we intro-
duce our approach to estimation of statistical leakage due to inter-die
parameter variation to achieve tractability for multiple sources of process
variation.

3.1 Process Variation Model

Process variation parameters such as critical dimension (CD) and
oxide thickness exhibit correlations. To account for correlations between
parameters principal component analysis (PCA) is performed. Critical
dimension, threshold voltage and oxide thickness are thus expressed as
linear combinations of principal components. For process technology
nodes 45nm and below some foundries provide such statistical informa-
tion with principal component analysis. Now process variation models
with inter-die and intra-die components are widely used in the literature
[1]. Each process variation parameter has a global or inter-die compo-
nent, which is modeled by a single random variable for a parameter in a
die. Intra-die components account for spatial correlation within the die
and uncorrelated random variation per device. In this model the die is
partitioned into » * n grids and identical parameter variations are
assumed within a grid. Therefore, each source of variation is represented
by a set of random variables, one for each panel in the grid. For example,
transistor gate length variation is represented by a set of random vari-
ables for all grids and the set is of multivariate normal distribution with
covariance matrix R 1o AS mentioned above the process variation param-
eters have been resolved into principal components. It follows that each
component is represented by a set of random variables for all grids. Prin-
cipal component analysis (PCA) is again performed on these spatially
correlated variables. In addition an independent random variable
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Figure 3. Proposed leakage analysis flow for within-die variation.

accounts for random variation at the device level for components result-
ing from PCA on process variation parameters.

3.2 Traditional Leakage Analysis Flow for Inter-Die
Variation

The standard cell library is characterized for leakage information at
grid points in the process variation space. To include state dependence
information, standard cells are characterized at the grid points for each
input state. If state dependence is not considered then an average of the
leakages for all input states is computed.

In a traditional Monte Carlo-based leakage analysis flow (to account
for inter-die parameter variation) process parameter variables or their
principal components are sampled. As only global variation is considered
the same sample set is assigned to every element type in the standard cell
library. The leakage value per element type in the library is obtained by
interpolation in the leakage lookup table for the element type. The circuit
leakage is obtained by adding up the leakage value obtained for each ele-
ment type after weighting by the number of occurrences of the element
type in the circuit.

The above approach does not consider state dependence of standard
cell leakage. To enable leakage calculation to account for state depen-
dence, the standard cell characterization data must have leakage informa-
tion for every cell state as mentioned above. In addition, at the circuit
level state probability information is required for every instance of each
element type in the circuit. Various approaches exist in the literature to
arrive at an estimate of state probability for each instance. For a detailed
discussion on this topic refer to [8].

3.3 Proposed Leakage Analysis Flow with Smart Sampling

We propose to use Quasi Monte Carlo based sampling for standard
cell library characterization and runtime leakage analysis. In a traditional
flow standard cells are characterized at discrete grid points in the space
of random variables to model process variation as explained in Section
3.2. In the proposed approach the characterization is performed at sam-
ples generated using a Quasi Monte Carlo (QMC) based approach. In

Pseudo random

Quasi random

Figure 2. Quasi random and pseudo random sequences.

sample lies at
Samples in total 4 different regions
(inter+intra) variation

space

in the two pdfs

local pdf
at inter-die sample
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—>

Inter-die distribution . )
inter-die sample
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Figure 4. Reusing samples for local distribution computation. Inter-die
samples weigh the samples in total variation space according to local
probability distribution.

particular we use Sobol sequences in the QMC approach in this work.
QMC samples refer to Sobol samples in the rest of the paper. The same
process variation samples are used for characterization of all element
types in the standard cell library and their states.

The proposed approach differs from a traditional flow during runtime
in that samples are not generated at this stage. The inter-die samples are
precomputed during cell library characterization. A given inter-die sam-
ple is assigned to every element type in the library as before and the cir-
cuit leakage is obtained by adding up the leakage values from element
types as in the traditional flow. It follows that there is now no need for
interpolation in the look-up table from cell characterization. The leakage
values are readily available in the tables without need for interpolation.
The traditional and proposed flows are illustrated in Figure 1.

4. Leakage Analysis for Total Variation with Smart
Sampling

This section proposes an algorithm for estimating full-chip leakage
considering inter-die and intra-die components of variation. In sub-45 nm
technologies secondary effects in process variation are important and the
number of significant sources of process variation is increasing. Existing
approaches to calculate full-chip leakage power make simplifying
assumptions about either the nature of statistical distribution of process
variation parameters or the nature of dependence of the standard cell
leakage on these parameters. The parameters are assumed to have a stan-
dard distribution or the logarithm of standard cell leakage is assumed to
be a linear or quadratic sum of the parameters. Combined with a growing
number of process variation sources this is a limitation on the accuracy.
Monte Carlo based methods on the other hand are expensive when han-
dling intra-die variation. The proposed approach can efficiently handle
any non-standard distribution of variables or dependence of full-chip
leakage on these variables.

A schematic of the proposed approach for total variation is illustrated
in Figure 3. Process variation consists of inter-die and intra-die compo-
nents. In Section 3 we discussed generation of samples in the space of
inter-die variation distributed according to the joint probability distribu-
tion of the variables involved. We apply intra-die variation to such a sam-
ple around the nominal and obtain a local leakage distribution for the
circuit. The sum of these distributions from all samples should give the
total leakage distribution. From a sampling perspective this translates to
generating more samples distributed according to the intra-die distribu-
tion around each inter-die sample. In this way the problem of total leak-
age variation can be formulated as a two-level sampling problem, the
first level corresponds to inter-die variation and the second level corre-
sponds to intra-die variation at each of the samples in the first level.
Using Quasi Monte Carlo sampling, accurate results for inter-die varia-
tion can be achieved with few samples as explained in Section 3. How-
ever even for a low number of first level, or inter-die, samples the total
number of samples in the second level can be prohibitively high. The
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Figure 5. (a) Total (Inter+Intra die) distribution and local pdf at an inter-die sample. (b) QMC based samples are generated according to total variation.
(c¢) For computing mean of local pdf the samples generated in (b) are weighed according to the ratio of the probabilities in the two distribution functions.

idea here is that if the second level samples are chosen optimally such
that either the entire set or a subset can be used for computation at every
inter-die sample the number of samples can be minimized. A uniform
sampling approach in a bounded space enveloping the inter-die samples
may be tried. However while this considers outliers in the inter-die distri-
bution this does not weigh samples close to the nominal adequately. The
problem is to arrive at a pdf which is optimal for all samples.

Consider the first level or inter-die samples in the process variation
space. The problem is to find a pdf for optimality in computation at every
inter-die sample. Such a pdf is obtained by summation of the pdfs of
local distributions at the inter-die samples. Now we have the surprisingly
simple result that if the number of inter-die samples is large enough the
summation of the pdfs converges to the pdf for the distribution obtained
for total variation with inter-die and intra-die components. The proof has
been omitted for brevity. Our experiments indicate that if the inter-die
samples are chosen according to a Sobol sequence and the sample size is
large enough (typically more than 100) this is indeed true. Therefore we
select the second level samples according to the pdf for total variation. To
minimize the number of second level samples we use Sobol sequences to
sample in this space.

For the case of no spatial correlation the idea is illustrated in Figure 4
where two samples are shown on the inter-die distribution. The second
level samples are chosen to be Quasi Monte Carlo based samples in the
total process variation space. One such sample in Figure 4 lies in differ-
ent regions of the pdf for the two inter-die samples. Therefore the first
level samples assign different weights to the leakage values obtained at a
particular second level sample. The characterization step needs to com-
pute leakages for standard cells at the second level samples only. The
procedure to reuse samples is illustrated in Figure 5 for the case of a 2D
process variation space. Figure Sa shows the total process variation dis-
tribution along with the local distribution at an inter-die sample S. Figure
Sb shows the second level samples generated in the total distribution
space x; : i=1...N. These samples are reused for computation of moments
of local distribution at S as in Figure 5c. In particular the mean of local
distribution at S for the circuit, L(S) is given by

N
L(x;) x Jpdfintra(x;—S)
JpdfTotal(x;)

L(S) = M
i=1

where JpdfIntra is the probability distribution for intra-die variation
and JpdfTotal is the probability distribution for total variation. Similarly
higher moments for the local distribution can be computed. The total
leakage distribution is a sum of local leakage distributions and is com-
puted using L(S) and the higher moments obtained for all samples. In the
case of spatially correlated intra-die variation, the sample for one vari-
able is not a single value but a set of values corresponding to grids in the
spatial correlation model. This means that each element of vector x; in (1)
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is not a scalar but a vector with correlated elements. The number of ele-
ments in this vector is equal to the number of grids. The functions JpdfIn-
tra(x;-S) and JpdfTotal(x;) are modified to include the spatial correlation.
We explore spatial correlation later and show that this level of modeling
process variation is not needed for large circuit and full-chip leakage
analysis.

Now the local distribution corresponding to one sample can be
approximated using Central Limit Theorem abbreviated as CLT [9]. If
spatial correlation is not considered then this local distribution has contri-
bution from sum of identical independent random variables from
instances of a given element type in the cell library. If there are enough
instances the local distribution approaches a normal distribution. Also for
a large number of instances the variance of this distribution approaches
zero according to CLT. This means that the local distribution approaches
a single number which is the mean of the distribution. In the presence of
spatial correlation as long as there are sufficient independent regions in a
die, i.e., the circuit is large enough the Central Limit Theorem can be
applied [10] as if all intra-die variation was uncorrelated. A reduction in
variance of the local distribution translates to a reduction in the number
of second level or additional samples for a target accuracy. For large cir-
cuit blocks and chips the problem essentially is to compute only the mean
of the local distribution at each inter-die sample. For circuits where spa-
tial correlation has a significant effect on leakage distribution, the tech-
nique can still be applied. The local distribution within a grid panel has
contribution from the sum of identical independent random variables
from instances of a given element type in the cell library. Therefore the
local distribution within each grid panel approaches a normal distribution
with number of instances in the panel, which reduces the number of addi-
tional samples, with spatial correlation considered, to capture the local
distribution.

5. Results

Our simulation results are based on a 45nm commercial technology.
Principal component analysis is used to obtain principal components for
the correlated process variation parameters including CD, oxide thick-
ness and threshold voltage. Simulations are performed on industrial cir-
cuits with sizes ranging from approximately 5000 to 200,000 gates. In
our implementation, we only consider inter-die variation and uncorre-
lated intra-die variation. Spatially correlated intra-die variation is not
implemented. In the presence of spatial correlation as long as there are
sufficient independent regions in a die, i.e., the circuit is large enough,
the Central Limit Theorem can be applied as explained in [10] and there-
fore the results are accurate for large circuit blocks and chips. This is
illustrated in Figure 6 for a benchmark circuit with approximately 43,000
gates. The standard deviation of the leakage distribution without consid-
ering spatial correlation is compared to the case where a grid-based spa-
tial correlation model is considered. The total standard deviation for



Table 1. Comparison of proposed approach with Golden ( Monte Carlo 20,000 samples) for benchmarks. * indicates that state probability is considered for
instances in the circuit.

Golden (Monte Carlo 20k samples) Proposed approach Error (%)

Gate v c 95t percentile | Runtime u c 95th percentile Runtime v c 95t percen- | Speed

count | (mW) | (mW) (mW) (mW) | (mW) (mW) (s) tile up
VD1 5536 0.51 0.18 0.85 1.7 hours 0.51 0.17 0.87 1.77 seconds | 0.03 3.55 2.21 3405
VD2 13258 | 1.21 0.42 1.99 4.8 hours 1.20 0.40 2.04 1.83 seconds | 0.30 2.61 2.51 9495
USB 15946 | 1.11 0.36 1.79 7.4 hours 1.11 0.36 1.85 1.95 seconds | 0.01 1.97 3.35 13738
ETHER | 23939 | 1.40 0.46 2.26 10.2 hours | 1.40 0.45 2.33 2.09 seconds | 0.06 1.99 3.10 17633
VGA | 43214 | 2.85 0.98 4.71 15.6 hours | 2.84 0.96 4.85 2.02 seconds | 0.49 2.31 2.97 27778
*Chipl |198461| 10.63 2.67 15.59 19.2 days | 10.64 2.63 15.96 278 seconds | 0.10 1.71 2.37 5969

intra-die variation is the same in both cases. The assumption of no spatial
correlation accurately estimates standard deviation for number of grid
panels above 256, supporting the argument in [10]. Therefore, spatial
correlation is not a limitation for circuit blocks and chips with practical
sizes for the current implementation, which is our focus in this work. The
modification in the algorithm for the case of smaller circuits is discussed
in Section 4.

Figure 7 shows the result for our proposed approach for inter-die
parameter variation using smart samples. The smart samples are obtained
from a Sobol sequence. The error in estimating  of leakage distribution

1.2
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Figure 6. Comparison of sigma of leakage distribution without
considering spatial correlation with that of a grid-based spatial
correlation model for VGA circuit (43214 gates)
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Figure 7. Comparison of error in estimating G of leakage distribution for
inter-die variation using QMC vs random sampling for VGA
circuit(43214 gates).
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for inter-die variation using smart samples is compared with a random
sampling based approach for a VGA circuit with approximately 43,000
gates. The golden value is obtained from a Monte Carlo simulation with
20,000 samples. We compare the minimum sample size required to
achieve target accuracy of 3% error in estimating ¢ for both methods.
The proposed approach requires 9.3X fewer samples compared to ran-
dom sampling. In a typical industrial flow the standard cells are charac-
terized at grid points in the process variation space. With 7 grid points
chosen for each of the three principal components in our implementation
the number of points to be characterized is 343 in a traditional flow
whereas the proposed approach requires only 150 from Figure 7, a 56%
reduction in standard cell characterization overhead.

We now present our results for total process variation considering both
inter-die and intra-die components of variation. Table 1 shows results
comparing the proposed approach with 20,000 Monte Carlo runs on
benchmark circuits. The metrics compared are mean (L, sigma o, and the

g5th percentile of the circuit leakage distribution. The errors in estimating
these metrics for the largest benchmark circuit Chip/ are less than 3%.
The errors in estimating the metrics are less than 3.6% for all the bench-
mark circuits. Note that there is higher accuracy for the largest bench-
mark studied. The proposed approach has a runtime of less than 3
minutes for the largest benchmark, which illustrates the runtime effi-
ciency. The larger runtime for Chipl, even accounting for the larger cir-
cuit size, is attributed to the fact that state probability information is only
considered for this circuit. State probability consideration for each
instance adds significant cost to the computation.

Figure 8 plots the accuracy against runtime of the proposed approach
and a random sampling approach. We also compare this with the result

40
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—o— Method1
—4&— Proposed method

35—-
30—-
25]
20—-
15-. Target accuracy 3%

18.4 hours
23 hours

104 3 minutes

Error in 95" percentile of leakage(%)

Time(hours)

Figure 8. Comparison of accuracy of proposed approach with random
sampling based approach vs runtime. The circuit considered is Chipl
with 200,000 gates.



for another smart sampling based technique called Methodl. As
explained in Section 4 the proposed approach first generates inter-die
samples using smart sampling. In the next step a smart selection of sam-
ples in the total variation space is coupled with reuse of these samples to
compute the mean of local leakage distributions at inter-die samples. In
Method| inter-die samples are generated using a Sobol sequence as in the
proposed approach. However a random sampling based Monte Carlo
analysis is performed at each inter-die sample to obtain the local distribu-
tion. In other words there is no intelligence or reuse of samples in total
variation space, however as inter-die samples are generated using smart
samples this method is expected to be faster than random sampling. Fig-
ure 8 shows that the proposed approach has a runtime of less than 3 min-
utes to achieve target accuracy for the largest benchmark whereas
Method1 has a runtime of 18.4 hours. This result illustrates the advantage
of smart sampling and reuse of the additional samples in the total varia-
tion space. The random sampling approach has a runtime of 23 hours. It
may be noted that the slope of the curve for Methodl is steep in the
beginning compared to the rest of the curve. This is because in Methodl
the number of inter-die samples is increased in the beginning till the
inter-die component of variation is captured accurately. After that only
the number of random samples to capture the local distribution is
increased while keeping the number of inter-die samples constant, hence
the decrease in slope. The slow convergence of random sampling to cap-
ture local distribution is the reason for comparable runtimes of Methodl
and random sampling.

Table 2 compares the proposed approach with an analytical approach
to compute leakage distribution based on [1]. In [1] the authors approxi-
mate the logarithm of gate leakage as a linear expression involving pro-
cess variation variables. Wilkinson’s approximation is used to compute
sum of lognormals to obtain circuit leakage as a lognormal expression.
From Table 2 the maximum error in estimating p is 3.7% for the analyti-
cal approach compared to 0.5% for the proposed approach. Similarly the
maximum error in estimating o is 6.1% for the analytical approach com-
pared to 3.6% for the proposed approach. It may also be noted that the
proposed approach incurs less error as circuit size increases but no such
trend is observed for the analytical approach. For the largest benchmark
Chipl state dependence has been implemented for both methods. The
errors in estimating p and o are significantly lower for the proposed
approach in this case as illustrated. As mentioned before the runtime for
Chipl is significantly higher compared to other circuits, even accounting
for circuit size because state probability information of instances is con-
sidered in this circuit. In the case of the analytical approach the increase
in time cost is much higher because the dependence on number of states
is quadratic.

Figure 9 compares the total leakage distribution of the largest bench-
mark circuit with 200,000 gates for the proposed approach with the
golden and the analytical approach based on [1]. The leakage variation
considering only inter-die variation is also plotted. This analysis consid-
ers state probability information for instances in the circuit. The state
probability information is extracted using a commercial tool. We see that

Table 2. Comparison of proposed approach with Wilkinson’s based
approach. * indicates that state probability information is considered for
instances in the circuit.

Circuit | Gate | Proposed approach Wilkinson’s
Count approach
% Error | Run- % Error Run-
N o | time(s) N o |time(s)
VD1 5536 [0.03[3.55] 1.77 | 3.43 [ 481 | 0.16
VD2 | 13258 | 0.30 [ 2.61 | 1.83 3.16 | 1.80 | 0.16
USB | 15946 | 0.01 | 1.97 | 1.95 3.62 | 6.13 | 0.19
ETHER| 23939 | 0.06 | 1.99 | 2.09 | 3.69 | 0.53 | 0.20
VGA | 43214 | 0.49 | 2.31| 2.02 3.03 | 1.37 | 0.20
*Chip1 | 198461 0.10 | 1.71 | 278 3.08 | 5.46 | 3094
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Figure 9. Total leakage distribution considering intra-die variation for
Chipl (200,000 gates). Proposed approach is compared with the
analytical approach based on [1] and the golden. The distribution due to
inter-die variation is also plotted. The analysis considers state
dependence of leakage for the instances in the circuit.
the distribution curve is captured with accuracy by the proposed
approach whereas there is significant error with the analytical approach.

6. Conclusions

Monte Carlo-based techniques are promising for statistical leakage
analysis because of the generality and scalability of the approach even
when complex relations exist between leakage and process parameters.
This work addresses the problem of reducing the sample size for Monte
Carlo based leakage analysis. When considering only inter-die variation
for a large benchmark circuit the sample size is reduced by 9.3X com-
pared to a random sampling approach to achieve target accuracy. The
standard cell characterization cost is also reduced by 56%. We also pro-
pose a solution to estimate the total leakage distribution considering
inter-die and intra-die components. A novel technique involving smart
sampling combined with reuse of samples is introduced to address this
issue. The proposed approach is compared with random sampling,
Methodl where samples are not reused, and an analytical approach. For
the largest benchmark considered the proposed approach performs the
computation in 3 minutes whereas the random sampling approach and
Methodl complete the task in 23 hours and 18.4 hours, respectively. The
analytical approach has up to 3.7% and 6.1% in approximating p and o
compared to 0.5% and 3.6% for the proposed approach. In addition the
characterization cost for the total leakage distribution is scalable with
respect to the number of process variation variables since Quasi Monte
Carlo sample size increases moderately with the number of variables
whereas in a traditional grid-based characterization approach the cost
grows exponentially with the number of process variation variables.
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