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ABSTRACT
Oxide breakdown has become an increasingly pressing reli-
ability issue in modern VLSI design with ultra-thin oxides.
The conventional guard-band methodology assumes uniformly
thin oxide thickness and results in overly pessimistic reliabil-
ity estimation that severely degrades the system performance.
In this study we present the use of limited post-fabrication
measurements of oxide thicknesses from on-chip sensors to aid
in the chip-level oxide breakdown reliability prediction and
quantify the trade-off between reliability margin and system
performance. Given the post-fabrication measurements, chip
oxide breakdown reliability can be formulated as a conditional
distribution that allows us to achieve a significantly more ac-
curate chip lifetime estimation. The estimation is then used
to individually tune the supply voltage of each chip for perfor-
mance maximization while maintaining or improving the reli-
ability. Experimental results show that the proposed method
can achieve performance improvement of 19% on average and
27% at maximum for a design with up to 50 million devices,
using merely 25 measurements per chip, while analysis time is
only 0.4 second.

Categories and Subject Descriptors
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General Terms
Performance, Algorithms
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1. INTRODUCTION
Due to aggressive technology scaling, designing a reliable

system has become more challenging than ever [1]. The wors-
ening process variation increases susceptibility of the system
to various wear-out mechanisms [2]. Among these reliability
issues, oxide breakdown (OBD) has emerged as one of the most
pressing concerns. As gate oxide thickness is scaled down to
the one nanometer regime, the stronger electric field across the
gate insulator results in faster formation of a conduction path
through the dielectric layer, aggravating the risk of destructive
breakdown [3].

Conventional worst-case guard-band methodology analyzes
chip OBD reliability by assuming a minimum oxide thickness
across the chip and then sets a supply voltage level to en-
sure the required lifetime of the chip. Clearly, such strategy
is overly pessimistic and enforces an overly low supply voltage
for the ensemble of chips, causing significant penalty in perfor-
mance budget [2, 3]. In practice, no two transistors are exactly
the same or have precisely the same characteristics. Instead,
they vary significantly from wafer to wafer, reticle to reticle,
die to die and across the die. Hence, some dies with thinner
than average oxides are much more likely to fail than other
dies. To more accurately account for the impact of thickness
variation on lifetime prediction, a recent research incorporated
both inter- and intra-chip variations into a statistical lifetime
analysis [4].
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Figure 1: Chip lifetime distribution for the ensemble
of chips (blue curve) (nominal thickness is 1.67 nm for
65nm device). Red and black curves represent lifetime
distributions for two particular chips with all devices’
oxide thicknesses known.

However, without post-fabrication measurement, designers
cannot know the oxide thickness of an individual transistor on
a particular die and hence cannot determine the specific life-
time expectation from one chip to another. Either the method
in [4] or Monte-Carlo simulation only relies on the general vari-
ation knowledge of the technology node and results in a more
accurate but ultimately still highly-spread lifetime distribution
for any chip. This is due in part to the lack of information of
the unique condition of a particular chip and unfairly implies
a chip that happens to have thicker oxides, bears the same risk
to failure as the one with thinner oxides. Figure 1 presents the
chip lifetime distribution (blue curve) by simulating the fail-
ure time of 50000 chips in a Monte-Carlo fashion. The spread
in lifetime results is partly from the innate randomness of the
OBD mechanism. The lifetime spread is further increased by
thickness variation (3σ/μ=4% [5]) which has an exponential
effect on the tunnelling current and injected charge and even-
tually leads to the lognormal shape in Figure 1 with a long tail
(908.8 year standard deviation / 99.9% reliability confidence
point is 25.5 year) [6]. However, each chip has unique oxide
thickness conditions for each transistor and hence some chips
are bound to have significant lifetime margin which could be
traded off for higher performance by allowing these chips to
operate at a higher supply voltage.

Thus, if the oxide thickness of each individual transistor on
a fabricated chip could be measured, the lifetime distribution
for that chip would be significantly tightened, as shown in Fig-
ure 1 for two chips, one with thinner oxides (red curve, 132.3
year standard deviation / 99.9% reliability confidence point is
11.6 year) and one with thicker oxides (black curve, 204.4 year
standard deviation / 99.9% reliability confidence point is 38.7
year). Then the chip with thinner oxide thickness (red curve)
has a significantly higher risk to fail early and should be oper-
ated using a lower maximum supply voltage, thereby improv-
ing the overall reliability of the design. Conversely, the chip
with black curve whose oxide thickness happens to be thicker
is less prone to failure and could be operated at a higher sup-
ply voltage limit and therefore obtain a performance gain while
still meeting reliability target. Hence, understanding the oxide
thickness condition on a die can result in both a performance
improvement as well as a higher reliability.

Unfortunately, obtaining oxide thickness condition for all
devices on a die is impossible in today’s chips with hundreds
of millions to billions of transistors. However, recent advances
in compact oxide thickness sensors [8, 9] allow tens to hundreds
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Figure 2: Proposed post-fabrication oxide thickness
measurement-driven supply voltage optimization flow.

of sensors to be placed on a chip or even inside cores. Thus,
a key challenge, which is the focus of this paper, is how to
precisely predict and manage the reliability condition of each
chip with a limited number (<1000) of post-fabrication oxide
thickness measurements using on-chip sensors. This problem
is non-trivial:

• First, while the number of measurements is limited, the
number of transistors on a die in today’s technology can
be enormous, exceeding 1 billion. It is therefore crucial
to fully utilize of the measurement information to pre-
dict the oxide thickness for all devices as accurately as
possible.

• Second, while we can measure the oxide thickness of sen-
sor device with reasonable accuracy, the thicknesses of all
other transistors remain uncertain and must be modeled
as random variables. Even with a fixed oxide thickness,
the reliability for a device itself is a random function
representing the probability the device can survive to a
certain lifetime [3]. The measurement-driven chip reli-
ability estimation therefore turns out to have the form
of a conditional multi-dimensional nested stochastic pro-
cess. Simple Monte-Carlo simulation must model both
the random variation in oxide thickness as well as the
innate variation of OBD itself and is therefore extremely
expensive in both time and memory.

• Finally, OBD is also a strong function of the chip operat-
ing conditions, such as processor state and temperature
which vary during the operation of a device. For simplic-
ity, our discussion has not accounted for these factors up
to now. However, they have a significant impact on the
lifetime of a particular die and we will outline how to
incorporate these effects in our proposed analysis.

In this paper, we propose a new post-fabrication measurement-
driven OBD reliability prediction and management methodol-
ogy using a limited number of measurement points. The mea-
surements of oxide thicknesses for a subset of devices can be
conducted by on-chip sensors [8] or test-structures [9], which
can be easily modified to measure the oxide thickness instead
of monitoring the degradation process. Figure 2 displays the
proposed post-fabrication flow including the OBD reliability
prediction module using the introduced OBD analysis. For
each fabricated chip, the measurement is performed once dur-
ing post-silicon testing to find the initial oxide thickness at the
start of its lifetime. Then the optimal supply voltage limit is
selected by the prediction module to maximize performance
while maintaining or improving chip OBD reliability. Given
the computed supply voltage limit, the tester permanently
stores the optimized supply voltage for each chip using either
fuses or embedded flash memory. This supply voltage limit is
then accessed by the dynamic voltage scaling algorithms and,
if available, dynamic reliability management algorithms [10]
that control the chip operation during runtime.

The OBD reliability prediction and voltage tuning module
in this flow consists itself of three phases. The first phase
uses limited post-fabrication measurements to reduce the un-
certainty of the oxide thickness for any unmeasured device.
The proposed method accounts for both inter-chip (global),
intra-chip (within-chip) spatially correlated and random resid-
ual components [7]. We compute the inter-chip component
using a maximum-likelihood estimation method and the other
two by leveraging the spatial correlation between devices and
then constructing a conditional distribution based on the post-
fabrication measurements, while still preserving the correla-
tion between devices in a conditional covariance matrix. Based
on the conditional distribution, the second phase applies prin-
cipal component analysis to predict the chip reliability. The
principal components are employed to derive a tightened life-

time distribution of a particular chip for a given reliability tar-
get. The chip lifetime is then bounded by certain confidence-
level interval, the lower bound of which is conservatively used
for lifetime evaluation. Finally, in the third phase, we present
an optimization flow for efficient tuning of the chip maximum
supply voltage. As a result, with proper reliability manage-
ment, we can boost chip performance for many chips while
maintaining or improving reliability.

2. REVIEW OF OXIDE BREAKDOWN RELIABIL-
ITY ANALYSIS

Conventionally, the gate oxide degradation is considered to
depend on oxide thickness, transistor area, supply voltage, and
temperature. Although many of the physical details are still
under debate, most models note the non-deterministic process
of defect generation, eventually resulting in a statistically dis-
tributed oxide breakdown time and the strong dependence of
this random process on oxide thickness [13, 14]. In this sec-
tion, we gives a brief review of the oxide thickness variation
modeling and previous statistical method for OBD reliability
analysis.

2.1 Oxide Thickness Variation Modeling
Typically the oxide thickness variation can be classified based

on the spatial scale over which it manifests [11, 12]. Given the
decomposition of global inter-chip, intra-chip spatially corre-
lated and random variation components, oxide thickness for
any device can be modeled as:

x = u0 + zg + zcorr + zε (1)
where u0 is the nominal oxide thickness for the technology.
zg denotes the global-scale inter-chip variation component.
Clearly, all the devices on the same chip observe the same
amount of zg in oxide thickness, whereas zg varies for different
chips. The fluctuation of zg among different chips can then
be modeled by a Gaussian process N(0, σ2

g) [7]. zcorr is the
intra-chip spatially correlated component that tends to affect
closely-placed devices in a similar manner. A typical modeling
of the vector zcorr = [zcorr,1, zcorr,2...zcorr,m] for m devices is
a multi-variate Gaussian process, i.e., zcorr ∼ Nm(0, Σcorr),
where the subscript of N denotes the dimensionality of the
random vector, and Σcorr is a m × m covariance matrix for
m devices. A simplified model of spatial correlation can be
achieved by partitioning the chip into N grids and assum-
ing perfect spatial correlation within each grid [11, 12]. In
other words, the devices within one grid have the correlation
coefficient of 1 and hence bear the same spatially-correlated
variation component, whereas devices in two different grids,
ith and jth for example, have a covariance of ρi,jσ

2
corr, with a

correlation coefficient ρi,j <1 [11]. Finally, zε is the random
residual variation resulting from certain local device scale ef-
fects and is modeled as a Gaussian process N(0, σ2

ε ) [7]. In
general, σg, Σcorr and σε denote the uncertainness of the vari-
ation components at different spatial-scales, and can be either
achieved from prior knowledge or robustly extracted from mea-
surements as in [7, 15].

2.2 Previous Statistical OBD Reliability Analysis
A common failure criterion for OBD is soft breakdown (SBD)

characterized by a small increase in gate leakage and eventu-
ally followed by un-recoverable hard breakdown (HBD). Due
to the stochastic process nature, the oxide breakdown time
for SBD is modeled as a random variable following a Weibull
probability distribution [13]:

F (t) = 1 − e−a( t
α

)β

(2)

where F is the cumulative distribution function (cdf) of time-
to-breakdown t, a is the device area normalized with the mini-
mum device area, α and β are the scale and shape parameters
of the Weibull model. β can be further expressed as bx for a
given temperature and voltage stress, where x is the gate oxide
thickness of a device. The reliability function of a device can
then be simply written as:

R(t) = P (T > t) = 1 − F (t) = e−a( t
α

)bx

(3)

Due to the non-deterministic characteristic of oxide thick-
ness at design time, the device reliability function can be in-
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terpreted as the conditional reliability function given its oxide
thickness and written as R(t|xi). The overall chip-level relia-
bility function is then given by:

Rc(t) =

∫ ∞

0

. . .

∫ ∞

0

m∏
i=1

Ri(t|xi)f(x1 . . . xm)dx1 . . . dxm (4)

where f(x1, . . . , xm) is the joint probability density function
(pdf) of the gate oxide thicknesses for m devices. To handle
the tremendous dimensionality of (4), [4] proposed to project
the parametric space to two distinct random variables, sample
mean (u) and variance (v) of the chip oxide thickness distri-
bution. Based on this, the original product

∏m
i=1 Ri(t|xi) was

simplified to a conditional probability Rc(t|u, v) [4]. The inte-
gral of (4) is then compactly expressed as:

Rc(t) =

∫ ∞

−∞

∫ ∞

−∞

Rc(t|u, v)fuv(u, v)du dv (5)

where

Rc(t|u, v) = exp[−Aeln( t
α

)bu+(ln( t
α

))2b2v/2] (6)

and fuv(u, v) is the joint pdf of a Gaussian random variable u
and a chi-square random variable v.

However, neither the method in [4] nor the guard-band method
in [3] allows for incorporation of oxide thickness measurements
and is unable to distinguish the unique condition of a particu-
lar chip. These methods therefore result in one global lifetime
estimation for the entire ensemble of chips, and unnecessarily
degrade the performance for most of them.

3. POST-FABRICATION MEASUREMENT-DRIVEN
OXIDE THICKNESS ESTIMATION

We will show that even with a relatively small number of
oxide thickness measurements, it is possible to reduce the un-
certainty of oxide thicknesses for a particular chip, and hence
provide significantly more accurate lifetime estimation. How-
ever, due to the tremendous number of unmeasured devices
and the constrained stochastic process nature of chip reliabil-
ity, such estimation of oxide thicknesses for unmeasured de-
vices is a difficult problem that has not been addressed to
date. This section presents a statistical method to address
this problem.

3.1 Problem Formulation
Give a particular chip, the inter-chip and intra-chip varia-

tion components (spatially correlated and random) play very
different roles in the final transistor oxide thickness. The inter-
chip component induces the same increment or decrement to
the oxide thicknesses for all the devices within the chip and is
a constant in (1). On the other hand, the intra-chip spatially
correlated and random components are different from device
to device. In reality we cannot distinguish the sources of the
variation when the number of measurements is limited. Thus,
we combine the two intra-chip variation components together
in analysis and comprehensively evaluate their impact.

Given a chip dissected to N grids as in [11] with m devices
in total, the vector of oxide thicknesses for all the devices can
be written as:

x = u0 + zg + zcorr + zε = uchip + zintra (7)

where x=[x1, x2, . . . , xm] is the oxide thicknesses for m devices;
uchip=u0 + zg denotes the chip-level oxide thickness mean for
this particular chip and may be different from one chip to an-
other; zε is the vector containing the random variation com-
ponent of each device; zintra=zcorr+zε is hence the combined
intra-chip variation component that preserves the spatial cor-
relation between devices. Since zε can be interpreted as a
multi-variate Gaussian process Nm(0, σ2

ε Im), where Im is an
m × m identity matrix, zintra is then the sum of two multi-
variate Gaussians and remains a multi-variate Gaussian pro-
cess Nm(0, Σintra), where Σintra = Σcorr + σ2

ε Im.
The post-fabrication measurement-driven oxide thickness es-

timation problem is then formulated as:
Formulation: Given the thickness variation model in (7) and
the oxide thickness measurements of n0 devices across a par-
ticular chip, estimate the oxide thickness of any unmeasured
device, including the components of uchip and zintra as well as

the corresponding variance.
In the following, we present the techniques to solve the above
formulation.

3.2 Model Simplification
The grid-based spatial correlation model in [11] indicates

that devices within one grid bear approximately the same
inter-chip and intra-chip spatially correlated variation compo-
nents. This is reasonable when we have relatively finer grids
across the chip. The difference in oxide thicknesses for devices
within one grid are then completely attributed to the random
variation component, which is independent from one device to
another and hence cannot be predicted. Thus, instead of per-
forming device-level estimation and predicting device by device
within one grid, we employ a grid-based prediction scheme by
associating every grid with one random variable and hence
achieve one estimation for each grid, including a random vari-
ation component and correlation to other grids. Clearly, such
modeling greatly simplifies the complexity from the dimen-
sionality of millions (number of devices) to N + n0, where n0

is the number of measurement sites and N denotes the number
of unmeasured sites with each representing one grid.

We then re-formulate the model in (7) to the granularity
of a grid. Both x and zintra are now (N+n0)×1 vectors.
zintra follows NN+n0

(0, Σintra,grid), where Σintra,grid is an
(N+n0)×(N+n0) covariance matrix for N unmeasured sites
and n0 measured sites.

3.3 Estimation of the Chip-Level Oxide Thickness
Mean uchip

As discussed, we need to treat the deterministic component
and random component in (7) separately. Removal of the mean
from the random data is an integral and essential step to min-
imize the mean square error of the estimation [16]. In this
subsection, we detail the estimation of the chip-level oxide
thickness mean uchip.

Before measurement, the oxide thickness for the sites to be
measured remain unknown and hence can be characterized by
a multi-variate Gaussian model, Nn0

(uchip, Σmm). The mea-
sured thicknesses s=[s1, s2...sn0

] are therefore a sample vector
drawn from this stochastic model, with measurements acting
as n0 observations. Thus, by using the maximum likelihood
estimation (MLE), the log-likelihood function is [16]:

�(s|uchip) = − ln((2π)n0/2|Σmm|1/2)

−
1

2
(s − uchip × [1]1×n0

)Σ−1
mm(s − uchip × [1]1×n0

)T
(8)

where [1]1×n0
denotes a 1×n0 all-one vector. The maximum

in (8) is achieved when:

uchip ≈
[1]1×n0

Σ−1
mm

[1]1×n0
Σ−1

mm[1]T1×n0

sT (9)

The corresponding MLE estimation variance can be approxi-
mately bounded by the Cramer-Rao bound [16]:

var(uchip) ≈ [1]1×n0
Σ−1

mm[1]T1×n0
(10)

Since the number of measurements n0 is limited to fewer than
hundreds, the matrix inverse in (9) can be efficiently computed
within seconds.

3.4 Estimation of the Intra-Chip Variation Compo-
nent zintra

If every site of a chip could be measured, the variance for
the random vector x would be reduced to 0. Since the number
of measurements is limited, measured oxide thicknesses can
only reduce the variance of unmeasured sites, which can still
provide designers with significantly more accurate information
of chip oxides condition.

In order to assess the impact of measurements, we separate
the oxide thickness vector x into two sub-vectors as x = [s,xu],
where s represents the sites to be measured and xu represents
the unmeasured sites. Σintra,grid then can be expressed as:

Σintra,grid = [
Σmm Σmu

Σum Σuu
] (11)

where in each sub-matrix, ”m” is for the sites to be measured
(vector ”s”) and ”u” is for the unmeasured sites (vector ”xu”).
The entries in any sub-matrix can be simply obtained from
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the covariance matrix Σintra in (7) by identifying the grids
the sites belong to. Note that both s and xu are multi-variate
Gaussian processes with a mean of uchip and a covariance ma-
trices of Σmm and Σuu, respectively.

Given the measurement values s = s0 at n0 sites, the sub-
vector xu for the oxide thicknesses at unmeasured sites can
then be expressed in a conditional way, i.e., xu|s = s0. Such
expression illustrates the impact of measurements on unmea-
sured sites. By exploiting the spatial correlation between xu

and s, the pdf for this conditional random vector can be writ-
ten as:

fxu|s=s0
(xu) =

fx(xu, s = s0)

fs(s = s0)
(12)

where fx(x) and fs(s) are pdf’s for the multi-variate Gaussian
random vectors x and s, respectively; fxu|s=s0

(xu) is the con-
ditional pdf for xu given s = s0. Due to space limitation, we
only provide an outline of the deduction.

Based on the decomposition of the covariance matrix in (11),
we define:

uxu|s = uchip + (s − uchip)Σ
−1
mmΣmu (13)

Σxu|s = Σuu − ΣumΣ−1
mmΣmu (14)

and then obtain |Σintra,grid| = |Σmm||Σxu|s|. Thus, when
s = s0, the conditional pdf in (12) can be expressed as:

fxu|s=s0
(xu) =

1

(2π)N/2|Σxu|s|1/2

× exp[
−(xu − uxu|s=s0

)Σ−1
xu|s(xu − uxu|s=s0

)T

2
]

(15)

where uxu|s=s0
and Σxu|s defined in (13) and (14) are condi-

tional mean and covariance matrix for the conditioned random
vector xu|s=s0

. The details of the conditional distribution can
be derived from general principles in [17], which are widely
employed in various works [18, 19].

Intuitively speaking, the vector uxu|s=s0
provides a natu-

ral estimation of the oxide thickness at the unmeasured sites,
whereas the diagonal entries of Σxu|s evaluate the variance of
the estimation. Note that every entry in the covariance matrix
is positive and that both Σuu and Σmm are positive definite
[7]. The conditional variance in Σxu|s is therefore reduced
compared with the unconditional variance in (11).

Although the oxide thicknesses for closely-placed devices are
non-continuous due to random variation, the spatial correla-
tion still allows us to explore the relationship among devices
and achieves improved prediction as the number of measure-
ments increases. Figure 3 illustrates the trend of variance re-
duction of the conditional estimator uxu|s=s0

for a randomly
selected site with respect to the growing number of measure-
ments. It is noted that with only 9 measurements, the variance
of uxu,i|s=s0

, as computed in (14), is reduced by 63% compared
with the initial variance when no measurement is conducted.
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Figure 3: Reduction in variance of the conditional es-
timator uxu|s=s0

for a randomly selected unmeasured
site with increased measurements.

3.5 Chip-Level Oxide Thickness Mean Refinement
Unlike the unconditional random vector in (7) where all the

variables share the same mean uchip, the conditioned random
vector in (13) may bear different mean values. This is closer

Procedure: Post-Fabrication Measurement-Driven Esti-
mation

Input: measurements s0, process variation model in (7)
Output: Oxide thickness estimation for each device and
the corresponding estimation variance
1: Simplify the model as in Subsection 3.2;
2: Compute the chip-level oxide thickness mean and cor-

responding variance using (9) and (10);
3: Estimate the intra-chip variation component zintra us-

ing (13)-(15);
4: Perform chip-level oxide thickness mean refinement;
5: Map the estimation and corresponding variance at the

granularity of grid level to the devices in the same grid;

Figure 4: Post-fabrication measurement-driven oxide
thickness estimation.

to the realistic condition where the oxide thickness shows vari-
ation across the die, and hence provides the chance to refine
the chip-level oxide thickness mean, using both the measured
and unmeasured sites.

In theory, the chip-level oxide thickness mean is equal to the
sample mean of all the sites, denoted as xN+n0

:

xN+n0
=

1

N + n0
(s0 × [1]n0×1 + uxu|s=s0

× [1]N×1) (16)

The deviation between xN+n0
and uchip is primarily due to the

estimation error and may degrade the analysis effectiveness.
Thus, we can perform a refinement step iteratively to reduce
the deviation to a negligible level, i.e., to make uchip ≈ xN+n0

by repeatedly replacing uchip in (13) with xN+n0
and then

computing xN+n0
with (16). In general the refinement is com-

pleted within tens of iterations to reach certain tolerance, e.g.,
10−5. Moreover, it is worthwhile to note that either the esti-
mation variance in (10) or the conditional covariance matrix
in (14) does not rely on uchip and remains unchanged for the
updated chip-level oxide thickness mean.

3.6 Summary of Post-Fabrication Measurement-Driven
Estimation

We summarize the procedure for post-fabrication measurement-
driven estimation in Figure 4. Note that the procedure pro-
duces a single random value per grid which is the representa-
tive for all the devices in the grid. The estimation for this site
is then eventually projected to all the other devices within the
same grid to compute the reliability of the chip.

We apply the proposed procedure to 10000 chips in 65nm
technology. Each chip has 0.5 million devices and is imposed
a 50×50 (=2500) grids with 100 uniformly-distributed mea-
surement sites. The estimated chip-level oxide thickness mean
uchip is compared with the actual mean of the oxide thicknesses
for all the devices in Figure 5. From either the histogram or
the scatter plot, it can be seen that the estimation achieved
by maximum likelihood estimation (MLE) in Subsection 3.3 is
very accurate with a maximum relative error of 0.77% while
the mean refinement algorithm (in Subsection 3.5) can further
reduce the relative error to 0.33%. We then examine the es-
timation accuracy at the device level (achieved by step 5 in
Figure 4) for a randomly selected chip. Figure 6 demonstrates
the contour of the difference between the actual oxide thick-
ness and the estimated thickness mapped from uxu|s=s0

for
all the devices on a chip. One can see that with 100 mea-
surements, the accuracy of the oxide thickness estimation for
each device is already very high, with average relative error
of 0.59% and maximum relative error of 2.8%. Those errors
are mainly due to the unpredictable random residual variation
but are bounded by the covariance matrix Σxu|s.

4. MEASUREMENT-DRIVEN OBD RELIABILITY
PREDICTION AND MANAGEMENT

Using the proposed oxide thickness estimation with cor-
responding variance, we now perform a statistical reliability
analysis to tighten the lifetime distribution. Here we focus on
chip-level reliability analysis and consider the worst-case op-
erating temperature to ensure a correct operation throughout
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the entire lifetime. The temperature and voltage drop vari-
ations can be easily incorporated in our flow by performing
analysis at the granularity of functional blocks or sub-blocks,
where devices within a block can be assumed to have the same
temperature and supply voltage drop.

Given a chip with m devices and N grid cells for spatial
correlation modeling, we define the following notations for the
remainder of the paper as in Table 1.

4.1 Post-Fabrication Measurement-Driven Reliabil-
ity Prediction

The challenge to the chip-level statistical OBD reliability
analysis is the huge dimensionality of the integral in (4). Ref-
erence [4] proposed to map millions of random variables to
two random variables, sample mean and variance of the chip
oxide thickness distribution. However, for a conditioned ran-
dom vector xu|s0, the variables do not bear the same mean
and cannot employ the method in [4]. The conditional co-
variance matrix (or spatial correlation) also shows completely
different features from the unconditional case. We therefore
present a measurement-driven OBD reliability analysis in this
subsection.

4.1.1 Conditional Spatial Correlation Characterization Us-
ing Principal Component Analysis

Since xu|s0 is still a multi-variate Gaussian random vector,
its correlation structure in (14) can be simplified by principal
component analysis (PCA) to map the correlated variation
components to another set of mutually independent random
variables with zero mean and unit variance [4, 11]. For a device
in the ith grid, its conditional oxide thickness xu,i|s0 can be
canonically expressed as a linear combination of the principal
components:

xu,i|s0 = uxu,i|s=s0
+

∑N

j=1
λi,jzj (17)

where N is the number of principal components; zj ’s repre-
sent the N independent random variables used to characterize

1
The measurement sites are selected in a chessboard manner.

2
Actual time to failure is a stochastic process and cannot be known

until the chip fails. Thus, we introduce a quantile-based time-to-failure
which can be interpreted as certain quantile of the time-to-failure dis-
tribution. In other words, it is the actual time when chip meets certain
reliability target. Note that this value is a deterministic value if the
oxide thicknesses of all the devices are known.

Table 1: Notations used in OBD reliability analysis
Notation Definition

x =[x1, . . . , xm] the oxide thicknesses for m device of a chip

xu|s0
the conditional random vector for oxide thick-
nesses of unmeasured sites, given the measured
oxide thicknesses of s0

xm=
∑m

i=1
xi

m
the sample mean for m devices of a chip

v=
∑ m

i=1
(xi−xm)2

m−1
the sample variance for m device of a chip

R(t0) chip reliability at time t0, which is Pr(t > t0)
Ttarget chip design lifetime target

Rt chip reliability target at the end of lifetime

Tq
quantile-based time-to-failure (QTTF)2, de-
fined as Tq=argTq

{R(Tq)=Pr(t>Tq)=Rt}.

D0 = [d1, ...dN ]
di denotes the number of unmeasured devices
in the ith grid

D = diag(D0) a diagonal matrix with diagonal vector of D0

the conditional spatially correlated variation; and the coef-
ficients λi,j ’s represent the sensitivity of thickness variation
with respect to the jth principal component for the random
variable in the ith grid. Thus, the conditional random vector
of N unmeasured sites can be written compactly with principal
components:

xu|s0 = uxu|s=s0
+ z × Pλ (18)

where Pλ is an N × N matrix containing the sensitivity co-
efficients λi,j ’s for different principal components and can be
achieved by eigenvalue decomposition; z = [z1, z2, ...zN ] is a
vector of principal components.

We can then estimate the conditional sample mean and sam-
ple variance for devices across the chip in terms of principal
components. As defined earlier, xm and v are:

xm = [(xu|s0)DT
0 + s0 × [1]n0×1]/m (19)

v =
(xu|s0 − xm)D(xu|s0 − xm)T+ (s0 − xm)(s0 − xm)T

m − 1
(20)

Those two variables xm and v illustrate the underlying char-
acteristics of the conditional chip oxide thickness distribution
given measurements s0 at n0 sites.

By noting the equality of uchip in (16), (19) is simplified to:

xm = uchip + ucoeffzT (21)

where ucoeff = 1
m

D0P
T
λ . Clearly xm remains a Gaussian with

mean of uchip and variance as the following:

var(xm) = var(uchip) + ucoeffucoeff

T (22)

After expanding the numerator of (21), we can re-write v as
the sum of two random variables V1 and V2:

v = (V0 + 2V1 + V2)/(m − 1) (23)
where V0 = (uxu|s=s0

− uchip)D(uxu|s=s0
− uchip)T

+ (s0 − uchip)(s0 − uchip)
T

V1 = vcoeffzT and V2 = zV zT

(24)

with vcoeff = uxu|s=s0
DP T

λ − (m × uchip − s0[1]n0×1)ucoeff

and V = (P T
λ + [1]N×1ucoeff)T D(P T

λ − [1]N×1ucoeff ).
Note that V0 is a constant and V1 is a normal random vari-

able. Since the matrix V is positive and symmetric, V2 has the
form of quadratic normal product and can be approximated by

a chi-square distribution [21], V2 ∼ âχ2
b̂
, with â = tr(V 2)

tr(V )
and

b̂ = [tr(V )]2

tr(V 2)
, where tr[.] denotes the trace operation to compute

the sum of diagonal entries. Since E(V1)E(V2)=E(V1V2), V1

and V2 turn out to be uncorrelated. Moreover, by noting the

degree of freedom for the chi-square distribution b̂ = [tr(V )]2

tr(V 2)

is close to N , the chi-square distribution with a large degree of
freedom can be well approximated by a Gaussian distribution
[16], which is validated by the histogram of V2 in Figure 7.
Thus, the un-correlation between two Gaussian random vari-
ables V1 and V2 implies their independence. In other words,
v is a Gaussian random variable, the mean and variance of
which can be computed from (23) and (24):

E(v) = [V0 + tr(V )]/(m − 1) (25)

var(v) =
2tr(V 2)

(m − 1)2
+

4

(m − 1)2
vcoeffvcoeff

T (26)
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2209 (N=2500) and the fitted Gaussian curve. The
fitting goodness is 0.98 (R-square).

4.1.2 Post-Fabrication Measurement-Driven Lifetime Predic-
tion

Once the underlying distribution of xm and v are character-
ized, we can conduct the post-fabrication measurement-driven
reliability prediction for a particular chip and analyze the
quantile-based time-to-failure (QTTF) 3 for certain reliability
target Rt by using (6):

R(Tq|xm, v) = exp[−Aeln(
Tq
α

)bxm+(ln(
Tq
α

)b)2v/2] = Rt (27)

where A is the chip area. This equality illustrates the actual
quantile-based time-to-failure when chip meets ceratin relia-
bility target. The quantile-based time-to-failure is then com-
pared with design lifetime Ttarget to evaluate chip reliability.
To simplify the analysis, we introduce a supplementary ran-
dom variable γ = ln(Tq/α)b to derive the distribution of Tq

(QTTF), and rewrite the equation above as:

v/2 × γ2 + xm × γ − ln(− ln(Rt)/A) = 0 (28)

This quadratic equation can be easily solved:

γ = γ(xm, v) =
−xm +

√
x2

m + 2 ln(− ln(Rt)/A) × v

v
(29)

In other words, when the reliability target Rt is given, γ is a
random function depending on the underlying distributions of
xm and v.

By noting that both xm and v have limited variance, we can
further simplify (29) with first-order Taylor expansion:

γ ≈ γ(E(xm), E(v)) + [
∂γ(xm, v)

∂xm
,
∂γ(xm, v)

∂v
]|E(xm),E(v)

× [xm − E(xm), v − E(v)]T
(30)

Since both xm and v are Gaussians and almost uncorrelated,
we can reasonably justify that γ follows a Gaussian process
with mean and variance:

E(γ) =
−E(xm) +

√
E(xm)2 + 2 ln(− ln(Rt)/A) × E(v)

E(v)
(31)

var(γ) = [(
∂γ

∂xm
)2, (

∂γ

∂v
)2]|E(xm),E(v)×[var(xm), var(v)]T (32)

Quantile-based time-to-failure Tq can then be characterized as
a lognormal distribution, as Tq = α exp[γ/b].

4.2 OBD Reliability Management and Performance
Optimization

The technique in Subsection 4.1 can characterize the dis-
tribution of quantile-based time-to-failure and achieve a well-
tightened lifetime distribution. In practice, the design objec-
tive may be a certain design lifetime Ttarget with a predefined
reliability requirement Rt, i.e., the probability of chip failure
may not exceed 1−Rt within Ttarget years lifetime. However,
due to the process variation, some chips will have thinner ox-
ides and are quicker to fail. The tightened distribution of
Tq (QTTF) enables us to quantitatively evaluate whether the
chip will meet the design lifetime target or not. Those chips
that are prone to failure can be tuned to a lower supply volt-
age limit to improve the reliability yield. On the other hand,
chips with thicker oxides can operate at a higher voltage for

3
Tq is defined as Tq=argTq

{R(Tq)=Pr(t>Tq)=Rt}. In other words, it

is the quantile of reliability distribution for certain reliability target Rt.

Procedure: Post-Fabrication Measurement-Driven OBD
Reliability Prediction and Management

Input: measurements s0, process variation model in (7),
reliability target and design lifetime
Output: optimized supply voltage
1: Given s0, estimate the conditional oxide thickness and

covariance matrix with the flow in Figure 4;
2: Apply PCA to the conditional covariance matrix to

obtain the distributions of xm and v using (21)-(26);
3: Estimate tightened chip lifetime distribution using (31)

and (32);
4: Solve the optimization problem in (34)-(36) to achieve

the optimized supply voltage;

Figure 8: Post-fabrication measurement-driven OBD
reliability prediction and management.

better performance. The next question is then how much volt-
age we need to tune to optimize the performance, which will
be discussed in the following optimization flow.

Since QTTF itself is a distribution due to the remaining
uncertainty of the oxide thicknesses, we use the lower bound
of the distribution with a certain confidence to ensure a robust
design. Conservatively, with a 99.9% confidence level, we can
derive the following one-sided confidence interval:

Tq ∈ [α exp

[
E(γ) − 3

√
var(γ)

b

]
,∞] (33)

where the moments of γ can be computed from (31) and (32).
The lower bound of (33) is then denoted as Tlb and used to
evaluate chip lifetime in optimization. In other words, after
optimization, we may push the distribution of QTTF to the
right of Ttarget and have 99.9% confidence that the chip will
meet the lifetime target. Since both parameters α and b in
(33) depend on supply voltage, we formulate the following to
maximize the supply voltage while Tlb meets the design lifetime
target:
Maximize vchip (34)

Subject to:

ln(Tlb) = ln(α(vchip)) +
E(γ) − 3

√
var(γ)

b(vchip)
≥ ln(Ttarget) (35)

vmin ≤ vchip ≤ vmax (36)

where vchip denotes the supply voltage; the first constraint in
(35) implies that the 99.9% confidence lower bound of QTTF
is larger than the design lifetime target; and the second con-
straint in (36) denotes the possible voltage tuning range. We
find that this optimization problem is equivalent to finding the
feasible domain of the inequality in (35), where the parameters
of the device reliability function, α(vchip) and b(vchip), indi-
cate the underlying dependence on supply voltage. Since we
only have one variable, even with a complicated physics-based
model for α(vchip) and b(vchip), we can still efficiently solve this
problem in a numerical way. In our implementation we adopt
the linear models in [13, 14], i.e., ln(α(vchip))=a1×vchip+a2

and b(vchip) = b1 × vchip + b2, and hence have a quadratic
inequality in (35), which can be analytically computed. As
a result, the optimization flow above eventually reduces the
failure rate to improve reliability yield, while the overall per-
formance is also enhanced by reducing lifetime safety margins.

4.3 Summary of OBD Reliability Prediction and Man-
agement

The procedure for post-fabrication measurement-driven reli-
ability prediction and management is summarized in Figure 8.
Given n0 measurements for a particular chip, we first estimate
the oxide thicknesses and corresponding variance using a con-
ditional multi-variate Gaussian model. The conditional spatial
correlation is then explored by PCA to derive the distributions
of xm and v, which characterize the underlying conditional
chip oxide thickness distribution and help achieve a tightened
lifetime distribution. The lifetime estimation then allows an
optimization flow to quantify trade-offs between reliability and
supply voltage/performance.

5. EXPERIMENTAL RESULTS
The proposed reliability prediction and management method-

ology was implemented and tested on several designs using

446 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers



3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

99.99% quantile-based time-to-failure (QTTF) (year)

p.
d.

f.

Histogram by Monte-Carlo
Predicted lognormal pdf
Mean of the histogram
99.9% confidence lower bound
Mean of the predicted pdf

99.9% confidence 
lower bound of 
the predicted pdf:
3.203 year

Mean of the histogram: 
3.985 year

Mean of the predicted lognormal 
pdf: 4.023 year

Figure 9: Accuracy comparison of the quantile-
based time-to-failure (QTTF) histogram generated by
Monte-Carlo simulation and the predicted QTTF pdf
using the proposed method. The reliability target Rt

is set to 99.99% (100 failures per million).

2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

99.99% quantile-based time-to-failure (QTTF) (year)

p.
d.

f.

1 measurement
2 measurements
4 measurements
25 measurements
100 measurements

2 mesurements

4 mesurements

25 mesurements

100 mesurements

1 mesurement

Actual QTTF: 4.08 year

Conventional
guard-band: 
2.07 year

2.01 year difference

0.03 year difference

Mean of QTTF pdf by using 
100 measurements: 4.05 year

Reduction in variance

Figure 10: Reduction in the variance of 99.99%
quantile-based time-to-failure (QTTF) distribution for
a particular chip with increased measurements (1, 2,
4, 25 and 100 measurements).

65nm LP devices (nominal oxide thickness is 1.67nm). The
defect generation relationships for the technology node and
the technology dependent parameters of the oxide reliability
function model are obtained from [13, 14]. In practice, this can
be obtained by a one time per technology characterization us-
ing test devices [9]. For each design, we used 10000 chips that
follow the thickness variation model in Section II. The overall
3σ/μ of oxide-thickness variation was set to 4% of the nominal
value as in [5] and then split into three variation components.

5.1 Efficacy of the Proposed OBD Reliability Pre-
diction

Given the post-layout design implementation, a process vari-
ation model and limited measurements on device oxide thick-
ness, the proposed method can estimate the quantile-based
time-to-failure (QTTF) distribution for a certain reliability
target, with which we can examine whether this chip may
meet the design lifetime or not. To evaluate the accuracy
of the proposed method, the conditional QTTF distribution
for a chip was also computed by Monte-Carlo simulation with
an accept-and-reject strategy. In other words, the simulation
only accepted the sample vectors with similar entries on the
measurement sites, the tolerance of which was set to 0.01nm
in our implementation. The results are shown in Figure 9 for a
chip with 0.5 million devices and 25 measurements. It is clear
that the histogram of 1000 sample vectors matches well with
the predicted lognormal pdf using the techniques in Section
III and IV. The difference between the mean of the histogram
and lognormal pdf is 0.038 years. The 99.9% confidence lower
bound of QTTF is 3.203 year demonstrating the tightness of
the QTTF distribution.

We also explored how the predicted QTTF distribution changes
when we increase the number of measurements. Figure 10
clearly shows the reduction in variance as the number of mea-
surements grows. It is interesting to note that even one or two
measurements provide sufficient information to tighten the dis-
tribution whereas 100 measurements help reduce the standard
deviation of the distribution to only 0.16 year. The differ-
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Figure 11: Convergence of the mean and 99.9% con-
fidence lower bound of the predicted quantile-based
time-to-failure (QTTF) distribution with increased
measurements: (a) a chip with thicker oxides (b) a
chip with thinner oxides.

ence between the actual QTTF and the mean of the predicted
QTTF distribution (using 100 measurements) is only 0.03 year
(0.8% estimation error), while the conventional guard-band is
2.07 year with almost 50% estimation error.

Moreover, we studied the convergence of the mean and 99.9%
confidence lower bound (μ−3σ) of the predicted QTTF distri-
bution to the exact values, as shown in the error-bar plots of
Figure 11 for two chips, one with thicker oxides and another
with thinner oxides. For each particular measurement number,
we picked up 10 different configurations (placement) of mea-
surement sites and then computed the 10 set mean/ 99.9%
confidence lower bound of QTTF distribution to achieve the
error bar. With an increasing number of measurements, both
the estimated values and their variance converge quickly.

5.2 Reliability Management and Performance Opti-
mization

Finally, we applied the proposed post-fabrication measurement-
driven methodology to tune the supply voltage of 10000 chips
of a 0.5M-device design to ensure reliability while maximizing
performance. The lifetime target was set to 4 years and the
supply voltage tuning range is 0.8V-1.3V.

Figure 12 displays the tuning results using a conventional
guard-band, the statistical analysis in [4] (denoted as 0 mea-
surement in the figure) and the proposed methodology using
different number of measurements. The guard-band that as-
sumes minimum oxide thickness across the chip, achieved a
single supply voltage for all the chips (0.858V) and was em-
ployed as the baseline for comparison. The other two methods
used 99.9% confidence lower bound of the predicted QTTF
distribution as the evaluation of chip’s lifetime. Since [4] uses
a more accurate model of the oxide variation compared to the
baseline approach, it assigns the ensemble of chip a slightly
higher supply voltage of 0.875V. However, since it is unaware of
the unique condition of each particular chip, it remains overly
pessimistic and results in a merely 3% performance improve-
ment. On the other hand, with only 25 measurements, the
proposed methodology can obtain a well-tightened QTTF dis-
tributions and a more precisely optimize voltage for each chip,
achieving 15% performance improvement on average and 26%
improvement at maximum. Moreover, although [4] predicts
chip lifetime with 99.9% confidence lower bound, still 12 out
of 10000 chips fail to meet the lifetime target after tuning,
which is beyond the confidence interval. Meanwhile, since the
proposed methodology provides more accurate prediction it
quickly reduces the number of failures to 0 out of 10000 with
increased measurements.

Figure 13 presents the distributions of optimized supply
voltage and the resulting performance improvement using dif-
ferent numbers of measurements in tuning. Both the plots
show a shift to the right with increased measurements, indi-
cating the capability of the proposed method to choose a more
reasonable supply voltage when the number of measurements
is increased.

The scalability of the proposed methodology is examined in
both its dependence on design complexity/size and run time.
We first applied the approach to an alpha-processor-like de-
sign, with 15 functional blocks and 0.84M devices in total.
Due to the functional block difference, the grids for spatial cor-
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Figure 14: (a) Performance improvement histogram
and (b) optimized supply voltage histogram of 10000
chips for an alpha-processor-like design with 0.84M
devices and 25 measurements.

relation model have non-uniform densities, i, e, each grid has
different number of devices. We measured 25 devices per chip
and tuned 10000 chips resulting in a performance improve-
ment of 24.9% at maximum and 17.3% on average compared
with conventional guard-band, as shown in Figure 14. We then
applied the proposed method to tune 10000 chips of seven dif-
ferent designs (varying in size from 80K to 50M devices) with
25 measurements for each and recorded performance improve-
ment and average run time per chip. Figure 15 shows a flat
curve of runtime of around 0.38 second, and a slightly grow-
ing trend of average performance improvement from 15% to
19% and maximum improvement from 22% to 27%. As stated
earlier, both PCA and matrix inverse are performed once for
one design with fixed measurement sites, whereas the analy-
sis and optimization are mostly analytically achievable. Thus,
the methodology runtime only relies on the number of grids for
spatial correlation model instead of circuit size as validated in
the figure, which is an appealing feature for modern processors
with increasingly larger designs.

6. CONCLUSIONS
This paper presents a post-fabrication measurement-driven

OBD reliability prediction and management methodology. The
methodology uses limited measurements to estimate the oxides
condition of a chip. The estimation is then incorporated into
a statistical model to predict a more accurate chip lifetime
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Figure 15: Average run time per chip and average
performance improvement for seven different-sized de-
signs (10000 chips for each design and 25 measure-
ments per chip).

distribution, which is fed to an optimization flow to trade off
reliability margin and system performance. Experimental re-
sults show that even for a design with up to 50 million devices,
the methodology can achieve 19% performance improvement
on average and 27% at maximum compared with conventional
guard-band while average run time is only 0.4 second.
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