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Abstract— Circuits designed in aggressively scaled technolo-
gies face both stringent power constraints and increased process
variability. Achieving high parametric yield is a key design
objective, but is complicated by the correlation between power
and performance. This paper proposes a novel design time body
bias selection framework for parametric yield optimization while
reducing testing costs. The framework considers both inter- and
intra-die variations as well as power-performance correlations.
This approach uses a feature extraction technique to explore the
underlying similarity between the gates for effective clustering.
Once the gates are clustered, a Gaussian quadrature based
model is applied for fast yield analysis and optimization. This
work also introduces an incremental method for statistical power
computation to further reduce the optimization complexity. The
proposed framework improves parametric yield from 39% to
80% on average for 11 benchmark circuits while runtime is
linear with circuit size and on the order of minutes for designs
with up to 15K gates.

I. INTRODUCTION

Semiconductor technologies are characterized by trends
of ever shrinking feature dimensions. As a result, process
variability has become more prominent in sub-nanometer
regime designs and poses a major challenge to improving
circuit performance and reducing leakage [1]. Given the large
contribution of leakage power to total power in recent tech-
nology nodes, delay and power are now negatively correlated
across process corners [2]. In such a scenario, high speed parts
are also very high leakage, imposing a two-sided constraint on
the feasible region of delay and leakage for parametric yield
optimization. This ultimately causes a significant yield loss of
manufactured dies in modern integrated circuits [2].

To address this issue, numerous pre- and post-silicon sta-
tistical optimization methods have been proposed to mitigate
yield loss due to process variability [2]-[14]. However, several
of these approaches neglect the power-performance correlation
by treating the impact of delay and power separately [8],
[9]. Works in [10], [11] investigated nonlinear optimization
by assuming that gate sizes are continuous. Thus, they could
either apply a simplified power yield model or transform yield
maximization to slack minimization. These techniques only
mitigate the variation indirectly, rather than performing true
yield maximization due to the approximated formulation or
neglect of power-performance correlation. Moreover, grow-
ing circuit size further restricts the efficacy of traditional
pre-silicon techniques (gate sizing or dual-threshold voltage
assignment) in guaranteeing reliable circuit operation with
desired parametric yield [2], [10], [11].

Beyond these pre-silicon approaches, several post-silicon
techniques have been proposed for design optimization [12]—
[14]. Among these, adaptive body biasing (ABB) is a promis-
ing post-silicon technique due to its flexibility [15]. Tradi-
tionally ABB is used to tune each chip individually after
chip fabrication and testing, as shown in Figure 1. Thus, con-
ventional post-silicon ABB is limited by (1) routing/control
overhead to adjust devices/gates at a very fine grained level

De@lgn Time (pre- slhcon) Run Time (post-silicon)

: = u,:> : b(:)dy l?las
t : . : =R selection
_ }ﬁii—.— : Gy ‘ testing d q 1
‘....characterization.and: patterned individual-........-- ltﬂnllxlg ?{j‘r
optimization wafers chips each chip
Fig. 1. Flow of post-silicon ABB tuning employed by [12], [13]
Design Time (pre-silicon)
—l—l_
O
N > O N |
- L body bias "N
: | g
—_r.:J‘ e = } iselection for__ \iH
jﬂi.__ 77_7_} chips  fabrication \GEHES
==
patterned

characterization and gate wafers

clustering

statistical tuning for the
manufactured dies

Fig. 2. Flow of the proposed pre-silicon framework for yield maximization

[12], [15] and (2) increased post-fabrication testing costs to
determine the optimal body voltage. To reduce overhead to
a feasible level, [12] presented a heuristic clustering method,
in which gates are grouped at design time into a small set of
clusters and controlled by one body bias within the cluster.
Mani, et.al., suggested the coordination of pre-silicon (gate
sizing) and post-silicon (ABB) techniques, and formulated this
as a robust programming problem. Similar to [10], [11], both
methods [12], [13] separate the correlation between power
and delay and do not evaluate the true parametric yield (joint
yield of power and delay). Above all, tuning in [12], [13]
is carried out entirely as a post-silicon step. Clearly, such a
strategy incurs large post-silicon testing costs.
In order to reduce testing overhead, this paper presents
a low-cost pre-silicon body bias selection framework to
maximize parametric yield. This framework considers both
inter- and intra-die variation as well as power-performance
correlation. The major difference between the proposed frame-
work and traditional ABB is that our work does not require
individual tuning of each chip during post-silicon testing to
select the body bias to be applied. Instead, as shown in Figure
2, our framework optimizes and fixes body bias during design
time to improve the yield of manufactured dies. Once the bias
levels are chosen, simple and compact circuits can be readily
designed to provide the chosen reference voltages [16], [17].

Unlike post-silicon ABB, in which bias voltages for each
chip are chosen in a deterministic way (since measurement
results for a particular manufactured die are known and
deterministic), pre-silicon body bias selection framework must
statistically incorporate the variability to tune the ensemble of
all chips simultaneously. This provides the following advan-
tages:

o Low testing time and cost Pre-silicon body bias selection
statistically optimizes the body bias for the manufactured
dies, eliminating the testing cost increases associated
with the post-silicon approaches.



o High flexibility Design-time body bias selection can
be easily implemented using on-chip reference volt-
ages [16], [17] and hence has continuous-domain design
variables. This appealing feature is in contrast to most
traditional pre-silicon techniques such as gate sizing or
dual V4, which have discrete domain design variables.

e Good scalability Our pre-silicon body bias selection uses
a small number of gate clusters (where each cluster is
assigned to a different bias voltage), enabling a theoreti-
cally rigorous formulation of parametric yield as well as
scalability to large circuits.

The proposed framework consists of two phases. We first
determine the body bias profiles for each gate, which reflects
the preferred body biases across an expected representative set
of dies based on process variability models. Then a feature
extraction technique is applied to those profiles to efficiently
cluster the gates. The general concept behind gate clustering is
to group gates with statistically similar behavior. The heuristic
approach in [12] uses an affine function of mean, standard
deviation, and correlation coefficients to determine similarity.
However, this method requires large runtime and memory
consumption for the greedy search and correlation matrix
construction. Also, the chosen weights of the affine function
may not be globally applicable across all circuit topologies.
In addition, this approach discards most information from the
original body bias profiles and therefore is not robust with
respect to outliers. As a result, in our framework we propose
a general and scalable clustering method based on feature
extraction, without any dependence on empirical parameters.
The feature extraction technique projects the original body
bias profiles of the gates to a reduced set of features (feature
vector) [18]. The feature vectors contain the general char-
acteristics of the profiles and can be computed efficiently
for body bias profile similarity comparison. In particular, the
comparison is made by computing the distance of two feature
vectors and grouping together the gates with closer distance.

After clustering the gates, the second phase formulates the
body bias selection problem as a small-sized unconstrained
nonlinear programming (NLP) problem. The NLP is solved
by a large-scale optimizer (Lancelot [19]) with a fast yield
evaluation scheme called Gaussian quadrature to compute the
objective yield. An incremental method is also introduced to
quickly compute the probability density function (PDF) of
leakage power. Experiments show that the proposed frame-
work can optimize a circuit with 14592 gates within 20
minutes to achieve 52 point yield improvement. For eleven
circuits of different sizes, yield is improved from 39% to
80% on average. The key contributions of this paper are listed
below:

(1) We present a low-cost pre-silicon framework to select body
bias at design time for direct parametric yield optimization.
We show that the proposed pre-silicon approach retains the
majority of the yield benefits of more complex die-specific
post-silicon ABB approach as well as a higher flexibility
than traditional pre-silicon methods like dual-V}; and gate
sizing. The framework considers both process variation and
the correlation between performance and power.

(2) To effectively cluster the gates, a feature extraction-based
technique is employed. We apply a Haar wavelet transform
to extract the features from the statistical body bias profile
of each gate. Then a k-median-like algorithm is presented to
optimally cluster the gates with similar features.

(3) In the optimization framework, the yield objective is

repeatedly computed. We present a fast and accurate method
using Gaussian quadrature to compute the yield in the form
of a bi-variate normal integral. An incremental technique for
statistical power computation is also introduced to further
reduce gradient computation complexity.

II. FEATURE EXTRACTION-BASED GATE CLUSTERING

Gate clustering is a critical step in practical ABB ap-
proaches. Once the clustering is performed, the body voltage
of the cluster is determined so that its most timing critical
gates meet the overall circuit delay constraint, indicating
that most gates in a cluster will end up requiring a larger
(more forward) body bias than necessary. It is therefore
vital to cluster gates with similar body bias characteristics to
minimize optimality loss. This section discusses a new feature
extraction-based technique for gate clustering.

A. Leakage Power and Delay Modeling

Body biasing uses the body effect to modulate the threshold
voltage of a MOSFET. Since the analytical expressions that
govern the impact of body bias on delay and leakage at
the gate level are fairly complex, we adopt the quadratic
leakage model and linear delay model from [12]. SPICE
simulation validates that a quadratic model for leakage and
linear model for delay achieve an average error of 5.9% and
1.5% respectively across a 90nm standard cell library. Change
of leakage and delay with body bias can then be expressed
by [12]:

AL;(vy,i) = Lo,i(po,i + P1,ivs,i + P2,iU§,i) (1)
AD;(vy;) = Do i(do; + di,ivp,:) 2)
where AL;(vy;) and AD;(vp;) are the leakage and delay
change, Lo ; and Dy ; are the nominal leakage and delay value
with zero body bias, vy ; is the body voltage for gate i, p; ;
(5=0,1,2) are the fitting parameters for the quadratic leakage
model, and d; ; (j=0,1) are the fitting parameters for the linear
delay model.

B. Design Space Exploration

We assume that each circuit constitutes its own unique
design space subject to certain parameter variations. Our
variation formulation incorporates both inter- and intra-die
variations [3], [4]. To identify the difference in gates, we first
generate multiple ’die samples” following certain variations
for the given circuit in a Monte Carlo fashion. For each
sample circuit we assume each gate can be tuned individually
and construct the deterministic quadratic programming (QP)
to find the optimal body bias of each gate for leakage
minimization [12]:

Minimize Z AL;(v) 3)
Subject to J

ATpr =0,ATpo < Target @

AT, ;+ DI*PB < AT, ;  for Vj (5)

D{PB = Dy ; — ADj(vy;)  for Vi (6)

where AT is the arrival time of the signal on a wire, subscripts
”7” and ”0” denote input and output, and D;‘B B denotes the
delay of a biased gate. The first constraint limits the arrival
times at primary input (PI) to be zero and the arrival times at
primary output (PO) to be less than the design target. The
second and third constraints indicate that the delay at the

output of each gate should be at least equal to the arrival



(a) Original Histogram
T T

o

ge of Samples
°

S

0 0.1

Body Voltage (V)
(b) Offset Removal
T T

4
N

T T T T T T
-0.3 -0.2 -0.1 0.2 0.3 0.4 0.5
Body \/oﬁage

Envelope Conslructlon
T

- Interpolated envelope
*Hlstogram

¢ Body Voltage
Fig. 3. Pre-processing procedure: (a) onglnal histogram (b) offset removal
for body voltage (x-scale) (c) envelope construction

o

o
o
3

o
°
H

o

05

Percentage of Samples Percentage of Samples percenta

time at each of its inputs plus the delay of the gate D455,

This QP can be efficiently solved by CPLEX [20] to ojbtain
the optimal body voltage for a particular sample (die) in the
design space. The histogram of the optimal body bias for a
gate sheds insight on the statistical behavior of the gate in
this design space. We can then distill information from this
histogram in determining which gates should share a common
body potential. This is the critical clustering step (described
below). The design space exploration is executed only once
for each unique design before the optimization stage.

C. Feature Extraction

A straightforward approach to clustering is to group to-
gether the gates with similar body bias profiles. However, it
is difficult to define “similarity” quantitatively. It is impractical
and inefficient to simply use the complete profiles to cluster
the gates because of their large sizes and the resulting noise
sensitivity in the distributions. As previously stated, [12]
suggested a weighted affine function of mean, deviation and
correlation to judge the similarity between the gates. However,
construction of the correlation matrix between the gates leads
to a memory complexity of O(N, 92) for N, gates and limits
its applicability. Beyond these runtime concerns, the greedy
search is heavily dependent on the carefully chosen weights
and the order of the gates to be visited. This makes the method
sensitive to outliers and allows gates to be misgrouped.
Furthermore, since the affinity of the non-grouped gate to
the cluster is computed by taking the average of the weights,
highly deviated data may have a disproportionate impact on
the average and lead to poor selections. We therefore present
a faster and more robust clustering strategy in our framework.

We employ a pattern recognition technique called feature
extraction to obtain the main features of the profile while
filtering out noise and redundant information. The concept be-
hind feature extraction is to extract the general characteristics
of the profiles, maintaining the most common information and
discarding outliers. The body bias profile for each gate is then
uniquely identified by a feature vector, v; = [x1, 2, ..., 7] T
with n features, which are used to measure similarity. To
apply the technique across all gates and preserve important
information, some pre-processing is performed to build a
unified and suitable system. The pre-processing includes two
stages:

(1) Offset removal. This stage simply aligns the histograms
to the same body voltage intervals, so that voltage ranges are
unified for all the gates.

(2) Envelope construction. The original histogram is based
on a coarse grid and cannot be directly used. In this stage,
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Fig. 4. An example of a two-level Haar wavelet transform. A 128-entry
input x1[n] is reduced to a 32-entry vector.

we apply linear interpolation to map the histogram data to
a finer grid and construct the basic shape of the profile
envelope. Figure 3(a)-(c) shows the pre-processing procedure
for a randomly selected gate in circuit c6288.

Once the body bias profiles are available in the form of
unified envelopes, we apply the feature extraction technique
to determine the underlying characteristics of each gate.
The proposed feature extraction is achieved by Haar wavelet
transform. With a one-level Haar transform, the original body
bias waveform with n-sample points can be transformed to
two n/2-entry vectors (approximation coefficients x; and detail
coefficients y;):

xi[n] = (xi—12n] + xi-1[2n + 1])/V2 (7)
viln] = (xi—1[2n] — xi_1[2n + 1)) /V2 (8

The detail coefficients representing the local characteristics
are easily disturbed by outliers and hence discarded. The ap-
proximation coefficients preserving the general characteristics
are then decomposed repeatedly until a feature vector with a
required number of features (n/4, n/8, etc.) is obtained. In our
work, an eight-entry feature vector is extracted from the body
bias profile for each gate. Figure 4 shows a simple example of
a two-level Haar transform architecture, where g[n] and f[n]
represent (7) and (8), respectively.

Since the approximation coefficients indicate the accu-
mulated activities, the feature vectors naturally embody the
mean and variance information of the profiles. Moreover,
as two highly correlated gates should exhibit similar body
bias profiles and hence similar feature vectors, the correlation
between gates is well modeled by the proposed method. Thus,
the feature vector preserves more information than the method
in [12].

D. Gate Clustering

Gate clustering groups gates with similar behaviors. We
here propose the following definition to quantify the similarity
of feature vectors.

Definition: The similarity of two feature vectors vy, vg is
the cosine of the angle between them:

[viTva|
Sy ve =cos(a) = ——————— 9)
. [vallllva|
where || - || denotes the Euclidean norm. The use of the angle

between vectors provides two main advantages: (1) It correctly
measures the distance between two vectors. Since any entry
in a feature vector is always non-negative, a larger Euclidean
distance is equivalent to a larger angle and hence a smaller
Sv,,ve (2) The value is normalized and does not depend on
any amplitude gains or empirically chosen weights.

Here we present the simplest example of two clusters. N-
cluster decomposition will be an extension of the two-cluster
case and is discussed in section II-E. In this example we need
to classify the gates into two clusters based on their feature



Procedure: 2-Cluster Gate Clustering

Procedure: Centroid Update

Input: feature vectors for all the gates
Output: clustered circuit

1:  Choose the initial seed for each cluster;

2 For each gate 7 with feature vector v; do

3: Measure the similarity to the centroid of each cluster;
4: Find cluster j = argmax(Sy;,u;), j=1 or 2;

5 Put gate ¢ into cluster j;

6: Update the centroid of cluster j;
7: End for

Fig. 5. Algorithm for 2-cluster gate clustering

vectors. The initial seed gates for each cluster may be easily
assigned, namely the most forward-biased and most reverse-
biased gates, which are determined by sorting the mean of
the body bias profiles. These two gates should clearly be in
separate clusters. The seeds become the initial centroids of
the clusters. A centroid is defined as a vector that maximizes
the sum of similarities of all other points within the cluster
to itself. After initial seeds are selected, gates are visited in
sequence and their similarities to the centroid of each cluster
are computed by (9). Each gate is then placed in the cluster
with the highest similarity after which the centroid of the
corresponding cluster is updated. This procedure is described
in Figure 5 and carried out repeatedly until all gates are
classified.

Since computing the centroid using the arithmetic mean is
not robust to outliers or noise, we therefore propose a low-
cost k-median-like algorithm in this paper to compute the
centroid. This strategy circumvents the potential problem of
highly deviated data skewing the arithmetic average in [12].

For example, if m gates are contained in the cluster, the
centroid is:

u = argmax Z
vi€cluster
This is a nonlinear discrete optimization problem that is
difficult to solve. We therefore employ a two-phase relaxation
scheme to tackle this problem. The first phase relaxes the
problem to an unconstrained continuous optimization and
finds the optimal condition, which is:

Suvis w€{vi,va,...vim} (10)

X ViTu 8x1
m Z —, U€ER (11)
vi€cluster ”VIH Hu”
This can be further simplified to:
max w’x (12)

where w is >, vi/||vi| and x is a normalized vector u/||ul|.
The inner product of vector a and a normalized vector b is the
length of projection of a on b. Thus, the maximum of (12)
is reached when vectors x and w lie in the same direction,
i.e., x =w/||w||. This is denoted as the optimal condition
for centroid selection.

The second phase consists of a local search among gates
in the cluster to find the closest match to the optimal centroid
found above. This is achieved by computing the similarity
between each normalized feature vector and the optimal
centroid (using (9)). The vector with the largest similarity is
then chosen to be the centroid of the cluster. The algorithm for
centroid update is shown in Figure 6. Since a correlation ma-
trix is not required in our algorithm, the memory complexity
is reduced from O(NZ) to O(Ny).

E. Extension to N Clusters

The 2-cluster gate clustering algorithm in Figure 5 can be
extended to an efficient successive clustering algorithm for

Input: feature vectors for all the gates in the cluster
Qutput: centroid of the cluster
1:  Compute the optimal condition vept of the centroid using

12);
2: or each gate 7 with feature vector v; do
3: Compute Sy;,v,p. Using (9);
4: End for

5:  Set the gate with the largest Sy, v, as the centroid;

Fig. 6. Algorithm for centroid update

Procedure: N-Cluster Gate Clustering

Input: feature vectors for all the gates, number of clusters N
Qutput: clustered circuit

1:  Set n as the number of the cluster;

2:  Perform 2-Cluster Gate Clustering recursively till n > N;
3: Ifn>N

4: Perform recombination repeatedly till n==N;

5: End if

Fig. 7. Algorithm for N-cluster gate clustering
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N-clusters. The cluster is recursively bi-partitioned until the
number of clusters reaches or exceeds N. The algorithm is
outlined in Figure 7. We use a binary-tree data structure to
model the successive clustering of the gates. The root node of
the tree contains all the gates in the circuit whereas a leaf node
represents the resulting cluster without any children nodes.

There are two possible scenarios for creating a leaf node:
(1) Normal termination. When the total number of leaf nodes
and non-leaf nodes reaches the required N, all the nodes at
the lowest level become leaf nodes; (2) Fast termination. For
a node with no more than 10% of the total gatesl, we consider
this to be a leaf node without further decomposition. A typical
example is shown in Figure 8(a) in which N=3. On the second
level, the node on the right contains fewer than 10% of the
total gates and is immediately considered to be a leaf without
further decomposition (fast termination). The node on the left
with 153 gates is further decomposed to two non-leaf nodes on
the third level. Since the total number of non-leaf nodes and
leaf nodes has reached the required number N (=3), the two
non-leaf nodes are then considered as leaves and terminated
(normal termination).

If the number of the nodes (including leafs and non-leafs
on the bottom level) exceeds "N, which commonly occurs,
a recombination stage is employed. In this case the node with
the fewest gates (node A in Figure 8(b)) is recombined to
either node A’s sibling node or the node whose parent is the
sibling of node A’s parent. The candidate with fewer gates will
be chosen (node B in the figure). Since the number of clusters
is limited in practice, the algorithm in general is terminated
within 3-4 iterations.

n practice the number of the clusters will not exceed 10



II1. DESIGN-TIME BODY BIAS SELECTION

A. Statistical Delay and Leakage Models for Biased Gates

This section describes the statistical gate-level models for
the parametric yield optimization framework. Following the
examples of [2]-[4], each process parameter can be trans-
formed to a linear combination of m independent gaussian
random variables (z;) and the random residual % from princi-
pal component analysis (PCA). Both delay and log of leakage
can then be canonically expressed by two gaussian random

variables:
D =Dy + Z'—l

L) = V() + Zifl bzzl + bm+1R
where a; and b; are the corresponding coefficients obtained
from PCA [3], [4]. Assuming the gate is biased at a particular
body voltage vy, with the models in (1)-(2), gate delay and
log of leakage are:

Ak x D, Wn(LAPB)=In(L)+ AV  (14)

where Ak = 1—dy—dyv, and AV = In(1+po+p1vp+p2vi).

For certain body bias v, the framework performs timing
analysis by propagating the delay from gate to gate as in
[3], [4] using (14). Meanwhile we can maintain the node
delay in a canonical form with different coefficients. Leakage
power analysis is achieved by summing lognormal random
variables using Wilkinson’s method as in [2]. The efficiency
of statistical power analysis is further improved with an
incremental approach (discussed in section III-C).

Since the principal component z; is an independent stan-
dard Gaussian random variable (RV), the correlation between
DABEB and In(LABP) can be easily evaluated as:

m+1
Cov(DABB In(LABB)) = Zl:-; Akaib;

a;2; + am+1R
(13)

DABB

5)

B. Yield Analysis and Optimization

Based on the biased gate models, we can perform statistical
timing and power analysis and compute the correlation be-
tween delay and leakage power. Parametric yield of the circuit
is defined as in [2]:

Y = Pr(D < Deon, In(Pr) < In(Peon, — Pp)) (16)

where D.,, and P,,, are constraints for delay and power,
respectively, Pr, is the leakage power and Pp is the dynamic
power of the circuit. Both circuit delay and log of leakage
are two Gaussian random variables. The underlying problem
in (16) is then the integral of a bi-variate normal distribution
over a rectangular region. The five parameters up, op, pr,
or and p (the mean and standard deviation of circuit delay
and log of leakage power, and their correlation coefficient)
are used to define the bi-variate normal distribution.
For simplicity, (16) can normalized as:

Y="Pr(z <a,y<b)

/ / S dy an
/ 1 —
ln(PL)*,uL

are normalized random

variables, a = DOU “D and b = % are the normal-
ized constraints on delay and log of leakage power, and p is
the correlation coefficient between the circuit delay and log of
leakage. To evaluate this integral, [2] transformed the original

where = 2=£2 apd y =
op

rectangular region to a triangular region. The new region
is then partitioned into several sub-domains and computed
in sequence. However, this method may suffer from a high
complexity of transformation and partitioning. To avoid these
problems we propose the use of the Gaussian quadrature tech-
nique [21]-[23]. Gaussian quadrature is an efficient approach
to compute integrals by a weighted sum of function values at
specified abscissae within the domain of integration, and can
reach analytical accuracy by a suitable choice of abscissae
and weights. Reference [21] suggests a Gaussian quadrature
model to compute the integral [~ exp(—a?) f(z)da:
15

/0 exp(—a?) f()dr~ Y

where x; and w; are abscissae and weights that are fixed for
the integral of the form above without any dependence on
f(z).

With the substitutions of u =

w; f () (18)

(a—w) _ _(a—y)
VAT )

ap = WeTro) and b, = \/m (17) can be simplified

to:

S
where

Y(u,v)=e (20)
By applying the model in (18) to v and v separately, we

obtain:
15
Z Z wiij(:vi,xj) (21)
=1 =1 : :

Since z; and w; in (21) are fixed for any arbitrary function
Y (u,v) [21], the computation time of (21) is independent of
the problem size.

Based on the proposed yield analysis?, our yield opti-
mization problem can be formulated as an unconstrained
optimization problem where the objective function is (16) and
the design variables are the body voltage of each cluster, as
shown below:

max Pr(D < Deopn, In(P) < In(Peo, — Pp))  (22)

This problem is then solved by the optimizer Lancelot [19].
Lancelot numerically evaluates the objective function and
gradient of the yield. Thus, the optimization formulation in
this section can use high-order models or even table-look-up
models for computing the intrinsic gate delay and leakage to
guarantee the accuracy in optimization.

exp(—u? — v?)Y (u,v)dudv (19)

la1(2u—a1)+b1(2v—b1)+2p(u—a1)(v—>b1)]

Y= falublu

C. Gradient Computation and Complexity

Lancelot [19] requires the computation of the gradient of
the yield with respect to the body voltage of each cluster.
This can be estimated by increasing or decreasing the body
voltage of a cluster by a small amount and then computing the
yield difference due to the body voltage change. To improve
the efficiency of this step, we suggest a power perturbation
scheme instead of a full-circuit statistical power analysis.

Assuming the body voltage for a cluster k is changed by a
small amount Av, the change in leakage power can then be
written as:

2The model in (18) requires that when p <0, which is the typical case for log of
leakage and delay, the constraints should be @ < 0 and b < 0. The other constraint
cases, {a > 0, b > 0}, {a < 0,b > 0} and {a > 0, b < 0}, can be easily
transformed to {a < 0, b < 0} by exploiting the underlying characteristics of bi-
variate normal PDF [21]-[23].



AP = Z{Pi,o[l + pio + p1i(ve ke + Av) 4+ pa ;X
ick (23)

(vo,k + Av)?] = Pio(1 4 pio + p1,ivsk + P2,iV i)}
where P, g is the leakage with zero-body bias for gate 7, and

p1,; and ps ; are the coefficients for the leakage model in (1).
This can be further simplified to:

APy, = ZPi,O(pl,iAU + p2.iAv?)
ick
+ Uk Z 2P; op2,iAv
ick
Since the body voltage increment Av can be fixed in
gradient analysis, vy 1 is the only variable in (24), which
indicates that the coefficients > P o(p1,;Av + p2;Av?)
ick
and ) 2P, op2,;Av can be computed in advance and used

(24)

throulgﬁout the whole optimization process. We just need to
perform N summations to compute the change in the leakage
PDF for N clusters in gradient computation. The complexity
is reduced from O(N Ny) for N full statistical power analysis
to O(N), where N, is the number of gates.

Timing perturbation is performed by a full statistical static
timing analysis (SSTA). Once we obtain the delay and
leakage-power PDFs of the perturbed circuit (the body voltage
of the kyp, cluster is changed from vy to v + Av), the
yield of the perturbed circuit can be calculated by (21), and
the change in yield is used to define the particular component
of the yield gradient. Since yield analysis has a constant com-
plexity, the overall algorithm complexity of this optimization
framework is dominated by SSTA, the complexity of which is
O(N(Ny4+E)), where E is the number of edges of the timing
graph. The number of the clusters is limited in real designs
and is negligible compared to N, and thus the framework
maintains a linear complexity>. Experimental results in section
IV also validate that yield optimization takes only seconds
even for a circuit with tens of thousands of gates.

I'V. EXPERIMENTAL RESULTS

The proposed framework discussed in sections II and III
were implemented in C and tested on ISCAS85 benchmark
circuits and a Viterbi Decoder circuit (Vitl) that vary in size
from 166 to 14539 gates. The circuits were synthesized using
an industrial 1.2V 90nm triple-well dual-V;;, technology. The
two Vi values are 0.32V (0.33V) and 0.22V (0.24V) for
NMOS (PMOS). Body voltage is varied between -0.5 and
0.5V. All standard cells in the library were characterized
(using SPICE) at both the high- and low-V;; values. Only
channel length variation is considered for simplicity. However,
the overall approach can be extended to consider other sources
of variability. We considered inter-die, spatially correlated
intra-die, and random components of variation. Total 30 /u
for channel length variability is set to 15% and then split
evenly among the three variation components.

A. Efficacy of Feature Extraction-Based Clustering

Reference [12] proposed a clustering algorithm based on
an empirical affine weighting function. Table I compares the
proposed feature extraction-based clustering algorithm (Feat.)
with the work of [12] (Empir.) in terms of both resulting
leakage and runtime. Column 2 lists the number of gates for

3The number of Lancelot iterations (around 30) is limited due to the small problem
size.

TABLE I
CLUSTERING EFFICIENCY COMPARISON BETWEEN THE PROPOSED
FEATURE EXTRACTION-BASED CLUSTERING METHOD AND THE
EMPIRICAL AFFINE WEIGHTING FUNCTION-BASED CLUSTERING METHOD

FROM [12]
Leakage comparison (©W) Time (sec.) for
CKT. | #gates Empir. [12] Feat. clustering
u/o 95% u/o 95% | Empir. | Feat.
c432 166 3.8/1.3 6.2 3.5/1.2 5.6 0.8 5.9
c499 519 18.2/7.1 | 31.7 | 17.8/6.3 | 283 53 6.5
c880 390 4.2/1.6 7.0 3.9/1.5 6.4 4.2 6.3
cl1355 558 15.7/52 | 25.0 | 14.8/45 | 22.1 8.6 6.7
c1908 432 8.9/3.1 142 | 7.8/2.3 12.1 7.5 6.5
c2670 964 8.5/3.3 147 | 7.512.8 12.7 26.0 7.4
¢3540 962 14.9/6.1 | 26.7 | 14.2/57 | 24.5 25.7 7.4
c5315 1750 19.7/71.6 | 35.6 | 17.7/7.1 | 31.4 84.3 9.2
c6288 2502 89/35 155 82/30 134 179 11
c7552 | 2102 23/10 42 20/8 35 122 10
Vitl 14539 | 246/110 | 396 210/80 348 901 52
Average improvement (%) 10/17 134
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Fig. 9. Monte Carlo convergence

each circuit, varying from 166 to 14539 gates. Columns 3-
6 compare the mean/standard deviation and 95'" percentile
leakage of the proposed method and the method from [12],
respectively. The proposed approach improves upon the prior
work in all measures and achieves a 10% and 17% reduction in
the mean and standard deviation of the leakage, respectively.
The last two columns of Table I compare the gate clustering
runtime for the two methods. The runtime for the proposed
method shows linear dependence on circuit size with a small
slope, whereas the runtime for the empirical function-based
method [12] increases exponentially. On average, the proposed
method is 5.1 faster than the method in [12]. For the largest
circuit Vitl, the proposed method achieves 18x speed-up.

B. Monte Carlo Convergence

The design space exploration step described in section II-
B is executed only once in the framework but still involves
solving a large number of QP problems to determine the
body bias profile across process variability. To speed up
this step, we employ the smart sampling approach in [24],
which captures the importance of the samples to reduce the
number of samples. Figure 9 shows the dependence of yield
optimization results on the number of Monte Carlo samples
for the six largest circuits in our set of benchmarks. The
quality of the yield optimization results with 100 samples
is similar to the results with 1000 samples. We therefore
use 100 samples in the exploration step, as design space
exploration is only required to outline general features instead
of local details. Moreover, since the QP optimization for a



TABLE I
COMPARISON OF YIELD OPTIMIZATION RESULTS USING THE PROPOSED
PRE-SILICON BODY BIAS SELECTION FRAMEWORK AND POST-SILICON
ABB WITH DIFFERENT NUMBER OF CLUSTERS (TWO AND THREE
CLUSTERS)

Initial Optimized yield (%)/Yield point improvement
yield pre-silicon BB selection post-silicon ABB
(%) 2 cluster 3 cluster 2 cluster 3 cluster
c2670 38.7 733 | 35| 83.1 | 44 | 838 | 45 | 90.7 | 52
¢3540 38.7 657 | 27 | 777 | 39 | 758 | 37 | 84.1 | 45
c5315 39.2 694 | 30 | 80.7 | 42 | 786 | 39 | 88.2 | 39
c6288 384 | 634 | 25 | 72.1 | 34 | 71.1 | 33 | 77.8 | 39
c7552 38.8 694 | 31 | 80.1 | 41 | 76.7 | 38 | 86.9 | 48
Vitl 39.1 78.6 | 40 | 90.6 | 52 | 833 | 44 | 915 | 52
Ave. improv. 31 42 40 48

CKT.

TABLE III
COMPARISON OF YIELD OPTIMIZATION RESULTS USING THE PROPOSED
PRE-SILICON BODY BIAS SELECTION FRAMEWORK AND TRADITIONAL
PRE-SILICON APPROACHES (DUAL-V;j [8] AND GATE SIZING [2])

Initial Optimized yield (%)/Yield point improvement

CKT. yield pre-silicon BB selection dual-V,, [8]

(%) 2 cluster 3 cluster sizing [2]

c2670 38.7 733 | 35| 83.1 | 44 | 395 0.8 463 | 7.6

c3540 38.7 657 | 27 | 7777 | 39 | 41.4 2.7 44.1 | 54

c5315 39.2 69.4 | 30 | 80.7 | 42 | 40.3 1.1 45.0 | 5.8

c6288 38.4 634 | 25 | 72.1 | 34 | 388 0.4 432 | 4.8

c7552 38.8 69.4 | 31 | 80.1 | 41 | 40.2 1.4 479 | 9.1

Vitl 39.1 78.6 | 40 | 90.6 | 52 | 50.7 12 528 | 14

Ave. improv. 31 42 3.0 7.7

given circuit sample is independent of the QP optimizations
for other samples of the same circuit, this step can be easily
parallelized to achieve further speedup.

C. Pre-Silicon Body Bias Selection Framework vs. Post-Silicon
ABB

The proposed pre-silicon body bias selection framework
chooses statistically optimal body voltages for the full en-
semble of chips, while post-silicon ABB uses measurement
results for a particular manufactured chip and deterministi-
cally selects the bias voltage for each cluster of that chip. It is
clear that post-silicon ABB should provide higher yields at the
cost of higher testing times and costs. This section quantifies
the yield loss when using the proposed pre-silicon approach
compared to a post-silicon ABB with the same clustering
method described in section II.

Given a clustering, the yield of post-silicon ABB is com-
puted by first generating 1000 chip samples which are then
individually tuned to minimize leakage subject to a delay
constraint. The number of chips that fail to simultaneously
meet the leakage and delay targets is then calculated. The
yield optimization results of our pre-silicon approach and
post-silicon ABB are summarized in Table II. Column 2
lists the initial pre-optimized yield of each circuit for the
target constraint {Delay<up+op, Leakage<ur}. Columns
3-10 display the yield optimization results and yield point
improvement using our pre-silicon framework and post-silicon
ABB for two- and three-cluster scenarios. Although post-
silicon ABB achieves slightly higher yield than the proposed
pre-silicon body bias selection framework, the difference
degrades for larger number of clusters and larger circuits.

D. Pre-Silicon Body Bias Selection Framework vs. Traditional
Pre-Silicon Approaches

We further evaluate the efficacy of our pre-silicon frame-
work in Table III when compared to traditional pre-silicon

methods (a statistical dual-V;, assignment approach [8] and a
yield maximization approach using gate sizing [2]). Columns
3-10 list the yield optimization results and yield point im-
provement for the constraint {Delay<pp+op, Leakage<pur}
using our pre-silicon framework and two traditional pre-
silicon statistical optimization methods (dual-V;;, and gate
sizing [2], [8]). The proposed approach with either two or
three clusters potentially doubles the original yield of 39%
(the optimized yield is 70% for two clusters and 81% for
three clusters on average). Meanwhile the yield improvement
is limited to 3.0 point on average for the statistical dual-V,
approach [8] and 7.7 point on average for gate sizing [2]. This
further validates the statement in section I that the proposed
pre-silicon body bias selection has continuous domain design
variables and hence higher flexibility than the traditional pre-
silicon approaches like gate sizing or dual-V,.

E. Yield Analysis and Optimization

This section discusses the accuracy and optimality of
the proposed pre-silicon framework, as shown in Table IV
when compared to Monte Carlo simulation. Columns 2-
5 list the mean and standard deviation of the delay and
leakage for the initial designs. The target constraint is set
to {Delay<up-+op, Leakage<p }. Given this constraint we
compute the original yield and compare it with a Monte
Carlo model using 2000 samples, shown in columns 6-7. The
absolute errors of the proposed yield analysis in section III-B
vary from 0.9% to 5.7%, which is due to the computation ap-
proximation in SSTA, e.g., statistical maximization operation.

The optimized yield results and the yield point improve-
ments are shown in Columns 8-11 for 11 designs. The
optimized yield almost doubles the original yield with 69%
for two clusters and 80% for three clusters on average.
The improvements are consistent among all the benchmarks
studied. We also perform a Monte Carlo sweep (MC-sweep)
to determine whether the optimized yield obtained by the
proposed framework is globally optimal. MC-sweep performs
Monte Carlo simulations on all possible combinations of
body voltages for a three-cluster configuration. The sweep
increment is set to 0.1V for the sweep space vy 1 X Vp,2 X Up 3.
Columns 12-13 of Table IV show the maximum yield found
by MC-sweep and the relative deviation of the proposed
approach with respect to MC-sweep. The maximum deviation
is 6.7%, which is due to the relatively coarse grid used for
sweep. Columns 14-17 summarize the runtime for the critical
stages of the proposed framework (including design space
exploration (explo.), clustering (clust.) and yield optimization
(optim.)) as well as the total runtime. The last column lists the
ratio of the total runtime to the circuit size, indicating a linear
relationship. Runtime is dominated for larger circuits by the
exploration stage, which can be parallelized across machines
as mentioned above.

E Implications for Physical Design

Adaptive body bias incurs physical design overheads, in-
cluding generation/distribution of the body voltages and extra
well spacing. There are limited numbers of clusters (2-3 in
our experiments) and as a result, these overheads can be
reasonably bounded. The major impact of gate clustering on
placement is then the extra well spacing between adjacent
cells having different biases, which is imposed by triple-well-
layout rules. As stated in section II, the proposed clustering
method naturally captures the spatial correlation in the feature



TABLE IV
YIELD ANALYSIS/OPTIMIZATION RESULTS AND SUMMARY OF RUNTIME (FOR 3-CLUSTER SCENARIO) UNDER THE CONSTRAINT {DELAY<up-+op,
LEAKAGE<y1,} USING THE PROPOSED METHOD WITH DIFFERENT NUMBER OF CLUSTERS (2 CLUSTERS AND 3 CLUSTERS) AND MONTE CARLO

APPROACHES

CKT. Initial design Init. yield (%) Optim. yield(%)/Impro. MC-sweep(%) | Time for critical stages(sec.) | Total Ratio
“p op “wr or, Prop. MC 2 cluster 3 cluster yield err. explo. | clust. optim. (sec.)

c432 | 0.74 | 0.05 0.97 0.26 38.4 436 | 705 | 32 | 79.2 | 41 | 825 3.9 0.68 5.89 2.35 36.1 0.22
c499 | 0.68 | 0.04 3.80 1.02 39.2 419 | 658 | 27 | 747 | 36 | 76.2 1.9 5.87 6.48 2.40 47.3 0.09
c880 | 0.77 | 0.05 1.17 0.32 38.6 426 | 68.7 | 30 | 79.1 | 41 | 788 0.3 3.29 6.32 2.48 41.1 0.11
c1355 | 0.89 | 0.05 3.57 0.96 39.3 438 | 684 | 29 | 827 | 43 | 794 4.1 6.43 6.64 2.68 46.7 0.08
c1908 | 1.15 | 0.07 2.16 0.58 39.0 42.1 | 68.1 | 29 | 80.6 | 42 | 79.2 1.8 4.13 6.46 3.28 48.8 0.11
c2670 | 0.77 | 0.05 2.06 0.56 38.7 434 | 733 | 35 | 83.1 | 44 | 843 1.4 18.4 7.38 3.13 64.8 0.07
c3540 | 1.22 | 0.07 3.15 0.84 38.7 445 | 657 | 27 | 7777 | 39 | 833 6.7 235 7.36 3.37 73.5 0.08
c5315 | 1.12 | 0.07 4.14 1.11 39.2 422 | 694 | 30 | 80.7 | 42 | 794 1.7 68.2 9.21 4.03 134 0.08
c6288 | 3.52 | 0.21 14.77 391 384 41.1 | 634 | 25 | 72.1 | 34 | 764 5.6 185 10.5 5.0 258 0.10
c7552 | 1.28 | 0.08 4.14 1.10 38.8 39.7 | 694 | 31 | 80.1 | 41 | 7538 5.6 110 9.8 4.3 173 0.08
Vitl 241 | 0.14 | 149.44 | 39.54 | 39.1 418 | 786 | 40 | 90.6 | 52 | 91.6 1.0 747 51.9 12.2 1177 0.08

Average yield point improvement 30 41

(a) (b)

Fig. 10. Vitl placement with physically contiguous cluster regions by
CAPO [25] (different clusters are shown with different colors): (a) two
clusters; (b) three clusters

vectors. That is, most gates are intrinsically clustered within
the physically continuous regions, which helps reduce the
well spacing overheads. Moreover, we employ the incremental
placer CAPO [25] to minimize the gate displacement and area
overhead, following a similar flow as in [12]. CAPO works in
its Engineering Change Order (ECO) mode to make limited
changes to the initial placement based on certain constraints
[25]. Figure 10 demonstrates the resulting layout for the Vitl
circuit with both two and three clusters after applying CAPO
to the initial placement. Most gates in the layout are clearly
clustered in the physically continuous regions. In particular,
the average gate displacement is 2.2%-2.3% and half perime-
ter wire-length increase is 2.7%-3.9% compared with the
initial designs, for two- and three-cluster configurations.

V. CONCLUSION

In this paper we presented a gate-level parametric yield
optimization framework using design time body bias selec-
tion. The approach considers the power and performance
constraints as well as their correlation. A feature extraction-
based clustering approach is proposed that achieves speedups
of 5.1x on average and up to 18x for 11 benchmark
circuits compared to a recently reported clustering strategy,
with leakage savings of more than 10%. In addition the
framework employs a fast yield analysis calculation method
and an efficient power perturbation technique for optimization
and achieves 41% yield improvement on average across 11
benchmark circuits.
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