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Abstract—Gate oxide breakdown (OBD) is a key factor limiting
the useful lifetime of an integrated circuit. Unfortunately, the
conventional approach for full chip OBD reliability analysis
assumes a uniform oxide thickness and worst-case temperature
for all devices. In practice, however, gate oxide thickness varies
from die-to-die and within-die and hence may cause different
reliability for different devices even chips. Moreover, due to
the increased across-die temperature variation, such difference
may be exacerbated. Thus, as the precision of variation control
worsens, an alternative reliability analysis approach is needed.
In this paper, we propose a statistical framework for chip-level
gate OBD reliability analysis while considering both die-to-die
and within-die components of thickness variations as well as the
across-die temperature variation. The thickness of each device
is modeled as a distinct random variable and thus the full chip
reliability estimation problem is defined on a huge sample space
of several million devices. We observe that the chip-level OBD
reliability function is independent of the relative location of the
individual devices. This enables us to transform the problem
such that the resulting representation can be expressed in terms
of much fewer random variables. Using this transformation,
we present a computationally efficient and accurate approach
for estimating the full chip reliability while considering spatial
correlations of gate oxide thickness as well as temperature
variation. We show that, compared to Monte Carlo simulation,
the proposed method incurs an error of only around 1% while
improving the runtime by more than three orders of magnitude.

Index Terms—Oxide breakdown, process variation, reliability,
spatial correlation, temperature.

I. Introduction

SEMICONDUCTOR reliability and manufacturing vari-
ability have become key issues as device critical dimen-

sions shrink and integration complexity continues to grow at a
rapid pace [1]. For assessing product reliability, it is important
to quantify the reliability of gate oxide which is its ability
to retain its dielectric properties while being subjected to
high electric fields. Aggressive oxide thickness scaling has led
to huge vertical electric fields in metal oxide semiconductor
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devices that result in high direct tunneling gate oxide leakage
current. The gate oxide leakage current creates defects such
as electron traps, interface states, holes traps, and others, in
the gate dielectric. These defects gradually build up in the
oxide until a critical defect density is reached when the oxide
destructively breaks down leading to a large increase in gate
oxide conductance and functional failure of the product.

Over the last few decades, numerous publications have fo-
cused on understanding and modeling the mechanisms leading
to defect generation and breakdown in individual devices [2],
[3]. Some researchers have initiated an effort to understand the
oxide breakdown (OBD) mechanisms of simple circuits [3].
Recently, a product level approach performing OBD analysis
on full chip was proposed in [4]. In most of the existing
approaches, simple test structures such as discrete devices or
capacitors are used to characterize the OBD mechanism for a
specific manufacturing process. These discrete device charac-
terization results are then extrapolated to deduce a model for
the full chip oxide reliability which is later calibrated using
lifetime tests of sample product.

However, there are two major concerns associated with the
prior approaches.

1) Prior approaches assume a uniform minimum oxide
thickness for all devices on every chip. In prac-
tice, the non-uniformity in temperature and pressure
during the gate-oxidation process leads to within-die and
die-to-die variations in gate oxide thickness. For a given
supply voltage and operating temperature, the reliability
of oxide is an exponential function of its thickness and
its sensitivity to thickness variations increases for thinner
oxides [5], [6]. Therefore, in previous approaches, it
was imperative to consider a uniform minimum oxide
thickness across all devices on a chip and across all
chips for a conservative worst-case analysis. This may
lead to significantly pessimistic estimates of the overall
OBD reliability of the product.

2) In addition, prior works assume a worst operating tem-
perature across the chip and throughout the lifetime.
However, it has been well noted that the temperature
varies significantly across the chip. Since devices oper-
ated at different temperature may deteriorate at different
rates, the mean time to failure of a device actually expo-
nentially depends on temperature [7]–[9]. Fig. 1(a) and
(b) illustrates the temperature profiles for a traditional
alpha processor [10] and a modern many-core design
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Fig. 1. (a) Temperature profile for an alpha processor by HotSpot [10].
(b) Temperature profile for a many-core processor from [11] and [12].

from [11] and [12]. It is easy to observe that the hot
spots only occupy a small region of the entire chip and
have around 30 degrees of temperature difference from
the inactive regions. For a device in inactive regions,
such temperature difference may lead to the reliability
underestimation by one order of magnitude [7], [8],
which is overly pessimistic.

Since oxide reliability is one of the key factors that sets
constraints on the operating supply voltage and temperature of
the chip, any pessimism in oxide reliability analysis limits the
maximum operating voltage and thus the maximum achievable
chip-performance. In order to find consistent supply voltage
limits, it is critical to quantify the product OBD strength with
consideration of both process and temperature variations.

The goal of this paper is to develop a new chip-level gate
OBD reliability analysis while accommodating both process
(inter-die, intra-die spatially correlated and independent) and
temperature variations into the analysis flow. If the thickness
of each device is modeled as a distinct random variable, then
the full chip reliability estimation problem is defined on a
huge sample space of several million devices. By noting that
the reliability for a sample device with a given oxide thickness
itself is a random function, the design time full chip reliability
estimation problem turns out to be a multidimensional nested
stochastic process. Furthermore, temperature variations in hot
spots and inactive regions may result in different device-
level reliability models, which also complicates the reliability
analysis.

Apparently a straightforward Monte Carlo (MC) approach
is extremely expensive in both execution time and memory,
as we need to perform nested MC analysis on the sample
spaces for different chips and different devices across each
chip as well as the sample space of OBD of each device.
Meanwhile, the traditional guard-band approach by assuming
the minimum oxide thickness may reach overly pessimistic
result with more than 50% underestimation [14]. The challenge

here is how to reduce the tremendous number of random
variables for a low space/time complexity while maintaining
good reliability analysis accuracy. The contributions of the
proposed framework are as follows.

1) First, we present a more consistent and accurate model
for statistical full-chip reliability analysis. Unlike any
traditional reliability analysis that simply uses the worst
corner, the proposed model incorporates both the oxide
thickness variation and temperature variation to ensure
a reasonable result. This theoretically rigorous OBD
reliability model considers variations at different spatial
scales and hence involves the integration over millions
of variables, which may be difficult for a direct solve.

2) Second, the proposed framework discusses how to
project that tremendous parameter space at device-
level to the granularity of block level by characterizing
the block-level oxide thickness distribution (BLOD).
Fig. 1(a) and (b) illustrates the global temperature un-
evenness (corresponding to different functional modules)
and local temperature uniformity for two processors
[10]–[12]. Based on such observation, a “block” is
defined as a region on chip with uniform temperature
spread.1 We therefore present how to map the millions
of random variables within each block to only two
distinct random variables of sample mean and sample
variance of BLOD. Such a projection greatly reduces
the problem size to a feasible level while still capturing
both the temperature variation and the process variations
at different spatial scales.

3) Third, we demonstrate how to characterize the sample
mean/variance for each block using principal compo-
nents and then compute the full-chip OBD reliability
in an efficient way. By expressing the oxide thickness
variation with principal components, we can achieve the
closed-form representation of the sample mean/variance
for each block as well as their correlation. Then,
with some judicious approximations, the initial high-
dimensional integration for the reliability across the
ensemble of chips can be simplified to the sum of double
integrals, which enables fast and accurate estimation.

The remainder of this paper is organized as follows. In
Section II, we describe the oxide thickness variation modeling
at different spatial scales. In Section III, we discuss the OBD
model and formulate the oxide reliability analysis problem.
Section IV details the proposed variation-aware full chip OBD
reliability analysis. Simulation results illustrating the efficacy
of the proposed approach are given in Section V. We conclude
this paper in Section VI. A part of this paper has been
published in [16] and [17].

II. Review on Oxide Thickness Variation Modeling

The oxide thickness variation can be classified based on the
spatial scale over which it manifests [18]–[20]. Due to long

1This “block” could be a real architecture level block or some sub-block
that can ensure the assumption of uniform temperature. In general, tens of
blocks can capture the major feature of the thermal profile [13].
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Fig. 2. Grid-based spatial correlation model.

range shifts in oxidation temperature and pressure that occur
from lot-to-lot, wafer-to-wafer, reticle-to-reticle, and across
a reticle, all the devices on the same chip observe some
common amount of fluctuation in oxide thickness. This die-to-
die component of variations is referred to as global or inter-die
variation. Several factors gradually affect temperature from
one location to another within a chip (e.g., the emissivity
variations resulting from location of chip on the wafer). Such
variations tend to affect all devices that are placed close to each
other in a similar manner. Therefore, closely spaced devices
are more likely to have similar oxide thickness than those
placed far apart. The component of variation that exhibits such
spatial dependence is known as spatially correlated variation.
For accurate statistical analysis, it is necessary to capture
the dependence between the global and spatial component of
thickness variations. The residual variation resulting from cer-
tain local device scaling effects such as different surface orien-
tations, stress conditions as well as poly-Si intrusion from the
gate electrodes is referred to as independent variation. Thus,
oxide thickness for any device can be modeled as follows:

x = u0 + zg + zcorr + zε (1)

where u0 is the nominal oxide thickness for the technology,
zg denotes the global inter-die variation component, zcorr

is the intra-die spatially correlated component that tends to
affect closely placed devices in a similar manner, and zε is
the residual independent variation.

To exactly model spatial correlation between the oxide
thickness of two devices, a separate random variable is re-
quired for each device. However, the correlation between two
devices is generally a slow monotonically decreasing func-
tion of their separation [20]. Therefore, simplified correlation
structures using a grid model [18], [20] or quad-tree model
[24] have been proposed in the literature. In this paper, we
discuss the proposed approach using the grid-based model. In
this model, the spatial component of oxide thickness variation
is modeled using n random variables, each representing the
spatial component of variation in one of the n grids (see
Fig. 2), and a covariance matrix of size n × n representing
the spatial correlations among the grids.2 The covariance
matrix could be determined from measurement data extracted
from manufactured wafers using the method given in [20].
Some recent researches [21]–[23] notice that part of the intra-

2The “grid” in the correlation model may be different from the “block”
that is defined earlier and used for temperature uniformity partition. Thus, a
block with uniform temperature spread may contains several grids for a finely
gridded model or be contained within one grid for a coarsely gridded model.

die spatially correlated variation could be attributed to the
wafer-level global deterministic pattern (e.g., slanted or bowl-
shaped). Such pattern is usually characterized by a quadratic
or some polynomial functions [21], [23]. Given the locations
of the chip and the grids within the chip, the models by [21]
and (1) could be compatible by replacing the common inter-
die variation component zg in (1) with a location-dependent
component for each grid.

To simplify the correlation structure, this set of correlated
random variables is mapped to another set of mutually inde-
pendent random variables with zero mean and unit variance
using the principal components of the original set. The original
random variables are then expressed as a linear combination
of the principal components. These principal components can
be obtained by performing an eigenvalue decomposition of
the correlation matrix. This representation of the correlation
is expressed in a so-called canonical form [18], [19], where
oxide thickness x of any device in ith grid is given by

x = λi,0 +
n∑

j=1

λi,jzj + λrε (2)

where λi,0 is the mean or nominal value of oxide thickness in
ith grid, zj represents the n independent random variables used
to express the spatially correlated device parameter variations,
ε is a distinct random variable for each device that represents
the residual independent variation, and the coefficients λi,js
represent the sensitivity of thickness variation in ith principal
component for every jth the random variable.

III. Reliability Model and Problem Formulation

The gate oxide degradation depends on the oxide thickness,
voltage, and temperature. There are many OBD models in
the literature that attempt to explain the dependence on these
factors. A widely accepted model is the anode hole injec-
tion model [25]. According to this model, injected electrons
generate holes at the anode that can tunnel back into the
oxide. Intrinsic breakdown occurs when a critical hole fluence
is reached, creating a continuous conducting path across the
oxide. A second model, known as electron trap density model,
has been suggested, which claims that a critical density of
electron traps generated during stress is required to trigger
OBD [26]. Both models of OBD mechanisms note that the
defect generation is a non-deterministic process. As a result,
the OBD time is inherently a statistically distributed quantity.
Thus, the OBD time is modeled as a random variable typically
characterized by a Weibull probability distribution function,
given by [5] and [27] as follows:

F (t) = 1 − e−a( t
α

)β (3)

where F is the cumulative distribution function (CDF) of time-
to-breakdown t, a is the device area normalized with respect
to (w.r.t.) the minimum device area, and α and β are the scale
and shape parameters of the Weibull distribution. The scale
parameter α represents the characteristic life which is the time
where 63.2% of samples fail, whereas the shape parameter
β is a function of critical defect density. The critical defect
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Fig. 3. Typical OBD procedure characterized by gate leakage for a device
in 45 nm process (the stressed condition is 3.1 V, 100 °C).

density depends on device oxide thickness, the oxide field and
temperature. For a given temperature and stress voltage, it has
been shown that the slope parameter of the Weibull distribution
varies linearly with oxide thickness [6]. Thus, if x denotes the
oxide thickness, we have

F (t) = 1 − e−a( t
α

)bx

(4)

where b is a constant for given temperature and supply voltage.
It has also been noted that the parameters α and b depend
on temperature and can be characterized using some closed-
form models or look-up tables w.r.t. temperature for a given
process [7]–[9]. Calibration and measurement results in [4],
[6]–[9], and [28] validate the underlying Weibull model for
OBD mechanism and also demonstrate its impact on designs
with different dimensions. Another major factor that affects
the oxide lifetime is the OBD failure criterion. A commonly
used failure criterion is soft breakdown (SBD) which is
characterized by a small increase in gate leakage. In practice,
however, after SBD the gate leakage current monotonically
increases with time eventually leading to a hard breakdown
(HBD) [28]. The time between two breakdowns is a function
of the gate area, oxide quality, and the bias conditions [4],
[28]. Fig. 3 plots the gate leakage measurement results for a
stressed device in 45 nm process. It can be observed from the
figure how the gate leakage continuously increases after SBD
until HBD is triggered. Thus, SBD is an irreversible process
and may change the gate leakage by 10–20 times, or even
several orders for some central processing unit (CPU) design
[4]. Such significant leakage increase may easily lead to cache
failure, which dominates the CPU lifetest fallout. It is also
worth noting that the leakage increase does not necessarily
result in circuit/logic failure and circuit may even survive to
function after several HBDs [4], [29], [30]. In other words,
the selection of the failure criterions may also depend on the
application and the design under investigation. For the purpose
of this paper to enable the reliability analysis for large chips
especially CPU designs, we limit our analysis to determining
the initiation of SBD and use this as our failure criteria.

To ensure the robustness, a chip is considered to have
failed as soon as breakdown occurs for any device on the

chip. We are interested in finding the reliable lifetime of the
chip for which none of the devices fail. For such weakest
link problems, it is more convenient to use an alternate
representation known as reliability function R(t) or survivor
function, given by

R(t) = 1 − F (t) = P(T > t) =
∫ ∞

t

f (s)ds (5)

where f (s) is the probability density function (PDF) of OBD
of an individual device. The reliability function is complimen-
tary to the CDF F (t), taking the value 1 at t = 0 and tending
to 0 as t tends to infinity. Simply stated, a reliability function
is the probability that a device (chip) does not fail by time t.
Due to manufacturing variations, the thickness of gate oxide
is also a non-deterministic parameter at design time. Thus,
the reliability function of a device can be interpreted as its
conditional reliability function for a given oxide thickness.
For an ith device having xi oxide thickness, the conditional
reliability function can be given as

Ri(t|xi) = P(t > t|xi) =
∫ ∞

t

f (s|xi)ds. (6)

Due to the spatial correlation of oxide thickness variation, the
oxide thicknesses of any two devices on a chip are correlated
with each other. Therefore, in general, their respective reli-
ability functions being functions of oxide thickness are also
correlated with each other. However, if the oxide thicknesses
are known a priori then the defect generation mechanism in
one device is independent of any other device on the chip
for constant voltage and temperature. Thus for a particular
chip, if the thicknesses of all devices are known then any
device fails independently of all other devices. Furthermore,
the conditional reliability function of the chip Rc(t|x) (with
oxide thicknesses known) requires that all devices on the chip
are functioning reliably. Thus, Rc(t|x) is given by the product
of reliability functions of all individual devices as follows:

Rc(t|x) =
m∏
i=1

Ri(t|xi) (7)

where x represent the vector of oxide thickness (x1, . . . , xm)
and m is the total number of devices on the chip. In the
traditional analysis, where all oxide thicknesses are supposed
to have a single, worst-case value, the product in (7) is taken
across a large set of identical reliability functions and can
be analytically solved with a low complexity. However, the
key point in our analysis is that, at design time, each oxide
thickness xi is itself a random variable. In addition, these
random variables are correlated across the chip. Furthermore,
due to the temperature variation, many devices may have
different reliability functions. If the oxide thicknesses of all
devices are characterized by their joint PDF f (x1, . . . , xm)
then the overall reliability function of the entire ensemble of
all manufactured chips can be given by

Rc(t) =
∫ ∞

0
. . .

∫ ∞

0

m∏
i=1

Ri(t|xi) f (x1, . . . , xm)

dx1, . . . , dxm. (8)
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Due to the huge dimensionality of the above integral, a
straight forward numerical evaluation of the above integral
is computationally impractical for full chip analysis. Using
certain projection techniques, we develop a computation-
ally efficient approach to address this problem in the next
section.

IV. Process Variation and Temperature-Aware

Full Chip OBD Reliability Analysis

The proposed approach for efficiently estimating the overall
reliability function Rc(t) is discussed in a bottom up manner.
We first present expressions for finding the conditional re-
liability function of one device. Using this expression, the
conditional reliability function of a particular chip can be
found given the oxide thickness of all devices on the chip
as well as the temperature profile. We observe that although
the overall reliability functions depends on the spatial and
global correlation in oxide thickness variation, however, it
is independent of the relative location of two devices on
the chip. Hence, for a given chip, we can first partition the
chip into the granularity of N blocks, in which devices share
similar temperatures. Then, within each block, we can sum
together all oxides of equal thickness and generate a frequency
distribution histogram of the oxide thickness. As the oxide
thickness variation of all the individual devices is modeled
as a normal random variable3 and there are a large number
of devices within a block, we show that such frequency
distribution across a given block can be approximated by a
normal distribution function [31]. Henceforth, we will refer
to this distribution function as the BLOD. The BLOD allows
us to compactly represent the oxide thickness of all device
within a block of a given chip using just two parameters: the
mean and the variance of the underlying normal distribution
function.

In Section IV-A, we will present how a closed-form expres-
sion for the block-level reliability function can be found for
one BLOD. Then the chip-level reliability for a given chip
can also be analytically computed from N BLODs. Finally,
we discuss how to compute the overall reliability function
across the entire ensemble of all manufactured chips. As N

BLODs may vary from die to die, their means and variances
are in fact random variables over the sample space of all
manufactured chips. Hence, the means and variances of N

BLODs can be represented by two random vectors, with N

entries corresponding to N BLODs in each vector. In other
words, several million multivariate oxide thickness distribution
function for each device on the chip can be compactly modeled
with just two random vectors. In Section IV-C, we will discuss
how these two random vectors can be derived from the oxide
thickness process variation model given in (2) and thus the
overall reliability function can be computed from it.

For clarity, we define the following notations in Table I that
will be used throughout the remainder of this paper.

3The normal random variable model for oxide thickness variation could be
validated by solving the general equations for the rate of growth of the oxide,
as in [31].

TABLE I

Notations Used in OBD Reliability Analysis

Notation Definition
N No. of functional blocks in a chip
m No. of devices of a chip

mj
No. of devices in the jth block, i.e.,

∑N

j=1 mj=m

n
No. of grids in the spatial correlation model of
(2)

x = [x1, . . . , xm] The oxide thicknesses for m device of a chip

xi,j
Oxide thickness for the ith device in the jth block
of a chip, i = 1, . . . , m

ai,j
Area for the ith device in the jth block of a chip,
i = 1, . . . , m

Aj
Total area for the jth block of a chip, j =
1, . . . , N

xj=
∑mj

i=1 xi,j/mj The sample mean for mj devices of the jth block

vj=

∑mj

i=1
(xi,j−xj )2

mj−1

The sample variance for mj device of the jth

block

fx,y(x, y) Joint PDF of x and y, where x and y can be
either vector or scalar

A. OBD Reliability Analysis for One Chip

Using the definition of the reliability function and the OBD
time model of an individual device in (4), the conditional
reliability function of an ith device on a chip having oxide
thickness xi is given by

Ri(t|xi) = e
−ai( t

αi
)bixi

(9)

where αi and bi are temp device-level reliability parameters
for the ith device.

As explained in Section III, if the oxide thickens of all
devices on a chip is known then the reliability function of
every device is independent of each other. Thus, the reliability
function of a chip is the product of the individual reliability
function of all devices. Considering each device on the chip
x = [x1, x2, . . . , xm] and their respective area ai, the condi-
tional reliability of the chip is given by

Rc(t|x) =
m∏
i=1

Ri(t|xi) = e
−
∑m

i=1
ai( t

αi
)bixi

. (10)

There may be several million devices on a chip and parameters
of αi and bi may differ. Thus, it is impractical to evaluate the
above exponent. In order to efficiently evaluate the overall
reliability across all chips, we need to reduce the dimension-
ality of the above exponent while considering the impact of
temperature variation across the chip.

It has been noted in Fig. 1(a) and (b) that the on-chip
temperature profile has the characteristics of global difference
and local uniformity. Since both parameters b and α are
heavily dependent on temperature [7]–[9], it is therefore unfair
to assume that hot spots and inactive areas have the same reli-
ability model and are hence equally prone to the OBD failure.
In practice, temperature profile of a chip varies continuously
across the chip. Transistors within a particular block may share
similar temperature due to the similar activities and supply
voltage [10], [15]. On the contrary, temperature variation
from block to block is much higher as functional blocks
usually perform completely different operations [15]. It is
therefore sufficient to construct a temperature-aware reliability
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analysis model at the granularity of blocks, within which the
temperature spread is uniform. In other words, the analysis
reasonably depends on the fact that devices within a block
may bear similar temperature and hence share approximately
the same parameters αi and bi for the reliability functions.
As a result, we considers the block-level worst-case operating
temperature and supply voltage in the analysis to account for
the block-level temperature difference and to ensure a correct
operation throughout the entire life time for any application
profile. Then, (10) can be expressed at the functional block
level as follows:

Rc(t|x) =
m∏
i=1

Ri(t|xi) = e
−
∑N

j=1

∑mj

i=1
ai,j( t

αj
)bjxi,j

(11)

where N is the number of architecture-level blocks, and αj

and bj denote the parameters of the reliability functions for
devices in the jth block.

Equation (11) considers the across-chip temperature vari-
ation but cannot simplify the model. To achieve that, we
represent the set of devices within a block and their individual
oxide thicknesses using BLOD for a particular block in a
chip. For example, for the jth block, the shape of its BLOD
can be approximated by performing histogram of the oxide
thicknesses of xi,j for all the devices within that block. This
block-specific BLOD shows how many devices correspond to
a particular oxide thickness within that block. For the sake of
understanding, we discretize this oxide thickness distribution
for the jth block into kj discrete intervals assuming a truncated
distribution. It can be seen that when we make this transfor-
mation the area of the devices with identical thickness in a
block can be summed together. Let xi,j denote the midpoint
of the ith discrete interval for the jth BLOD and ai,j be the
total area of all devices having thickness xi,j in that block. By
applying this transformation, the above expression for Rc(t|x)
can be rewritten as

Rc(t|x) = e
−
∑N

j=1

∑kj

i=1
ai,j( t

αj
)bjxi,j

. (12)

By making such a transformation, the dimensionality of
Rc(t|x) can be reduced from number of devices m to the
sum of the number of discrete intervals kj , i.e.,

∑N
j=1 kj . If

we normalize the exponent with total area of each block, the
above expression gives

Rc(t|x) = exp

⎡
⎣−

N∑
j=1

Aj

kj∑
i=1

pi,j(
t

αj

)bjxi,j

⎤
⎦ (13)

where pi,j = ai,j/Aj represents the probability of observing
an oxide thickness xi,j on a particular block of a sample chip.
Thus, the thickness of all devices on a particular sample chip
can be compactly characterized by N BLODs.

As discussed in Section II, the thickness variation of a
device includes global variation (inter-die), spatially correlated
intra-die variation (modeled as multivariate Gaussian random
vector for devices across the chip), and random variation
[residual component, modeled as an independent Gaussian
random variable, e.g., N(0, σ2

ε )] [18], [31]. Thus, for a set of
devices within one particular block, they may have different

Fig. 4. (a) Histogram of the oxide thickness for a block with 5K devices.
(b) Histogram of the oxide thickness for a block with 20K devices.

oxide thicknesses due to the variability. The BLOD is inter-
preted as the frequency distribution histogram of observing
certain oxide thicknesses in this block for a sample chip, which
has the following property.

Property: Following the oxide thickness variation classi-
fication above and the discussion in [31], BLOD can be
approximated by the curve of a Gaussian distribution.

This property could be understood by analyzing the impact
of different variation components as follows.

1) First, within one block, all the devices share the same
global variation component (zg).

2) Second, devices within the same block are closely placed
and hence highly or even perfectly spatially correlated.
This implies they may have approximately the same
spatially correlated variation component (zcorr,j).

3) Third, by using the variation component classification
of inter-die, spatially correlated intra-die and random
variations in (1), the oxide thickness of a device in the
jth block is

xi,j = u0 + zg + zcorr,j + zε,i,j. (14)

For any device in the block, u0, zg, and zcorr,j are approx-
imately the same. The difference of oxide thicknesses
is therefore mainly caused by the random variation
component zε,i,j . In other words, oxide thickness of any
device within the block can be considered as a sample
from a Gaussian process N(u0 + zg + zcorr,j, σ

2
ε ). Due

to the independence of the random variation component
zε,i,j , oxide thicknesses of devices within one block are
simply samples independently drawn from one common
random process N(u0 + zg + zcorrj

, σ2
ε ).

As long as the number of devices is sufficient, BLOD can be
well characterized by the histogram of oxide thickness samples
from the Gaussian random process N(u0+zg+zcorr,j, σ

2
ε ), which

hence follows the curve of a Gaussian distribution.4

4Even if for the particular case that this approximation does not work well,
we still can include more moments and pick up an appropriate distribution to
describe BLOD.
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This property helps shed insight into the shape of a BLOD
and how pi,j may change w.r.t. oxide thickness x. Fig. 4
validates the property with the histograms of oxide thick-
nesses for two blocks with different number of devices by
MC simulation. It is clear that either for a block with 5K
devices [Fig. 4(a)] or a block with 20K devices [Fig. 4(b)],
we get distinctly Gaussian-like curves with very high fitting
goodness (R-square) of 99.8% and 99.5%, respectively, which
qualitatively justify the property. Thus, the summation part∑kj

i=1 pi,j( t
αj

)bjxi,j in (13) can be expressed by the integration
over x, as the number of devices within each block is usually
sufficient to ensure the convergence as follows:

Rc(t|x) = Rc(t|u, v)

≈
N∏

j=1

exp[−Aj

∫ ∞

−∞
φ(

x − uj√
vj

)(
t

αj

)bjxdx] (15)

where φ(x) = 1√
2π

e−x2/2 is the PDF for a standard Gaussian
distribution. u = (u1, u2, . . . , uN ) and v = (v1, v2, . . . , vN ),
where uj and vj are the sample mean and variance of the jth

BLOD.
Since (13) computes the conditional reliability Rc(t|x) using

only 2N distinct variables, the dimensionality of the problem
in (10) is reduced from millions to 2N. However, micropro-
cessors usually have tens of blocks, making an integration
with 2N variables still difficult to solve for (8). Note that
exp[−Aj

∫ ∞
−∞ φ( x−uj√

vj
)( t

αj
)bjxdx] is approximately the product

of all the device-level reliability functions in the jth block,
and hence very close to 1 within the lifetime of interest.
By applying first-order Taylor expansion, (13) can be further
simplified to

Rc(t|u, v)

=
N∏

j=1

1 −
[

1 − e
−Aj

∫ ∞
−∞ φ(

x−uj√
vj

)( t
αj

)bjx
dx

]

≈ 1 −
N∑

j=1

[
1 − e

−Aj

∫ ∞
−∞ φ(

x−uj√
vj

)( t
αj

)bjx
dx

]
. (16)

In the above equation, the integral in the exponent can be
analytically evaluated by making the substitution t

αj
= eγ as

follows: ∫ ∞

−∞
φ(

x − uj√
vj

)(
t

α
)bjxdx =

∫ ∞

−∞
φ(

x − uj√
vj

)eγbjxdx

= −1

2
e
γbjuj+γ2b2

j
vj/2

erf (
−x + uj + γbjvj√

2vj

)|∞−∞

= e
ln( t

αj
)bjuj+(ln( t

αj
))2b2

j
vj/2

. (17)

Equation (17) is denoted as g(uj, vj) for simplicity throughout
the remainder of this paper.

Thus, for N given BLODs φ( x−uj√
vj

), where j = 1, . . . , N,
the conditional reliability function of a chip can be computed
by the closed-form expression as follows:

Rc(t|u, v)

= 1 −
N∑

j=1

[
1 − e−Aje

ln( t
αj

)bjuj+(ln( t
αj

))2b2
j
vj /2

]
. (18)

Hence, the multidimensional exponent in (10) can now be
compactly represented using a closed-form analytical function
of BLOD parameters u and v.

B. Design-Time OBD Reliability Analysis for the Ensemble of
Chips

At design time when chips are not fabricated, designers
are unable to know the specific BLOD distribution for any
block of any chip. In other words, u and v turn out to be two
random vectors at design time. The OBD reliability is then
evaluated for the design (or the ensemble of chips) instead
of a particular chip by integrating the conditional reliability
function in (18) over the joint PDF of random vectors u and
v. In this section, we will discuss how to achieve a compact
expression of the overall reliability function by enumerating
the conditional reliability function derived in the previous
section across the ensemble of all chips.

As shown in Fig. 5, each sample chip from one design may
result in different BLODs for the same block from chip to
chip, therefore, the oxide thickness variation of one block
across the entire ensemble of all chips can be represented
with a set of BLODs for all manufactured chips. Now each
such BLOD is characterized by their respective mean uj and
variance vj . Therefore, the oxide thickness distribution of all
devices across all manufactured chips with N blocks can be
represented by 2N random variables u = [u1, u2, . . . , uN ] and
v = [v1, v2, . . . , vN ]. In other words, for one particular chip,
its BLODs simply result from the samples of two random
vectors.

Now let fuv(u, v) denote the joint PDF of u and v. For
computing the overall reliability function, we need to inte-
grate the above expression of reliability function of one chip
over the joint PDF fuv(u, v) of random vectors u and v as
follows:

Rc(t) =
∫ ∞

−∞
. . .

∫ ∞

−∞

⎡
⎣1 −

N∑
j=1

(
1 − e−Ajg(uj,vj)

)
⎤
⎦

×fu,v(u, v)du1...duNdv1...dvN

= 1 − N +
N∑

j=1

∞∫
−∞

. . .

∞∫
−∞

e−Ajg(uj,vj)

×fu,v(u, v)du1dv1...duNdvN (19)

where g(uj, vj) is defined in (17). Since exp[−Ajg(uj, vj)] is
independent of any other ui or vi that i �= j, we have

∞∫
−∞

. . .

∞∫
−∞

e−Ajg(uj,vj)fu,v(u, v)du1dv1...duNdvN

=
∫ ∞

−∞

∫ ∞

−∞
e−Ajg(uj,vj)

×
∞∫

−∞
. . .

∞∫
−∞

fu,v(u, v)du1dv1...duNdvN

=
∫ ∞

−∞

∫ ∞

−∞
e−Ajg(uj,vj)fuj,vj (uj, vj)dujdvj. (20)
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Fig. 5. Compact representation of oxide thickness variation for the ensemble of chips. (a) Ensemble of all chips. (b) BLODs from chip to chip. (c) PDFs
of moments for BLODs.

Thus, we can express the design time OBD reliability for the
ensemble of chips in (20) using N double integrals as follows:

Rc(t) = 1 − N

+
N∑

j=1

∞∫
−∞

∞∫
−∞

e−Ajg(uj,vj)fuj,vj (uj, vj)dujdvj.

(21)

C. fuj,vj (uj, vj) Characterization Using Principal Component
Analysis

To compute (21), it is still required to know the characteris-
tics of joint PDF fuj,vj (uj, vj) of each BLOD. In this section,
we will discuss how to characterize those joint PDFs for blocks
by using principal component analysis (PCA).

As is discussed in the previous section, each BLOD approx-
imately follows a Gaussian curve and hence can be represented
by their respective mean uj and variance vj . For a particular
block j, the mean uj and variance vj of its oxide thickness
distribution can be estimated by calculating the unbiased sta-
tistical BLOD mean and variance of the oxide thickness values
observed across the block. Likewise, the random variables uj

and vj can be found in terms of the thickness variation model
discussed in (2). Using the oxide thickness variation model
given in (2), sample mean uj can be expressed as follows:

uj =
1

mj

mj∑
i=1

xi,j = uj,0 +
n∑

k=1

uj,kzk + uj,n+1ε (22)

where mj is the number of devices within each block and
hence the number of “samples” to compute the sample mean
and variance.

The grid-based model in (2) partitions the chip into several
grids, as discussed in Section II. Assume the ith device in
the jth block is located in a grid, e.g., grid gi,j , where gi,j

corresponds to a grid index from 1 to n. Then, we can compute

uj,k and uj,n+1 as follows:

uj,k =
1

mj

mj∑
i=1

λgi,j ,k ∀k = 0, . . . , n

uj,n+1 =
1

mj

√√√√ mj∑
i=1

λ2
r =

λr√
mj

.

The coefficient uj,0 is the nominal value of uj , whereas
coefficient uj,i is the sensitivity to the ith principal component.
It is evident that the sensitivity of the independent random
component uj,n+1 tends to zero for a large number of devices
and thus can be safely neglected for a typical industrial chip.

Similarly the expression for vj , the sample variance of the
jth BLOD, in terms of oxide variation model in (2), can be
given as follows:

vj =
1

mj − 1

mj∑
i=1

(xi,j − uj)2 =
1

mj − 1

mj∑
i=1

(x2
i,j − uj

2). (23)

Again the above expression can be expressed in terms of
principal components as follows:

vj = vj,0 +
n∑

i=1

n∑
k=1

vj,i,kzizk (24)

where

vj,0 = λ2
r and vj,i,k =

1

mj − 1

n∑
l=1

(λl,i − uj,i)(λl,k + uj,k).

In this manner, we can express the distributions of uj and vj

in terms of a given process variation model. Note that random
variable uj is the sum of normal random variables so it is also a
normal random variable, however, the BLOD variance vj is not
a normal random variable. By exploring their characteristics,
we have the following lemma for their un-correlation.
Lemma: Following the oxide thickness variation model in
(2), uj and vj for a BLOD is uncorrelated, i.e., E[ujvj] =
E[uj]E[vj], where E[·] denotes the expectation.
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Proof: Following the principal component models
discussed above, we can express E[ujvj] as follows:

E[ujvj] = E[(uj,0 +
n∑

i=1

uj,izi + uj,p+1ε)

×(vj,0 +
n∑

i=1

n∑
k=1

vj,i,kzizk)].

By noting that each principal component zi as an independent
standard normal random variable, we have

E[zi] = E[z2
i zj] = E[ziz

2
j ] = E[z3

i ] = 0

E[z2
i ] = 1 (25)

for different i and j. Likewise

E[ε] = E[ε2zj] = E[ziε
2] = E[ε3] = 0

E[ε2] = 1. (26)

Thus, the above expression can be simplified and given by

E[ujvj] = uj,0vj,0 +
n∑

i=1

uj,0vj,i,i = E[uj]E[vj]. (27)

For two normal random variables to be independent, it is
sufficient to show that they are uncorrelated, but in general
this is not the case for non-Gaussian random variables. The
sample variance vj is not a normal random variable and has the
distribution of quadratic forms in normal variables [32], [33].
However, we still can achieve the joint PDF for uj and vj in a
numerical way by generating the MC samples of the principal
components and then constructing the joint PDF with (22) and
(24). As is observed in Fig. 1(a) and (b), it is usually sufficient
to partition the design into tens of blocks (N) to accurately
capture the temperature profile. Thus, even by constructing
the joint PDF in a numerical way, the complexity is already
significantly lower in comparison to (8).

Moreover, with numerical experiments we find that the
dependence between uj and vj is weak. As a result, it is
reasonable to assume uj and vj as independent variables,
which allows us to express the joint PDF in terms of their
marginal distributions fuj (uj) and fvj (vj) and further reduce
the complexity. Fig. 6 illustrates the joint PDF of fujvj (uj, vj)
and the product of the marginal distributions, fuj (uj)fvj (vj),
generated by MC simulations. It is qualitatively evident from
the figure that there does not exist significant dependence
between uj and vj, with simulated mutual information of
only 0.003 [34]. Furthermore, Fig. 7 depicts the contour of
the error between joint PDF fuj (uj)fvj (vj) and PDF product
fuj (uj)fvj (vj) normalized w.r.t. the peak probability on the
joint PDF. It is noted that the maximal error is around 7% in
a very small region whereas most errors are almost negligible.
Moreover, when comparing Figs. 6 and 7, it can be seen that
the regions with relatively larger errors have smaller absolute
values in Fig. 6, which helps limit the error propagation in
(21).

Thus, this independence approximation between uj and vj

can give us a reasonably accurate estimate of oxide variation

Fig. 6. (a) Joint PDF fujvj (uj, vj). (b) PDF product fuj (uj)fvj (vj).

Fig. 7. Contour of the error between joint PDF fujvj (uj, vj) and PDF
product fuj (uj)fvj (vj).

with a significantly simpler approach. In other words, the ap-
proximation enables us to enumerate the individual reliability
distribution functions of each chip by simply integrating the
marginal distributions fuj (uj) and fvj (vj) as follows:

Rc(t) = 1 − N

+
N∑

j=1

∞∫
−∞

∞∫
−∞

e−Ajg(uj,vj)fuj (uj)fvj (vj)dujdvj.

(28)

Now the BLOD sample mean uj is a sum of normal random
variables, therefore fuj (uj) can be characterized by distribu-
tion of a normal random variable and analytically computed.
However, BLOD sample variance vj in (24) is a quadratic
expression of normal random variables. Such an expression is
commonly found in several multivariate statistics application
and is referred to as quadratic normal form [32], [33]. In
statistics literature [32], several techniques have been proposed
to accurately estimate the distribution function of quadratic
normal form. In this paper, we implemented a computationally
efficient method given in [33] to estimate the distribution of
fvj (vj) using a χ2 approximation as follows:

vj ∼ vj,0 + âχ2
b̂

(29)

where

â =
n∑

i=1

n∑
k=1

v2
j,i,k/

n∑
i=1

vj,i,i

b̂ = (
n∑

i=1

vj,i,i)
2/

n∑
i=1

n∑
k=1

v2
j,i,k. (30)
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Fig. 8. Curves for the distribution of the quadratic form and its χ2 approx-
imation.

Fig. 9. Algorithm for process variation and temperature-aware full chip
OBD reliability analysis.

In Fig. 8, we compare the CDF of the distribution of quadratic
normal form of a vj by MC simulation and its χ2 approx-
imation. It is apparent that the computationally efficient χ2

representation is in good agreement with the MC simulation
result.

In this manner, the marginal distributions fuj (uj) and fvj (vj)
of uj and vj can be analytically found for the given process
variation model of oxide thickness. Using fuj (uj) and fvj (vj),
the overall reliability distribution function can be computed
by evaluating N 2-D numerical integrations as in (28).

D. Overall Algorithm

The overall algorithm of the proposed approach is summa-
rized in Fig. 9. Given the principal components as well as the
oxide thickness variation profiles, we can characterize uj and
vj for each BLOD using (22) and (24). Then we divide the
integration domain for (28) to l0 × l0 sub-domains. Since the
joint PDF rapidly decreases to 0 beyond a narrow domain, as
illustrated in Fig. 4, l0 = 10 is already a reasonable number for
accurate integral sum evaluation, which is further confirmed by
the experimental results in Section V. Once sample point pair
in each sub-domain is obtained, we can compute analytically

the reliability for one chip. Finally, the overall reliability is
evaluated by using the integral sum.

It is noted that PCA is a pre-processing step. Thus, we do
not include it in the complexity analysis as it is performed
only once and can be shared with other statistical analysis
tools. The overall complexity is O(N(n2 + l20)), where N is the
number of blocks, n2 is the number of principal components,
and l20 is the number of sub-domains for integration. Unlike
the straightforward approach, the computation complexity only
depends on the number of temperature-uniform blocks instead
of the total number of devices on the chip. Since the number
of blocks N is usually much smaller than the total number
of devices, it is therefore extremely computationally efficient
in comparison to MC analysis, whose complexity heavily
depends on the number of devices. Moreover, as temperature
and supply voltage are used as the inputs in our model, the
correlation of the temperature/voltage profiles between the
blocks are naturally captured in the analysis.

E. Fast Computation Using a Hybrid Analytical/Table
Look-Up Method

At design time, it is common for designers to repeatedly
evaluate the reliability of the same design with different setup
and application profiles. Different setup/application profiles
may lead to different device-level reliability parameters α

and b and hence require computing the integrations again.
Although the formulation in (28) significantly reduces the
computation complexity, we may achieve further speed up
by combining this analytical model with a table look-up
method. The pre-calculated look-up table only needs to be
computed once for a particular design and can be used for
various setup/application profiles or embedded into a dynamic
system for reliability monitoring that usually requires very fast
response. This could be a possible application of the proposed
statistical reliability analysis.

It is usually important to select approbate variables for
the look-up table. Equation (28) is comprised of N double
integrals. Take the jth integral, e.g., as follows:

∞∫
−∞

∞∫
−∞

e−Ajg(uj,vj)fuj (uj)fvj (vj)dujdvj (31)

where g(uj, vj) = e
ln( t

αj
)bjuj+(ln( t

αj
))2b2

j
vj/2

. Since uj and vj

are integration variables, they will be eliminated after the
integration is computed. Thus, the result of (31) is determined
by Aj and the parameters of t/αj and bj in g(uj, vj), as shown
in (17). Once the chip is designed, Aj appears to be a constant
for the jth functional block. Then, with ln(t/α) and b acting
as indices, we can construct a 2-D look-up table to compute
the double integral for each block.5

Given such a look-up table, the system reliability at any
time t under certain temperature/voltage conditions can be
computed using bilinear interpolation according to the indices
of ln(t/α) and b. For N functional blocks, we have N look-
up tables, with nα × nb entries in each table, where nα(=100)

5All the look-up tables for different functional blocks share the same indices
of ln(t/αj) and bj . The difference in look-up entries among the blocks is due
to the different block area Aj .
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TABLE II

Experiment Parameter Setup for the OBD Reliability Analysis

Quantity Value
z0, nominal oxide thickness 2.2 nm
VDDnom, nominal supply voltage 1.2 V
3σtot/z0, total variation w.r.t. the mean [36] 4%

σ2
global

/σ2
tot , inter-die variance ratio [37] 50%

σ2
spa/σ

2
tot , spatially correlated variance ratio [37] 25%

σ2
ind

/σ2
tot , independent variance ratio [37] 25%

and nb(=100) are the number of indices for parameters ln(t/α)
and b, respectively. Experiments in Section V show that the
hybrid method can maintain nearly equivalent accuracy to the
analytical approach in Section IV-D.

V. Experimental Results

A simple simulation methodology for estimating the critical
defect density required for triggering a dielectric breakdown
in an ultrathin oxide was originally developed in [6]. Using
this methodology, the defect generation relationships for the
technology node and the technology dependent parameters of
the oxide reliability function model are then obtained from
[7]–[9], [27], which are used in the device-level reliability
model (4). In practice, such a model can also be characterized
from real OBD distributions measured from test capacitors or
discrete devices for the required process and technology.

The proposed approach was implemented in MATLAB
and tested on six benchmarks (C1–C6) varying from 50K to
0.84M devices. Designs C1–C5 are synthetic circuits that were
automatically generated and design C6 is a alpha processor
design with 15 functional modules and approximately 0.84M
transistors. We then use HotSpot [10] to achieve the tempera-
ture profile of the design with Wattch to estimate the functional
block power [35]. In the simulation, we consider the inter-
die, spatially correlated intra-die, and random components of
variation. According to [36], the 3σ/u ratio for oxide thickness
variation is assumed to be 4% for a nominal value of 2.2 nm,
and then split to 50% global variation, 25% spatially correlated
variation, and 25% independent variation, as estimated in [37].
As the real measurement data for thickness correlation was un-
available, the covariance matrix for thickness variations used in
this paper was derived from an exponential decaying function
of the respective distance [38]. The correlation distance of
exponential correlation function is normalized w.r.t. the chip
dimensions. Table II summarizes the parameters to be used in
the analysis framework.

Given the post-layout design implementation and a process
variation model of oxide thickness, the proposed methodol-
ogy can compute the overall reliability distribution function.
To validate the results of the proposed method, the overall
reliability distribution was also computed from 1000 samples
of MC simulations using the same oxide reliability model and
thickness variation model. In the spatial correlation model, the
relative correlation distance (ρdist) w.r.t. the chip size is set to
0.5. In Table III, a comparison of lifetime estimation for 1-
fault-per-million parts and 10-faults-per-million parts is shown

for six designs. The size of the circuit under test in terms of
number of devices is given in the second column. The methods
used for comparison include:

1) the proposed statistical approach that uses the marginal
PDF product to approximate the joint PDF (abbrev.

st−fast);
2) the proposed statistical approach that constructs the joint

PDF in a numerical way using the MC samples of
principal components (abbrev. st−MC);

3) the fast hybrid analytical/table look-up approach in
Section IV-E (abbrev. hybrid);

4) the traditional guard-band method that assumes the
minimum oxide thickness and worst-case operating tem-
perature across the chip (abbrev. guard) [4], [14], [28];

5) MC simulations (abbrev. MC).

The criterion of n-fault-per-million parts is a commonly
used term in reliability analysis [39], which is defined as the
time when the first n out of a million parts fail. Thus, given that
reliability requirement Rreq, we need to compute the lifetime
treq from the integration function in (28), which is as follows:

Rreq = 1 − N

+
N∑

j=1

∞∫
−∞

∞∫
−∞

e−Aje
ln(

treq
αj

)bjuj+(ln(
treq
αj

))2b2
j
vj /2

×fuj (uj)fvj (vj)dujdvj. (32)

This could be done by first generating the reliability PDF from
(28) at different time stamps and then computing treq from the
PDF curve for the given quantile Rreq by interpolation. For
the guard-band method, it is a deterministic process and only
needs to solve the following equation to achieve the lifetime
estimate [4], [14], [28] as follows:

Rreq = exp(−A × (
treq

αworst

)bworstxmin ) (33)

where A is the chip area, αworst and bworst are the parameters
corresponding to the worst operating temperature, and xmin is
the minimum oxide thickness. Thus, treq could be analytically
expressed as follows:

treq = αworst × (− ln(Rreq)

A
)

1
bworst xmin . (34)

As can be seen from columns 3–5 and 6–8, the proposed
methods (st−fast, st−MC, hybrid) are in good agreement with
the MC simulation, with errors of around 1% on average.
Columns 7–11 compare the runtime for three methods. Unlike
MC simulation, both our statistical approaches and hybrid
approach are able to analyze the circuit in seconds, with sig-
nificant speed up. It is also worth noticing that the results show
very limited difference between the st−fast method, which uses
a marginal PDF product to approximate the joint PDF, and the
st−MC method that constructs the joint PDF in a numerical
way. The latter has a little runtime overhead to achieve around
0.1% accuracy improvement. The overhead is mainly due to
the sample generation and histogram construction. However,
since the number of principal components (usually fewer than
hundreds) is much smaller than the number of devices, the
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TABLE III

Accuracy and Runtime Comparison of the Temperature-Aware Statistical Approach Using Marginal PDF (st−fast) in Section

IV-D, the Statistical Approach that Constructs the Joint PDF Numerically (st−MC), the Hybrid Analytical/Table Look-Up

Approach (hybrid) in Section IV-E, and Traditional Guard-Band Method (guard) with MC Simulation

Lifetime Estimation Error (%) w.r.t. MC Runtime (s)/Speed Up w.r.t. MC
ckt. #Device 1/million 10/million

st−fast st−MC hybrid guard st−fast st−MC hybrid guard
st−fast st−MC hybrid MC

C1 50K 0.8 0.8 0.1 42 1.2 1.1 1.8 43 1.5 177 3.2 83 0.02 13 350 267
C2 80K 1.5 1.4 0.7 44 1.3 1.3 0.3 43 1.6 238 3.5 109 0.02 17 490 380
C3 0.1M 2.0 1.8 0.2 56 1.8 1.8 2.3 54 1.9 245 4.1 115 0.02 24 120 470
C4 0.2M 2.2 2.1 0.6 51 1.9 1.9 1.3 51 1.9 363 4.2 167 0.02 35 200 702
C5 0.5M 0.2 0.2 3.4 52 0.1 0.1 1.7 52 1.9 837 4.2 371 0.02 77 850 1557
C6 0.84M 0.6 0.5 1.6 55 0.5 0.5 0.8 54 2.0 1183 4.3 534 0.02 115 330 2307

Average 1.24 1.17 1.11 50 1.13 1.12 1.35 49.5 418 230 47 247

TABLE IV

Accuracy Comparison Between the Proposed Approach in Section IV-D and MC Simulation for Different Correlation Distance

Lifetime Estimation Error w.r.t. MC (%)
ckt. ρdist = 0.25 ρdist = 0.5 ρdist = 0.75

1/million 10/million 1/million 10/million 1/million 10/million
C1 2.31 2.95 0.84 1.18 1.00 1.02
C2 2.26 1.98 1.50 1.28 1.28 1.37
C3 3.35 2.72 2.04 1.77 2.17 1.50
C4 3.77 3.51 2.23 1.90 1.96 1.73
C5 1.62 2.06 0.20 0.12 0.76 0.92
C6 1.70 2.18 0.64 0.54 0.86 0.80

TABLE V

Accuracy Comparison Between the Proposed Approach in Section IV-D and MC Simulation for Different Grid Resolution for

Design C2

Lifetime Estimation Error (%) w.r.t. MC Simulation
Grid Size ρdist = 0.25 ρdist = 0.5 ρdist = 0.75

1/million 10/million 1/million 10/million 1/million 10/million
10 × 10 3.20 3.17 2.96 3.03 2.87 3.24
20 × 20 2.91 3.08 2.05 1.97 3.01 2.92
25 × 25 2.26 1.98 1.50 1.28 1.28 1.37

st−MC method still demonstrates large runtime improvement.
In short, the proposed statistical approach in Section IV-D
demonstrates around two to three orders of magnitude speed-
up for all the designs, whereas MC simulation scales super-
linearly with the number of devices. The hybrid approach in
Section IV-E is even faster with three to five orders of magni-
tude speed-up compared with the MC simulation. Meanwhile,
it can maintain a similar accuracy. This is an appealing feature
for a real system with increasingly larger designs that may
require repeated reliability calculation. Unlike the proposed
methods with high accuracy, the results of the traditional
guard-band method, as shown in columns 6 and 10, are overly
pessimistic, with more than 50% estimation inaccuracy.6

To verify the robustness of the proposed approach w.r.t.
spatial correlation model, we tested our approach for three
different values of correlation distance (ρdist=0.25, 0.5, 0.75).
As can be seen from Table IV, the proposed method can still
maintain a good accuracy. We also validate the approach by
choosing three different resolutions of grid size for design C2.

6The runtime result is not included in the table, as the guard-band method
only involves the solution of (34), which can be analytically calculated.

The numerical results are given in Table V and compared to
the MC simulation with a spatial correlation model of 25×25
grids. As the discretization error of the grid-based model
decreases for larger grid size, it can be seen that the error
in estimation of reliability function also decreases in general.
Moreover, even for the coarsest grid, the analysis result can
still maintain a high accuracy for different correlation.

We further compare the overall reliability estimation results
in Fig. 10 using MC simulation, the proposed temperature-
aware statistical approach in Section IV-D, temperature-
unaware approach by using the worst-case temperature across
the chip, and conventional guard-band approach that assumes
minimum oxide thickness across the chip. Fig. 10 shows the
failure rate of design C3 during the selected lifetime period and
reliability estimation by different methods. The chip lifetime
distribution (blue curve) is achieved by simulating the failure
time of 10 000 sample chips of C3 in a MC fashion. One can
see that for ten-faults-per-million criterion, the temperature-
unaware approach, and conventional guard-band lead to 25.1%
and 54.3% errors, whereas our temperature-aware approach
can achieve an accuracy of 1.8% error and is very close to the
result by MC simulation. This clearly exemplifies the necessity
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Fig. 10. Errors of the ten-faults-per-million for MC simulation, the proposed
temperature-aware approach, temperature-unaware approach using worst-case
temperature, and conventional guard-band assuming minimum oxide thick-
ness.

for a process variation and temperature-aware approach for
OBD reliability analysis.

VI. Conclusion

This paper proposed a statistical methodology for process
and temperature variation-aware chip-level OBD reliability
analysis. It is shown that worst-case oxide reliability analysis
or temperature-unaware approach may not be adequate to
predict chip lifetime accurately. The complexity analysis of the
proposed methodology showed that the proposed approach has
great scalability to large industrial size circuits. Our simulation
results exemplified the accuracy and efficiency of the proposed
method.

References

[1] S. Borkar, “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,” IEEE Micro., vol.
25, no. 6, pp. 10–16, Nov.–Dec. 2005.

[2] C. Hu, “Gate oxide scaling limits and projection,” in Proc. IEDM, 1996,
pp. 319–322.

[3] B. Kaczer, F. Crupi, R. Degraeve, P. Roussel, C. Ciofi, and G. Groe-
seneker, “Observation of hot-carrier-induced nFET gate-oxide break-
down in dynamically stressed CMOS circuits,” in Proc. IEDM, 2002,
pp. 171–174.

[4] Y. Lee, N. Mielke, M. Agostinelli, S. Gupta, R. Lu, and W. McMahon,
“Prediction of logic product failure due to thin-gate oxide breakdown,”
in Proc. IRPS, 2006, pp. 18–28.

[5] J. Sune, “New physics-based analytic approach to the thin-oxide break-
down statistics,” IEEE Electron Device Lett., vol. 22, no. 6, pp. 296–298,
Jun. 2001.

[6] R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. Maes, “A
consistent model for the thickness dependence of intrinsic breakdown
in ultra-thin oxides,” in Proc. IEDM, 1995, pp. 863–866.

[7] E. Wu, D. Harmon, and L. Han, “Interrelationship of voltage and
temperature dependence of oxide breakdown for ultrathin oxides,” IEEE
Electron Device Lett., vol. 21, no. 7, pp. 362–364, Jul. 2000.

[8] E. Wu, J. Sune, W. Lai, E. Nowak, J. McKenna, A. Vayshenkerb, and
D. Harmon, “Interplay of voltage and temperature acceleration of oxide
breakdown for ultra-thin gate oxides,” Microelectron. Eng., vol. 59, nos.
1–4, pp. 25–31, 2001.

[9] R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken, and
A. Naem, “Temperature acceleration of oxide breakdown and its impact
on ultra-thin gate oxide reliability,” in Proc. VLSIT, 1999, pp. 59–60.

[10] K. Skadron, M. Stan, M. Barcella, A. Dwarka, W. Huang, Y. Li,
Y. Ma, A. Naidu, D. Parikh, P. Re, G. Rose, K. Sankaranarayanan,
R. Suryanarayan, S. Velusamy, H. Zhang, and Y. Zhang, “Hotspot:
Techniques for modeling thermal effects at the processor-architecture
level,” in Proc. THERMINICS, 2002, pp. 169–172.

[11] P. D. Valle and D. Atienza, “Emulation-based transient thermal modeling
of 2D/3D systems-on-chip with active cooling,” Microelectron. J., vol.
42, no. 4, pp. 564–571, Apr. 2011.

[12] D. Atienza, “Thermal modeling and active cooling for 3D MPSoCs,”
presented at the Lecture MPSoC Forum, Savannah, GA, Aug. 2009.

[13] J. Friedrich, B. McCredie, N. James, B. Huott, B. Curran, E. Fluhr,
G. Mittal, E. Chan, Y. Chan, D. Plass, S. Chu, H. Le, L. Clark,
J. Ripley, S. Taylor, J. Dilullo, and M. Lanzerotti, “ Design of the Power6
microprocessor,” in Proc. ISSCC, 2007, pp. 96–97.

[14] E. Karl, D. Sylvester, and D. Blaauw, “Analysis of system-level reliabil-
ity factors and implications on real-time monitoring methods for oxide
breakdown device failures,” in Proc. ISQED, 2008, pp. 391–395.

[15] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan, “Temperature-aware microarchitecture,” in Proc. ISCA,
2003, pp. 2–13.

[16] K. Chopra, C. Zhuo, D. Blaauw, and D. Sylvester, “A statistical approach
for full-chip gate-oxide reliability analysis,” in Proc. ICCAD, 2008, pp.
698–705.

[17] C. Zhuo, D. Sylvester, and D. Blaauw, “Process variation and
temperature-aware reliability management,” in Proc. DATE, 2010, pp.
580–585.

[18] H. Chang and S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single pert-like traversal,” in Proc. ICCAD,
2003, pp. 621–625.

[19] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First-order incremental block-based statistical timing analysis,” in Proc.
DAC, 2004, pp. 331–336.

[20] J. Xiong, V. Zolotov, and L. He, “Robust extraction of spatial correla-
tion,” in Proc. ISPD, 2006, pp. 2–9.

[21] L. Cheng, P. Gupta, C. Spanos, K. Qian, and L. He, “Physically
justifiable die-level modeling of spatial variation in view of systematic
across wafer variability,” in Proc. DAC, 2009, pp. 104–109.

[22] K. Qian and C. J. Spanos, “A comprehensive model of process variability
for statistical timing optimization,” Proc. SPIE, vol. 6925, pp. 1–11,
2008.

[23] C. Zhuo, K. Agarwal, D. Sylvester, and D. Blaauw, “Active learning
framework for post-silicon variation extraction and test cost reduction,”
in Proc. ICCAD, 2010, pp. 508–515.

[24] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhou,
K. Gala, and R. Panda, “Statistical delay computation considering spatial
correlations,” in Proc. ASPDAC, 2003, pp. 271–276.

[25] Y. Lee, R. Nachman, S. Hu, N. Mielke, and J. Liu, “Implant damage and
gate-oxide-edge effects on product reliability,” in Proc. IEDM, 2004, pp.
481–484.

[26] E. Avni and J. Shappir, “A model for silicon-oxide breakdown under
high field and current stress,” J. Appl. Phys., vol. 64, pp. 734–742, Jun.
1988.

[27] J. Stathis, “Physical and predictive models of ultra thin oxide reliability
in CMOS devices and circuits,” IEEE Trans. Devices Mater. Reliab.,
vol. 1, no. 1, pp. 43–59, Mar. 2001.

[28] J. Sune and E. Y. Wu, “Statistics of successive breakdown events in gate
oxides,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 272–274, Apr.
2003.

[29] B. Kaczer, R. Degraeve, M. Rasras, K. Mieroop, P. Roussel, and
G. Groeseneken, “Impact of MOSFET gate oxide breakdown on digital
circuit operation and reliability,” IEEE Trans. Electron. Devices, vol. 49,
no. 3, pp. 500–506, Mar. 2002.

[30] J. Fang and S. Sapatnekar, “Scalable methods for the analysis and
optimization of gate oxide breakdown,” in Proc. ISQED, 2010, pp. 638–
645.

[31] P. Bhatnagar, S. Dhariwal, and G. Srivastava, “Non-uniformities in ultra-
thin oxide layers and their effect on the properties of tunnel MOS, MOM,
and SOS devices,” Physica Status Solidi (A), vol. 67, no. 1, pp. 305–311,
1981.

[32] J. P. Imhof, “Computing the distribution of quadratic forms in
normal variables,” Biometrika, vol. 48, nos. 3–4, pp. 419–426,
1961.

[33] K.-H. Yuan and P. M. Bentler, “Two simple approximations to the
distributions of quadratic forms,” British J. Math. Statist. Psychol., vol.
63, no. 2, pp. 273–291, 2010.

[34] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.



1334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2011

[35] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. ISCA,
2000, pp. 83–94.

[36] International Technology Roadmap for Semiconductors, Update: Pro-
cess Integration, Devices, and Structures, 2008.

[37] S. Reda and S. Nassif, “Analyzing the impact of process variations
on parametric measurements: Novel models and applications,” in Proc.
DATE, 2009, pp. 375–380.

[38] F. Liu, “A general framework for spatial correlation modeling in VLSI
design,” in Proc. DAC, 2007, pp. 817–822.

[39] W. Meeker and L. Escobar, Statistical Methods for Reliability Data.
New York: Wiley, 1998.

Cheng Zhuo (S’06) received the B.S. and M.S.
degrees in information science and electronic engi-
neering from Zhejiang University, Hangzhou, China,
in 2005 and 2007, respectively, and the Ph.D. de-
gree in computer science and engineering from the
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, in
2010.

He was a Summer Intern with Mentor Graphics,
San Jose, CA. He is currently working with Intel
Corporation, Hillsboro, OR. His current research

interests include power integrity issues, timing analysis, design for reliability,
and variability-aware optimization.

Kaviraj Chopra received the B.E. degree in in-
strumentation and control from Gujarat University,
Ahmedabad, India, in 2001, the M.S. degree in elec-
trical and computer engineering from the University
of Arizona, Tucson, in 2004, and the Ph.D. degree in
computer science from the Department of Electrical
Engineering and Computer Science, University of
Michigan, Ann Arbor, in 2008.

He was with the National Optical and Astronom-
ical Observatory, Tucson, AZ, in 2003. He was a
Summer Intern with IBM Corporation, Austin, TX,

in 2005, and with Synopsys, Mountain View, CA, in 2006. He is currently
working as a PnR Engineer with Mentor Graphics, San Jose, CA.

Dennis Sylvester (S’95–M’00–SM’04–F’11) re-
ceived the Ph.D. degree in electrical engineering
from the University of California at Berkeley (UC-
Berkeley), Berkeley, where his dissertation was rec-
ognized with the David J. Sakrison Memorial Prize
as the most outstanding research in the Department
of Electrical Engineering and Computer Science,
UC-Berkeley.

He is currently a Professor of electrical engi-
neering and computer science with the University
of Michigan, Ann Arbor, and the Director of the

Michigan Integrated Circuits Laboratory, Ann Arbor, a group of ten faculty

and more than 60 graduate students. He was a Research Staff Member with the
Advanced Technology Group, Synopsys, Mountain View, CA, and Hewlett-
Packard Laboratories, Palo Alto, CA, and a Visiting Professor in electrical
and computer engineering at the National University of Singapore, Singapore.
He has published over 300 articles along with one book and several book
chapters. His current research interests include the design of millimeter-
scale computing systems and energy-efficient near-threshold computing for
a range of applications. He holds seven U.S. patents. He also is a consultant
and technical advisory board member for electronic design automation and
semiconductor firms in these areas. He co-founded Ambiq Micro, Ann Arbor,
a fabless semiconductor company developing ultralow power mixed-signal
solutions for compact wireless devices.

Dr. Sylvester received the NSF CAREER Award, the Beatrice Winner Award
at ISSCC, the IBM Faculty Award, the SRC Inventor Recognition Award, and
eight best paper awards and nominations. He is the recipient of the ACM
SIGDA Outstanding New Faculty Award and the University of Michigan
Henry Russel Award for distinguished scholarship. He has served on the
technical program committees of major design automation and circuit design
conferences, the Executive Committee of the ACM/IEEE Design Automation
Conference, and the Steering Committee of the ACM/IEEE International
Symposium on Physical Design. He is currently an Associate Editor for the
IEEE Transactions on Computer-Aided Design. He was an Associate
Editor for the IEEE Transactions on Very Large Scale Integration

Systems. He is a member of ACM and Eta Kappa Nu.

David Blaauw (M’00–SM’07) received the B.S.
degree in physics and computer science from Duke
University, Durham, NC, in 1986, and the M.S.
and Ph.D. degrees in computer science from the
University of Illinois, Urbana, in 1988 and 1991,
respectively.

Until August 2001, he was with Motorola, Inc.,
Austin, TX, as a Manager of the High-Performance
Design Technology Group. Since August 2001, he
has been on the Faculty of the Department of Elec-
trical Engineering and Computer Science, University

of Michigan, Ann Arbor, where he is currently a Professor. His current
research interests include very large-scale integration design with particular
emphasis on ultralow-power and high-performance design.

Dr. Blaauw was the Technical Program Chair and the General Chair for
the International Symposium on Low Power Electronics and Design, and
the Technical Program Co-Chair and Executive Committee Member of the
ACM/IEEE Design Automation Conference. He is currently a Technical Pro-
gram Committee Member of the International Solid-State Circuits Conference.


