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ABSTRACT
In this paper, we present switched analog circuit (SAC), a
new circuit architecture, to implement an energy-efficient
mixed-signal dot product (DP) kernel for machine learning
and signal processing applications. SAC operates by fast
switching the analog inputs to output via variable width dig-
ital pulses. The output accuracy and energy consumption of
SAC is analyzed and verified for an average and Gaussian
blur filter. Simulations in a commercial 130 nm process for
a 120× 120 image show energy savings of 19×-to-32× com-
pared to a digital implementation for signal-to-noise ratios
(SNRs) of 30 dB-to-24 dB, respectively.

Categories and Subject Descriptors
B.2 [Hardware]: Arithmetic and logic structures

Keywords
Switched analog circuit; Low-power; Dot product; Mixed-
signal

1. INTRODUCTION
The demand for ubiquitous computing with learning and

decision making capabilities has grown in the past several
years. These applications need to process large amounts of
data acquired by sensing the surrounding environment and
are subject to strict energy demands. Figure 1 depicts a typ-
ical sensory data processing chain. Sensors such as CMOS
image sensors acquire analog data, which is then processed
by a digital processor, or an actuator. The dot product (DP)
kernel within the processor implements a variety of functions
including but not limited to vector inner products, correla-
tors, filters, convolutions, multiply-accumulate, L-1 and L-2
norms, which are extensively used in classifiers such as sup-
port vector machines (SVMs), in deep learning networks,
image processors, and communication receivers.

Conventionally, these kernels are designed using digital
logic. This approach enables complex algorithms requiring
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Figure 1: Block diagram of a sensory data processing chain.
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Figure 2: Switched analog circuit (SAC) implementation for
processor kernel.

high precision to be implemented reliably, but at a high en-
ergy cost. Feature size scaling has reduced energy costs sig-
nificantly, making digital design the favorable choice. How-
ever, as the number of sensors increase, the analog-to-digital
converter (ADC) overhead can be quite large, especially if
an analog output is required to drive an actuator. Analog
processing has been reported to be more energy-efficient at
low precision [4]. By operating in the analog domain, the
overhead of ADCs and digital-to-analog converters (DACs)
can be eliminated. Energy efficient designs have been pro-
posed that use current summing, but their application has
been limited to ultra high speed applications [2]. A mixed-
signal approach that utilizes switched capacitors has been
reported to give large energy savings [1]. However, these
designs are susceptible to process, voltage and temperature
(PVT) variations, and do not scale well with process technol-
ogy which makes it challenging for implementing in sensory
chains.

In this paper, we present switched analog circuit (SAC)
(Fig. 2), which is an energy-efficient mixed-signal circuit ar-
chitecture. SAC implements the DP kernel by fast switch-
ing the analog input to the output via variable width digital
pulses. The input analog voltages are passed through an N
input MUX with N select signals (Fig. 3(a)). By having only
one select signal active at a time, and switching among the
inputs at a high frequency, the output voltage is obtained as
the weighted sum of the input voltages. An example opera-
tion with N = 3 is depicted in Fig. 3(c).

In this paper, we implement a SAC based average and
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Figure 3: Switched analog circuit (SAC)-based DP kernel:
(a) conceptual operation, (b) circuit implementation, and (c)
output waveform for N = 3, V1 = 0.4, V2 = 0.9, V3 = 0.1,
and p1 = p2 = p3 = 1/3.

Gaussian blur filter in a commercial 130 nm process. When
applied to a 120 × 120 image, 19×-to-32× energy savings
can be achieved compared to a digital implementation at a
signal-to-noise ratio (SNR) of 30 dB-to-24 dB, respectively.

The remainder of the paper is organized as follows. Sec-
tion 2 describes SAC in detail. Section 3 presents the be-
havioral model of SAC. Section 4 presents simulation results
and Section 5 concludes the paper.

2. SWITCHED ANALOG CIRCUIT (SAC)

2.1 SAC-based DP kernel
A length N SAC-based DP kernel, as shown in Fig. 3(a),

takes input voltages V1, . . . , VN , and computes the output
voltage Vo =

∑N
i=1 Vipi. The weights pi are implemented

by a set of non-overlapping pulses φi (ith element of Φv) of
period T and duty cycle pi. The switch can be viewed as
a switched resistor [3] network with its effective resistance
divided by pi. By designing T to be significantly smaller
than the time constant of the RC network, Vz will converge
to

∑N
i=1 Vipi, with accuracy increasing at an exponential

rate with the number of cycles until it settles.
The circuit implementation of the SAC kernel is shown

in Fig. 3(b). Transmission gates are used to implement the
switches to allow full swing at the output. A detailed analy-
sis of this kernel is given in Section 3. A series resistance R′

and a capacitor C′ is added to suppress the effect of variation
in path resistances Ri.

2.2 Select generation
Generation of the duty-cycled clocks (select signals) with

period T is needed for proper SAC operation. The select sig-
nals are generated by a multi-phase clock generator (MPCG)
that provides clock inputs to the combinational logic. The
MPCG is designed using a length M ring counter operating
at a frequency fCLK � 1

TCLK
= M

T
. The combinational logic

generates pulses with variable width x
M
T with a phase offset

of y
M
T . For large M , the ring counter becomes expensive.

An alternative would be to use a counter at the expense of
complexity/energy.

2.3 Energy Consumption
For the SAC-based DP kernel, the total energy consump-

tion per DP computation can be written as:

Etot[n] � ESAC [n] +
nEMPCG

V

where ESAC [n] is the energy consumption of the SAC DP
kernel and combinational logic over n clock cycles, EMPCG is
the energy consumption of the MPCG per clock cycle, and V
is the number of SAC DP kernels sharing the same MPCG.
EMPCG depends largely on the topology used and hence
will be obtained through simulations. The energy dissipated
in the combinational logic, gate and drain capacitors of the
kernel is linear in n and dominates the energy dissipated in
C′, when C′ and Cd are of the same order.

3. BEHAVIORAL MODEL
The transient response of the SAC computation kernel, a

switched RC circuit, can be obtained using linear constant-
coefficient difference equations. Let τmax � max

i=1..N
(Ri)Cd be

the largest time constant of the circuit when R′ = 0 and
C′ = 0. Two conditions are imposed on the values of R′

and C′: C1) R′C′ � τmax, and C2) R′ � max
i

(Ri). C1

ensures that the new time constant will be dominated by
R′C′ while C2 will have an impact on the output accuracy
as will be shown. Note: C1 is automatically satisfied if C2
is, by ensuring C′ is of the same order as Cd. First, we make
the following two claims:

Claim 1. If T � R′C′,

Ṽz � lim
n→∞

Vz[n] ≈
N∑

i=1

Vip
′
i, (1)

where Vz[n] is the DP kernel’s output after n clock cycles,

and p′i =
pi

R′+Ri
∑N

j=1

pj
R′+Rj

≈ pi (since R′ � Rj , j = 1, ..., N).

Now, define the error at the output after n clock cycles
to be e[n] � V0 − Vz[n], where Vo =

∑N
i=1 Vipi is the ideal

output.

Claim 2. The mean-square error J [n,K] after n clock cycles
is:

J [n,K] � E{e[n]2} = E{(V0− Ṽz)
2}+KnαA+K2nβA (2)

where K � e
− T

C′
∑N

j=1

pj
R′+Rj ≈ e−

T
R′C′ , and αA and βA are

constants that depend largely on the input’s 1st and 2nd
order statistics. Note that as n increases, Kn will go to zero.
Proofs for the above two claims have been omitted due to
space limitations. Circuit simulation results in Section 4.3
support these claims.
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Figure 4: (a) Coefficients of a Gaussian blur filter with
σ2 = 0.85, and (b) Energy per computation breakdown of
the Gaussian filter applied to 30×30, 60×60, and 120×120
images.

Let H = R′C′
T

= −1
ln(K)

. Then, decreasing H results in

faster convergence but greater inaccuracy as Ṽz will no longer
equal V0 since the approximation in (1) is no longer valid. As
energy consumption has a strong dependence on the number
of clock cycles, H and n become two important variables in
the design of a SAC-based DP kernel. We finally note that
the exact value of the resistorR′ is unimportant as long as C2
is satisfied. A polysilicon resistor of around 1MΩ in a com-
mercial 130 nm process with minimum width corresponds to
area of 600 minimum sized transistors. This presents a large
area overhead for small N (N = 2, e.g.) but for larger values
of N (N = 9 in our implementation), we obtain large area
savings (compared to digital implementation) since the same
resistor will be shared by all N paths.

4. SIMULATIONS AND RESULTS

4.1 Simulation setup
A SAC-based DP kernel (Fig. 3(b)) is used to implement

an image filter. Circuit simulations in a commercial 130 nm
CMOS process at the nominal corner were performed for
image sizes 30 × 30, 60 × 60, and 120 × 120. We note that
the image is processed on a per-row basis and hence V =
30, 60 and 120 for the different image sizes. The MPCG was
designed as a ring counter that operates at TCLK = 400 ps
and gives T = MTCLK , where M is the length of the ring
counter. Three average filters of lengths M = 9, 25, and 49
were implemented which correspond to a 3 × 3, 5 × 5 and
7× 7 window, respectively. These filters do not require any
combinational logic at the output of the ring counter since
the different phases already represent the coefficients. A 3×3
Gaussian blur filter with σ2 = 0.85 (Fig. 4(a)) has also been
implemented. For this filter, M is chosen to be 16 which is
the sum of all coefficients. TheD-flipflops in the ring counter
are implemented using true single-phase clocking (TSPC).
Select signals are generated using static-CMOS based NOR
and NAND gates. Select signals corresponding to coefficient
of unit value do not need a logic stage but are still passed
through inverters to match the delay of other select signals.
A single ring counter was shared for all parallel SAC units,
while the combinational logic may be duplicated to ensure
sharp rise and falls of the select signals. In our simulations,
one set of logic gates for the 30× 30 image, two sets for the
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Figure 5: Circuit simulation of a SAC-based Gaussian blur
filter with H = 5 (n = 5H).

0 5 10 15 20 25
10−5

10−4

10−3

10−2

10−1

Iterations

M
ea

n−
Sq

ua
re

−E
rro

r (
V2 )

Model I1
HSPICE I1
Model I2
HSPICE I2
Model I3
HSPICE I3

(a)

0 10 20 30 40 50 60 70 80
10−5

10−4

10−3

10−2

10−1

Iterations

M
ea

n−
Sq

ua
re

−E
rro

r (
V2 )

Model H=5
HSPICE H=5
Model H=10
HSPICE H=10
Model H=15
HSPICE H=15

(b)

Figure 6: Accuracy comparison between the behavioral
model and circuit simulation for: (a) a Gaussian filter with
different images and (b) Gaussian filter with varying H.

60×60 image, and four sets for the 120×120 image were used.
For our design, simulations show that EMPCG � ESAC , and
energy per single computation is dominated by EMPCG

V
. As

more computation kernels can share the same ring counter,
more energy benefits can be obtained (Fig. 4(b)).

4.2 Choice of R′

The auxiliary resistor R′ and capacitor C′ were designed
to satisfy condition C1 and C2 (Section 3). To obtain a good
value for R′, the circuit was simulated at different values of

R′ while keeping H = R′C′
T

at a fixed value by adjusting C′

accordingly. C1 was satisfied by choosing R′C′ large enough
to dominate τmax. Figure 5 shows the plot of the MSE and
energy consumption of the circuit vs. R′ with H = 5. The
same trend was observed for different values of H. A total of
5H iterations were performed. It can be seen that MSE and
energy consumption reduce as R′ increases until R′ ≈ 700kΩ
for the MSE and R′ ≈ 900kΩ for energy. Hence, in all
simulations, R′ was chosen to be 1MΩ, and the value of C′

was set to obtain a specific value for H.

4.3 Validation of behavioral model
Comparison of circuit simulations and behavioral model

for mean-square error (MSE) vs. iterations are shown in
Fig. 6. Figure 6(a) shows the Gaussian filter applied to three
different 30×30 images (I1,I2 and I3). I2 and I3 were chosen

Table 1: Fitted accuracy parameter values of a Gaussian
filter with H = 5 (C′ = 32 fF).

Image αA βA E{(V0 − Ṽz)
2}

I1 −3.07 × 10−4 2.3 × 10−2 1.4 × 10−5

I2 −1.11 × 10−3 9.83 × 10−2 6.17 × 10−5

I3 −1.44 × 10−3 8.9 × 10−2 5.96 × 10−5
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Figure 7: SNR vs. number of iterations of a Gaussian filter
for a 30× 30 image.

to have similar statistics while being different from those of
I1. Weighted least-squares fitting was applied to obtain the
parameters αA, βA and E{(V0 − Ṽz)

2} in Section 3. The
fitted parameters obtained for H = 5 (C′ = 32 fF) are tabu-
lated in Table 1. It can be seen that the parameters for I2
and I3 are similar in value as expected.

In Fig. 6(b), H was varied for I1 to see its effect on MSE.
As expected, the parameters αA and βA in this model are a
weak function of H and depend largely on the input statis-
tics. The asymptotic MSE value E{(V0 − Ṽz)

2} decreases as
H increases as expected from Section 3. However, the de-
crease in MSE is minimal due to the overall accuracy being
dominated by the imperfection of the select-signal genera-
tion block.

4.4 Design optimization
A large number of options exist for choosing the values of

H and n to minimize the energy consumption of the SAC-
based DP kernel for a given SNR. HSPICE simulations were
performed on a Gaussian filter for I1, by sweeping over H
at various iterations (Fig. 7). The number of iterations for
a given SNR should be minimized since the linear compo-
nent in ESAC dominates (αE � βE). From the close up
view of 1 ≤ H ≤ 2, it can be seen that the minimum iter-
ations for a given SNR occur at n = 5H − 2. The optimal
curve is obtained by joining these minimizing points. SNR
improvements saturate around H = 5 due to the overall
accuracy being dominated by the imperfection of the select-
signal generation block.

4.5 Comparison to digital implementations
The SAC-based DP kernel is compared against a digital

logic implementation using Baugh-Wooley multipliers (BWM)
and ripple carry adders (RCA). To estimate the energy con-
sumption of the adders and multipliers, the energy for a
1-bit full adder (EFA) using a mirror-adder structure loaded
with FO4 inverters was simulated. In a 130 nm process,
EFA = 18.63 fJ. Energy consumption of a Bx bit RCA is
then estimated to be:

ERCA[Bx] = α0→1BxEFA (3)

where α0→1 is the activity factor of the RCA. We assume
the inputs are uniformly distributed and hence α0→1 is 0.25.
The energy consumption of a Bx bit BWM is lower-bounded
[5] by:

EBW [Bx] ≥ EFA(B
2
x − 2Bx + 2)
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Figure 8: Comparison of SNR vs. energy per DP computa-
tion for a Gaussian filter.

The SNR vs. energy per DP computation is shown in Fig. 8
for a 120 × 120 image. For SNR ≈ 24 dB, energy savings
are approximately 32× whereas for SNR ≈ 30 dB, the en-
ergy savings are approximately 19×. These savings are pes-
simistic as EBW was based on a lower bound.

5. CONCLUSION
In this paper, we have presented a new energy-efficient

mixed-signal DP kernel that can achieve large energy sav-
ings for the same level of accuracy. This work opens up the
possibility of employing SAC to design inference kernels for
various emerging applications.
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