
Rectified-linear and Recurrent Neural Networks Built with Spin Devices

Qing Dong, Kaiyuan Yang, Laura Fick, David Blaauw, Dennis Sylvester

University of Michigan, Ann Arbor, MI

{qingdong, kaiyuan, lfreyman, blaauw, dmcs}@umich.edu

Abstract—A spin synapse with analog programmability

using all charge current is proposed. Compared with using spin

current, the proposed all-charge-current synapses can be placed

in a larger cross-bar array to form a denser and larger neural

network. Using the current summation, DOT product can be

realized. We further employ a compact racetrack converter as

the neuron to implement a rectified-linear neural network,

saving area by 67% and energy by 69% compared with a spin

binary-threshold neural network while achieving similar

accuracy with MNIST digit recognition benchmark. Storing the

domain wall motion in a time-based fashion, a recurrent neural

network can be realized for time-involved inference tasks.

Keywords—Domain Wall, Neural network, Spin, Recurrent

I. INTRODUCTION

CMOS implementations of neural network suffer from
large area for weight storage and high standby power. Spin
devices such as magnetic tunnel junction (MTJ), domain wall
(DW) and racetrack nanowires have demonstrated great
potential for memory [1-3], logic [4], and analog computation
[5] due to their non-volatility, zero standby power and
compact area, making them promising candidates as neural
network components. There have been several recent works
on spin neural networks. Lateral-spin-valve neuron [6] only
uses binary weights and suffers from the short diffusion
distance of spin current. The DW binary-threshold neural
network [7], combining with RRAM or PcRAM, requires
more masks and complicates fabrication. DW synapse [8] has
analog programmability but its spin current limits the number
of synapses connected with neurons. None of them realized
analog programmability with all charge current. Also, they are
all feed-forward binary-threshold neural networks (BTNN),
which are limited in their effectiveness in that more neurons
and hidden layers are required to perform the same function
compared with a rectified-linear neural network (RLNN).
Time-related neural networks such as recurrent neural
network (RNN) have not been explored yet.

We propose a spin synapse device with analog
programmability using all charge current. In this device, the
resistance can be varied in an analog fashion according to the
DW position, which can be moved by charge current injection
instead of spin current diffusion. The proposed synapse
devices are placed in a cross-bar array configuration to form a
dense neural network. Using current summation on the bit-
line, DOT product function can be realized. Using an ultra-
compact racetrack converter [5], we can build a more efficient
RLNN. A novel majority voting circuit is proposed in the
final-decision layer for recognition tasks. The spin RLNN
reduces area by 67% and energy by 69% compared to spin
BTNN with equal error rates. Furthermore, integrating with
time, current-induced DW motion can be used for time-related
analog storage to form recurrent neuron.

II. COMPONENTS OF SPIN NEURAL NETWORK

A. Spin Synapse
To realize analog programmability with all charge current,

we propose a spin synapse device as shown in Fig. 1(a). Due
to current-induced DW motion, the DW can be moved by
charge current flowing through horizontal ports TPROG0 and
TPROG1. Moreover, the DW moving distance X is linearly
proportional to the current I or the time T [5,10], expressed as:

 𝑿 = 𝒗 ∗ 𝑻 =
𝜷𝝁𝑷

𝜶𝒆𝑴𝒔
(

𝑰

𝑨𝒓𝒆𝒂
− 𝑱𝒕𝒉) ∗ 𝑻 (1)

The vertical conductance between the two ports TREAD0 and
TREAD1 can be treated as the parallel connection of spin parallel
conductance GP(1-X) and spin antiparallel conductance GAPX
(Fig. 1(b)), both of which are determined by the DW position
X. Therefore, DW motion can change the vertical conductance
from GP to GAP (Fig. 1(b)) in an analog fashion [11]. We
develop a Verilog-A model of the proposed synapse device
that describes the relationship between vertical conductance
and DW position as shown in Fig. 1(c). Previous spin current
synapses [6-8] suffer from short spin diffusion distance in the
spin channel, and thus large scale connections between
synapses and neurons are impossible. As no spin current is
involved in the program and sensing operations of our
proposed synapse, larger scale interconnections between
synapses and neurons can be realized.

TPROG0

Fixed Layer
Insulating layer

Free layer
Domain Wall

GAP(1-X) GPX

TPROG1

TREAD1

TREAD0

TREAD1

TREAD0

X 10

GAP

GAP/2 + GP/2

GP

IPROG

IPROG

0.0 0.5 1.0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
o

n
d

u
c
ta

n
c
e
 (

m
S

)

Domain Wall Position (A.U.)

 (a) (b) (c)

Fig. 1. (a) Spin synapse device using horizontal charge current to program

the DW position in an analog way. (b) The vertical conductance of spin
synapse device changes from GP to GAP according to the DW position. (c)

Verilog-A model of the domain wall position vs. conductance.

B. Racetrack Converter as Rectified-linear Neuron
BTNN can use only a simple comparator neuron while an

RLNN requires an analog-to-digital converter (ADC) as the
neuron. The large area of CMOS ADCs limits their use in
RLNN. A spin-based ADC [5] was proposed with 1000×
smaller area than state-of-art CMOS ADCs. Due to its ultra-
compact area and high energy efficiency, the racetrack
converter is an ideal neuron for RLNN. Fig. 2 shows a 3-bit
ADC using three racetrack nanowires. Each nanowire can be
configured differently with a sequence of alternating write and
shift current pulses, such that each generates a single bit, from
LSB to MSB. During conversion, the input current can move
all the DWs simultaneously. After a fixed time, the DW
moving distance is determined by the input current value.
Then, by sensing the resistance of the read MTJ head above
each nanowire, the data can be read out as a digital value. In
this way, the analog current is converted into a digital value
through this racetrack converter. After read, the racetrack
converter can be reset for next cycle as described in [5].
C. Recurrent DW Neuron

RNN requires analog storage and the analog value must be
able to accumulate cycle by cycle. CMOS implementations
typically use a charge-storing capacitor as a recurrent neuron,
however this suffers from large area and leakage. With
current-induced DW motion, DW can be a desirable analog
storage element, memorizing and accumulating analog value.
Fig. 4 (bottom right) shows a simple recurrent DW neuron
device. The DW starts at position Y(t). In the first cycle, the
DW is moved by ΔY(t+1), and stops at Y(t+1). The device stores
this DW position, and the output remains at 0 because the spin

polarity of top and bottom MTJ layers are the same. But in the
second cycle, the DW is moved to Y(t+2) from Y(t+1) and the
output changes to 1 due to polarity flip of the bottom free
layer. Therefore, the output of the neuron device is determined
by not only the current input but also previous state. And thus
the recurrent DW neuron can handle time-related inference
tasks. Our example shows a simple recurrent DW neuron
device with only binary-threshold output. The racetrack
converter can be modified to create a recurrent neuron with
linear output functionality, because it also uses current-
induced DW motion for conversion.

III. NEURAL NETWORK ARCHITECTURE

A. Current Summation for DOT Product

As shown in Fig. 3(a), neural network function can be

divided into DOT product and processing. Binary-threshold is

the most common neuron function in hardware because of its

simplicity. However, BTNN requires many more synapses

and neurons to perform similar task compared to other

complicated neural networks. RLNN employs an ADC as the

neuron instead of a single comparator, improving its

capabilities. Both BTNN and RLNN are feed-forward neural

networks which can only work on static tasks like digit

recognition. To deal with time-related tasks like forecasting

and phoneme recognition, conventional time-related neural

networks use a shift-register at the inputs and shift the inputs

cycle by cycle to add time information into the system, which

are inefficient in terms of area, latency and power. Recurrent

neuron itself can store the time information as internal state

and generate the results based on both current inputs and

previous state. Therefore, RNN can be applied to highly-

efficient time-related inference.
Read MTJ Write MTJ

Imeas

01010101

00110011

00001111

Bit0

Bit1

Bit2
T

01010101

00110011

00001111

Bit0

Bit1

Bit2

A
ft

e
r

C
o

n
v

e
rs

io
n

 DWs
Moving
Distance

Fig. 2. Structure of a 3b racetrack converter. Each nanowire is configured
with different DWs granularity, representing an individual bit. During

conversion, DWs move simultaneously and stop at a distance that is
proportional to input current.

Σ

X1

Y

Y = f(X

W1

W3

W) =f(Ʃ(Xi*Wi))

X2

X3

W2 f()

DOT Product Processing

Inputs & Synapses Neurons

Current Summation
Charge Accumulation

Digital Calculation

Binary Threshold
Rectified Linear

Recurrent

IMTJ

IPROG

Programmable
conductance of

the MTJ ΣIBL = IN

IMTJ=VDDGMTJ

IN1

IN2

IN3

IMTJ

X0 1

 (a) (b)

Fig. 3. (a) Neural network function includes DOT product and processing.

(b) Current summation on bit-line for DOT product of inputs and weights.

DOT product can be implemented by current summation,

charge accumulation or digital calculation (Fig. 3(a)). Charge

accumulation suffers from leakage and digital calculation

requires complicated ALU and large intermediate storage.

Current summation is more accurate and suitable for analog

computing. As shown in Fig. 3(b), each spin synapse is

connected to a NMOS. Input signal can turn on/off the

NMOS. If the NMOS is on, the synapse will generate some

current onto the bit-line, and all currents will be summed

together on the bit-line. The current value is determined by

the DW position, representing the weight. The summed

current value is the DOT product of IN and IMTJ. As a static

operation, current summation is immune to dynamic noise.

B. Cross-bar Array Neural Network Configuration
The proposed spin synapse works with all charge current,

and thus multiple synapses can be connected to one bit-line,
enabling massive cross-bar array configurations. Fig. 4 shows
the cross-bar synapse array structure. One spin synapse and
one NMOS access device make up one cell in the array. Inputs
are the word-lines of the array; weights are represented by the
programmable conductance of the spin synapse device. Before
any neural network operation, the weights should be
programmed by horizontal current injection with varying
finely controlled pulse width.

Column MUX

Programmable
Synapses for

Analog Weight
Storage

Current-Offset

Offset
Column

X●(IAP + Wj)

 IAP + IWEIGHT

=IAP + Wij

X1

X2

Xn

X●IAP

VDD/2

IAP
VDD

VDD/2

IAP IP0 IP-IAP

(IP-IAP)/0 >> IP/IAP

ON/OFF Ratio can
be Boosted With

Current Offset
Cancellation (IAP)

VDD/2

VDD/2

Cross-Bar
Synapses Array

ƩIj=X●Wj + (IOFFSET)

1

0

ƩIj

Binary-threshold Neuron

01010101

00110011

00001111

Bit0

Bit1

Bit2

ƩIj

Rectified-linear Neuron Recurrent Neuron

0

7
6
5
4
3
2
1

0

0

1

ΔY(t+1)

Y(t)

Y(t+1)

ΔY(t+2)

Y(t+2)

ƩIj(t)

ƩIj(t+1)

ƩIj(t+2)

Σ

Σ

X1

X2

Xn

Y1

Y2

Wn1

W11

W21

Wn2

W12
W22

Yj = f(X Wj) =f(Ʃ(Xi*Wji))

Σ

Σ

X1

X2

Xn

Y1

Y2

Wn1

W11

W21

Wn2

W12
W22

Yj = f(X Wj) =f(Ʃ(Xi*Wji)) Yj(t) = f(Yj(t-1) + X(t) Wj) =f(Yj(t-1) + Ʃ(Xi(t)*Wji))

(IOFFSET)
X●Wj = Ʃ(Xi x Wij)

Threshold
 Offset

Neuron MUX

 W11

 W21

 Wn1

 W12 W13

 W22 W23

 Wn2 Wn3

ƩIj

Yj

ƩIj

Yj

Σ

Σ

X1(t)

X2(t)

X3(t)

Y1(t)

Y1(t-1)

Y2(t)

Y2(t-1)

Wn1

W11

W21

Wn2

W12
W22

Fig. 4. Cross-bar synapse array configuration and different neuron types.

Offset column is used to improve on/off ratio. Mathematical models for
BTNN, RLNN and RNN are shown in the bottom.

Current summation on each bit-line performs a DOT
product of inputs and weights to calculate each neuron Yj.
Neurons in a single layer are calculated in a serial fashion by
adding a column MUX and a neuron DEMUX and iterating
their addresses. Current of a single synapse varies in the range
from IAP to IP, which is barely a 2.5× range. To amplify the
on/off ratio of the unit synapse current, we add one extra offset
column to provide offset current IAP, which increases the
on/off ratio from IP/IAP to (IP-IAP)/0. With column MUX, only

one offset column is required for a full array. We also add an
analog buffer to fix the node voltage at VDD/2, such that the
IAP is equal on both summation and offset bit-lines. The
residue current represents the DOT product results and flows
into a neuron selected by neuron DEMUX for processing. The
mathematic models for BTNN, RLNN and RNN are shown in
the bottom of Fig. 4.

A DW binary threshold neuron works as a current
comparator. Once the residue current exceeds the threshold,
the DW will move and flip the spin polarity of the bottom free
layer. The proposed rectified linear neuron then uses a
racetrack ADC to convert the analog residue current into a
digital value and this converted digital value serves as the
inputs for next layer, fully utilizing the analog residue current.
For the recurrent neuron, Fig. 4 also shows a simple recurrent
neuron, storing time-related analog information as DW
location. In each cycle, DW will move and stop, and the
distance is proportional to the residue current. In each cycle,
the neuron generates a digital output. When the DW moves to
the right, the neuron will be activated and output a 1.

As the current-induced DW motion has a threshold, the
binary-threshold neuron can use it as the reference. But both
rectified-linear neuron and recurrent neuron require some
extra offset for this threshold. This can be realized by adding
an extra threshold offset device on the current subtraction
node to generate a required threshold current IOFFSET onto the
residue current (Fig. 4). And the DW position inside this
threshold offset device should be programmed according to
the current threshold of the neuron once after fabrication.

I0 I1 I9

1-0

1
1

Vx flip and self-shut-off
with the first filpping bit

Vx

Change Current into Time Domain for Fast Majority Voting

1-0

EN

D Q

Clk

Dout[0:9]

First

Layer

Hidden

Layers

Output

Layer

OutputInput
Majority

Voting

ENB ENB ENB

Fig. 5. Majority voting circuit. Using cap charging to find the maximum
value and make final decision for recognition task.

C. Majority Voting Circuit
 A typical neural network system includes an input layer,
several hidden layers, and an output layer (Fig. 5). For
classifier applications, the output layer uses a majority voting
circuit to find the maximum value for final decision.
Conventional comparison methods need many comparators
and cycles to find such a maximum value. Some winner-take-
all circuits employ complicated analog modules. Here, we
propose a simplified majority voting circuit working in time
domain that more easily finds a peak value compared with
using current or voltage domain. As shown in Fig 5, all
dedicated NMOS capacitors are discharged to ground initially.
Then after signal EN goes high, the highest current path will
flip the inverter first and shut off all the switches. The 0 output
of the inverter represents the highest current. The operation
only takes one cycle. Using just small NMOS gate capacitors
the design is area-efficient and low-power.
D. Extending the RLNN layer to multi-bit input
 In RLNN, input of the first layer is 1-bit; while the
following layers take 3-bit inputs. For 3-bit input DOT
product, each bit of the input will be calculated separately as

in 1-bit input case. Each bit of the input fires one WL and 3-
bit input takes 3 WLs (Fig. 6). Also, 3 BLs are used for one
neuron. 3 by 3 cells represent one weight: 3 of them on the
diagonal have same conductance as weight; others can be
programmed to provide offset. During operation, each BL will
sum up the currents, then current mirrors with 1X, 2X and 4X
ratios will be used to get the real total current for neurons in
hidden layers or majority-voting circuit in the output layer.

X●(IAP + Wj)

X1[0]

X1[1]

X1[2]
 Woffset

 W11

 W11

 W11

Current
Mirror (X4)

 = X●IAP + Ʃ(Xi x Wij)

Current
Mirror (X2)

Current
Mirror (X1)

Neuron / Majority Voting Circuit

 Woffset Woffset

 Woffset

 Woffset Woffset

X2[0]

X2[1]

X2[2]
 Woffset

 W21

 W21

 W21

 Woffset Woffset

 Woffset

 Woffset Woffset

Fig. 6. Final layer of RLNN with 3-bit digital inputs.

I. SIMULATION RESULTS AND ANALYSIS

We develop compact Verilog-A models for related MTJ, DW,
and racetrack nanowire based on published experimental data
[3, 10, 12-13]. Co-simulation with CMOS circuits (32nm
technology) is performed in SPICE. We built both spin-based
BTNN and RLNN containing one input layer, one hidden
layer and one output layer. Fig. 7 shows the parameters of the
synapse and neuron [5, 8, 10]. We use complete 60000
MNIST digit recognition training sets to train both BTNN and
RLNN, and use 10000 standard MNIST test sets to evaluate
the error rates. Fig. 8 (a) and (b) show the error rate decreasing
with training epochs for both BTNN and RLNN with the same
number of hidden neurons (100). For BTNN, 8-bit quantized
weight has little difference with floating-point weight because
the binary-threshold function itself generates substantial
quantization error and thus adding weight bits does not reduce
error rate. However in RLNN additional weight bits serve to
improve error rate. With 100 hidden neurons, the RLNN can
achieve 2.5× error rate reduction compared to BTNN (Fig.
8(c)). Fig. 8(d) compares the error rate change with synapse
weight bits for both BTNN and RLNN. RLNN shows better
error rate scaling with number of weight bits. Fig. 8(e) shows
the error rate decreasing with more hidden neurons. To
achieve <5% error rate, the RLNN needs only 30 hidden
neurons; while BTNN requires 100 hidden neurons. As RLNN
uses an ADC as the neuron instead of a single comparator, the
error rate can be reduced with more ADC resolution (Fig.
8(f)). In our experiments, a 3-bit ADC is sufficient to achieve
good error rates for RLNN. Table I compares CMOS SRAM-
based BTNN, spin BTNN, and spin RLNN with the same
synapse weight (4 bit) and same error rate. Area and energy of
peripheral circuits are included. While achieving the same
accuracy of MNIST task, spin-based BTNN saves area and
energy by 96% and 14% respectively, compared with CMOS
SRAM-based BTNN. The proposed spin RLNN further

reduces area by 67% and energy by 69% compared with spin
BTNN.

We take a simple phoneme recognition task as a training
example to show the effectiveness of spin RNN. As shown in
Fig. 9(a), the input is a mixed phoneme waveform in which
one specific frequency needs to be recognized, and the output
of the neural network remains high once detecting this specific
frequency. Conventional feed-forward BTNN can deal with
this task with time-lagged inputs by adding shift registers.
Fewer hidden neurons are required as more input delay stages
of the shift registers are added (Fig. 9(b)). However, to solve
the same task, RNN requires only 3 hidden neurons and 5
cycles, significantly more effective than conventional time-
lagged feed-forward neural network.

Using MNIST
60000 samples
for training and
10000 samples

for test

Fig. 7. Device parameters used for co-simulation with CMOS; Complete

MNIST digit recognition benchmark are used for training evaluation.

Binary-threshold

Epoch
(a)

Rectified-linear

Epoch
(b)

100 Hidden Neurons 100 Hidden Neurons

100 Hidden Neurons

Weight Quantization Bits
(d)

Epoch
(c)

100 Hidden Neurons

0 20 40 60 80 100 120 140 160 180 200
1

2

3

4

5

6

7

10030

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

Hidden Neuron Number
(e)

 Rectified_linear
 Binary_threshold

0 1 2 3 4 5 6
1

2

3

4

5

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

Neuron Quantization Bits
(f)

2.58%

100 Hidden Neurons

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

 Floating Point
 8-bit
 4-bit
 3-bit

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

11

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

 Floating Point
 8-bit
 4-bit
 3-bit

0 5 10 15 20 25 30

2

3

4

5

6

7

8

9

10

2.5X

min=1.93%

min=4.79%

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

 Rectified_linear

 Binary_threshold

2 4 6 8 10 12 14 16

2

4

6

2.58%

5.29%

E
rr

o
r

P
e

rc
e

n
ta

g
e

 (
%

)

 Rectified_linear
 Binary_threshold

1

3

5

7

Fig. 8. Error rate decreases with training epochs for BTNN (a) and RLNN

(b). RLNN achieves 2.5× error rate reduction compared with BTNN (c).
Error rate can be reduced with more weight bits (d) and hidden neurons (e).

Higher resolution of ADC neuron can further lower error rate of RLNN (f).

For memory applications, multi-bit MRAM is challenging due

to limited sensing margin and cell variation. But in neural

network application, each BL has hundreds of cells and each

neuron only need to distinguish 1-bit or 3-bit output of

summed current. Take 100 3-bit synapses on one BL as

example, each cell generates 1-8 unit currents. For memory

application, sense amplifier has to distinguish each unit of

current. While in neural network, the 3-bit rectified-linear

neuron only need to distinguish 100/200/…800 rather than

1/2/…8. Therefore, the sensing margin is not a problem for

neural network application. Current summation of large

number of cells can average out the random variation of cell

current. For systematic variation, the actual measured results

will show some bias, according to which the offset added to

each column can be adjusted to compensate the systematic

variation. Moreover, DNN algorithm is inherently variation-

tolerant. Once systematic offset of different weights is

measured, it could be incorporated in the training to

compensate for it by adjusting the weights.

Table I. Comparison among CMOS BTNN, Spin BTNN and Spin RLNN.

 CMOS BTNN Spin BTNN Spin RLNN

Synapse Weight 4 4 4

Hidden Neurons 100 100 30

Error Rate 4.79 % 4.79 % 4.73 %

Area 89000 um2 3700 um2 1220 um2

Energy per Frame 16.6 nJ 14.2 nJ 4.4 nJ

Energy per pixel 21 pJ 18 pJ 5.6 pJ

1 2 3 4 5 6 7 8 9 10 11 12 13
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

H
id

d
e
n

 N
e
u

ro
n

 N
u

m
b

e
rs

Input Delay Stages

Recurrent Neural Network

Conventional Time-lagged

Neural Network

O
u

tp
u

t
V

a
lu

e

Timeline

In
p

u
t

V
a

lu
e

0 100 200 300 400 500 600
0.0

0.5

1.0

0 100 200 300 400 500 600

0.0

0.5

1.0

 (a) (b)
Fig. 9. (a) Phoneme recognition example for training; (b) RNN requires less
hidden neurons and shorter latency than time-lagged neural network.

II. CONCLUSIONS

A spin synapse device has been proposed with analog
programmability using all charge current. The synapse
devices can be placed in a cross-bar array to form a dense
neural network. DOT product can be realized using current
summation. With compact racetrack converter as the neuron,
spin RLNN is implemented, which saves area by 67% and
energy by 69% compared to spin BTNN with equal error rate.
Storing the DW motion in a time-based fashion, the RNN can
also be realized for time-involved inference tasks. Compared
to conventional time-lagged feed-forward neural network,
RNN requires fewer hidden neurons and latency cycles.

REFERENCES
[1] K. C. Chun, et al., “A Scaling Roadmap and Performance Evaluation of In-Plane

and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory,”

IEEE JSSC, pp. 598-610, 2013.

[2] S. Fukami, et al., “High-speed and reliable domain wall motion device: Material

design for embedded memory and logic application,” VLSIT, 2012.

[3] L. Thomas, et al., “Racetrack Memory: a high-performance, low-cost, non-volatile

memory based on magnetic domain walls,” IEDM, 2011.

[4] D. Morris, et al., “mLogic: Ultra-Low Voltage Non-Volatile Logic Circuits Using

STT-MTJ Devices,” DAC, 2012.

[5] Q. Dong, et al., “Racetrack Converter: Low Power and Compact ADC/TDC Using

Racetrack Spintronic Devices,” IEEE ISCAS, 2015.

[6] M. Sharad, et al., “Spin Neuron for Ultra Low Power Computational Hardware,”

Device Research Conference, 2012.

[7] M. Sharad, et al., “Ultra Low Power Associative Computing with Spin Neurons

and Resistive Crossbar Memory,” DAC, 2013.

[8] M. Sharad, et al., “Spin-Based Neuron Model with Domain-Wall Magnets as

Synapse,” Trans. on Nanotechnology, pp. 843-853, 2012.

[9] V. Calayir, et al., “All-Magnetic Analog Associative Memory,” NEWCAS, 2013.

[10] Y. Zhang, et al., “Perpendicular-magnetic-anisotropy CoFeB racetrack memory,”

Journal of Applied Physics, 2012.

[11] X. Wang, et al., “Spintronic Memristor through Spin-Torque-Induced

Magnetization Motion,” EDL, 2009.

[12] D. Chiba, et al., “Control of Multiple Magnetic Domain Walls by Current in a

Co/Ni Nano-Wire,” Applied Physics Express, 2010.

[13] S. Fukami, et al., “Low-Current Perpendicular Domain Wall Motion Cell for

Scalable High-Speed MRAM,” VLSIT, 2009.

