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Abstract—A spin synapse with analog programmability 

using all charge current is proposed. Compared with using spin 

current, the proposed all-charge-current synapses can be placed 

in a larger cross-bar array to form a denser and larger neural 

network. Using the current summation, DOT product can be 

realized. We further employ a compact racetrack converter as 

the neuron to implement a rectified-linear neural network, 

saving area by 67% and energy by 69% compared with a spin 

binary-threshold neural network while achieving similar 

accuracy with MNIST digit recognition benchmark. Storing the 

domain wall motion in a time-based fashion, a recurrent neural 

network can be realized for time-involved inference tasks.  
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I. INTRODUCTION  

CMOS implementations of neural network suffer from 
large area for weight storage and high standby power. Spin 
devices such as magnetic tunnel junction (MTJ), domain wall 
(DW) and racetrack nanowires have demonstrated great 
potential for memory [1-3], logic [4], and analog computation 
[5] due to their non-volatility, zero standby power and 
compact area, making them promising candidates as neural 
network components. There have been several recent works 
on spin neural networks. Lateral-spin-valve neuron [6] only 
uses binary weights and suffers from the short diffusion 
distance of spin current. The DW binary-threshold neural 
network [7], combining with RRAM or PcRAM, requires 
more masks and complicates fabrication. DW synapse [8] has 
analog programmability but its spin current limits the number 
of synapses connected with neurons. None of them realized 
analog programmability with all charge current. Also, they are 
all feed-forward binary-threshold neural networks (BTNN), 
which are limited in their effectiveness in that more neurons 
and hidden layers are required to perform the same function 
compared with a rectified-linear neural network (RLNN). 
Time-related neural networks such as recurrent neural 
network (RNN) have not been explored yet. 

We propose a spin synapse device with analog 
programmability using all charge current. In this device, the 
resistance can be varied in an analog fashion according to the 
DW position, which can be moved by charge current injection 
instead of spin current diffusion. The proposed synapse 
devices are placed in a cross-bar array configuration to form a 
dense neural network. Using current summation on the bit-
line, DOT product function can be realized. Using an ultra-
compact racetrack converter [5], we can build a more efficient 
RLNN. A novel majority voting circuit is proposed in the 
final-decision layer for recognition tasks. The spin RLNN 
reduces area by 67% and energy by 69% compared to spin 
BTNN with equal error rates. Furthermore, integrating with 
time, current-induced DW motion can be used for time-related 
analog storage to form recurrent neuron.  

II. COMPONENTS OF SPIN NEURAL NETWORK 

A. Spin Synapse 
To realize analog programmability with all charge current, 

we propose a spin synapse device as shown in Fig. 1(a). Due 
to current-induced DW motion, the DW can be moved by 
charge current flowing through horizontal ports TPROG0 and 
TPROG1. Moreover, the DW moving distance X is linearly 
proportional to the current I or the time T [5,10], expressed as: 

         𝑿 = 𝒗 ∗ 𝑻 =
𝜷𝝁𝑷

𝜶𝒆𝑴𝒔
(

𝑰

𝑨𝒓𝒆𝒂
− 𝑱𝒕𝒉) ∗ 𝑻                     (1) 

The vertical conductance between the two ports TREAD0 and 
TREAD1 can be treated as the parallel connection of spin parallel 
conductance GP(1-X) and spin antiparallel conductance GAPX 
(Fig. 1(b)), both of which are determined by the DW position 
X. Therefore, DW motion can change the vertical conductance 
from GP to GAP (Fig. 1(b)) in an analog fashion [11]. We 
develop a Verilog-A model of the proposed synapse device 
that describes the relationship between vertical conductance 
and DW position as shown in Fig. 1(c). Previous spin current 
synapses [6-8] suffer from short spin diffusion distance in the 
spin channel, and thus large scale connections between 
synapses and neurons are impossible. As no spin current is 
involved in the program and sensing operations of our 
proposed synapse, larger scale interconnections between 
synapses and neurons can be realized. 
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Fig. 1.  (a) Spin synapse device using horizontal charge current to program 

the DW position in an analog way. (b) The vertical conductance of spin 
synapse device changes from GP to GAP according to the DW position. (c) 

Verilog-A model of the domain wall position vs. conductance. 

B. Racetrack Converter as Rectified-linear Neuron  
BTNN can use only a simple comparator neuron while an 

RLNN requires an analog-to-digital converter (ADC) as the 
neuron. The large area of CMOS ADCs limits their use in 
RLNN. A spin-based ADC [5] was proposed with 1000× 
smaller area than state-of-art CMOS ADCs. Due to its ultra-
compact area and high energy efficiency, the racetrack 
converter is an ideal neuron for RLNN. Fig. 2 shows a 3-bit 
ADC using three racetrack nanowires. Each nanowire can be 
configured differently with a sequence of alternating write and 
shift current pulses, such that each generates a single bit, from 
LSB to MSB. During conversion, the input current can move 
all the DWs simultaneously. After a fixed time, the DW 
moving distance is determined by the input current value. 
Then, by sensing the resistance of the read MTJ head above 
each nanowire, the data can be read out as a digital value. In 
this way, the analog current is converted into a digital value 
through this racetrack converter. After read, the racetrack 
converter can be reset for next cycle as described in [5]. 
C. Recurrent DW Neuron   

RNN requires analog storage and the analog value must be 
able to accumulate cycle by cycle. CMOS implementations 
typically use a charge-storing capacitor as a recurrent neuron, 
however this suffers from large area and leakage. With 
current-induced DW motion, DW can be a desirable analog 
storage element, memorizing and accumulating analog value. 
Fig. 4 (bottom right) shows a simple recurrent DW neuron 
device. The DW starts at position Y(t). In the first cycle, the 
DW is moved by ΔY(t+1), and stops at Y(t+1). The device stores 
this DW position, and the output remains at 0 because the spin 



polarity of top and bottom MTJ layers are the same. But in the 
second cycle, the DW is moved to Y(t+2) from Y(t+1) and the 
output changes to 1 due to polarity flip of the bottom free 
layer. Therefore, the output of the neuron device is determined 
by not only the current input but also previous state. And thus 
the recurrent DW neuron can handle time-related inference 
tasks. Our example shows a simple recurrent DW neuron 
device with only binary-threshold output. The racetrack 
converter can be modified to create a recurrent neuron with 
linear output functionality, because it also uses current-
induced DW motion for conversion. 

III. NEURAL NETWORK ARCHITECTURE 

A. Current Summation for DOT Product    

As shown in Fig. 3(a), neural network function can be 

divided into DOT product and processing. Binary-threshold is 

the most common neuron function in hardware because of its 

simplicity. However, BTNN requires many more synapses 

and neurons to perform similar task compared to other 

complicated neural networks. RLNN employs an ADC as the 

neuron instead of a single comparator, improving its 

capabilities. Both BTNN and RLNN are feed-forward neural 

networks which can only work on static tasks like digit 

recognition. To deal with time-related tasks like forecasting 

and phoneme recognition, conventional time-related neural 

networks use a shift-register at the inputs and shift the inputs 

cycle by cycle to add time information into the system, which 

are inefficient in terms of area, latency and power. Recurrent 

neuron itself can store the time information as internal state 

and generate the results based on both current inputs and 

previous state. Therefore, RNN can be applied to highly-

efficient time-related inference.  
Read MTJ Write MTJ

Imeas

01010101

00110011

00001111

Bit0

Bit1

Bit2
T

01010101

00110011

00001111

Bit0

Bit1

Bit2

A
ft

e
r 

C
o

n
v

e
rs

io
n

 DWs 
Moving 
Distance

 
Fig. 2. Structure of a 3b racetrack converter. Each nanowire is configured 
with different DWs granularity, representing an individual bit. During 

conversion, DWs move simultaneously and stop at a distance that is 
proportional to input current. 
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Fig. 3. (a) Neural network function includes DOT product and processing. 

(b) Current summation on bit-line for DOT product of inputs and weights. 

DOT product can be implemented by current summation, 

charge accumulation or digital calculation (Fig. 3(a)). Charge 

accumulation suffers from leakage and digital calculation 

requires complicated ALU and large intermediate storage. 

Current summation is more accurate and suitable for analog 

computing. As shown in Fig. 3(b), each spin synapse is 

connected to a NMOS. Input signal can turn on/off the 

NMOS.  If the NMOS is on, the synapse will generate some 

current onto the bit-line, and all currents will be summed 

together on the bit-line. The current value is determined by 

the DW position, representing the weight. The summed 

current value is the DOT product of IN and IMTJ. As a static 

operation, current summation is immune to dynamic noise.   

B. Cross-bar Array Neural Network Configuration    
The proposed spin synapse works with all charge current, 

and thus multiple synapses can be connected to one bit-line, 
enabling massive cross-bar array configurations. Fig. 4 shows 
the cross-bar synapse array structure. One spin synapse and 
one NMOS access device make up one cell in the array. Inputs 
are the word-lines of the array; weights are represented by the 
programmable conductance of the spin synapse device. Before 
any neural network operation, the weights should be 
programmed by horizontal current injection with varying 
finely controlled pulse width. 
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Fig. 4. Cross-bar synapse array configuration and different neuron types. 

Offset column is used to improve on/off ratio. Mathematical models for 
BTNN, RLNN and RNN are shown in the bottom. 

Current summation on each bit-line performs a DOT 
product of inputs and weights to calculate each neuron Yj. 
Neurons in a single layer are calculated in a serial fashion by 
adding a column MUX and a neuron DEMUX and iterating 
their addresses. Current of a single synapse varies in the range 
from IAP to IP, which is barely a 2.5× range. To amplify the 
on/off ratio of the unit synapse current, we add one extra offset 
column to provide offset current IAP, which increases the 
on/off ratio from IP/IAP to (IP-IAP)/0. With column MUX, only 



one offset column is required for a full array. We also add an 
analog buffer to fix the node voltage at VDD/2, such that the 
IAP is equal on both summation and offset bit-lines. The 
residue current represents the DOT product results and flows 
into a neuron selected by neuron DEMUX for processing. The 
mathematic models for BTNN, RLNN and RNN are shown in 
the bottom of Fig. 4. 

A DW binary threshold neuron works as a current 
comparator. Once the residue current exceeds the threshold, 
the DW will move and flip the spin polarity of the bottom free 
layer. The proposed rectified linear neuron then uses a 
racetrack ADC to convert the analog residue current into a 
digital value and this converted digital value serves as the 
inputs for next layer, fully utilizing the analog residue current. 
For the recurrent neuron, Fig. 4 also shows a simple recurrent 
neuron, storing time-related analog information as DW 
location. In each cycle, DW will move and stop, and the 
distance is proportional to the residue current. In each cycle, 
the neuron generates a digital output. When the DW moves to 
the right, the neuron will be activated and output a 1. 

As the current-induced DW motion has a threshold, the 
binary-threshold neuron can use it as the reference. But both 
rectified-linear neuron and recurrent neuron require some 
extra offset for this threshold. This can be realized by adding 
an extra threshold offset device on the current subtraction 
node to generate a required threshold current IOFFSET onto the 
residue current (Fig. 4). And the DW position inside this 
threshold offset device should be programmed according to 
the current threshold of the neuron once after fabrication. 
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Fig. 5. Majority voting circuit. Using cap charging to find the maximum 
value and make final decision for recognition task. 

C. Majority Voting Circuit    
    A typical neural network system includes an input layer, 
several hidden layers, and an output layer (Fig. 5). For 
classifier applications, the output layer uses a majority voting 
circuit to find the maximum value for final decision. 
Conventional comparison methods need many comparators 
and cycles to find such a maximum value. Some winner-take-
all circuits employ complicated analog modules. Here, we 
propose a simplified majority voting circuit working in time 
domain that more easily finds a peak value compared with 
using current or voltage domain. As shown in Fig 5, all 
dedicated NMOS capacitors are discharged to ground initially. 
Then after signal EN goes high, the highest current path will 
flip the inverter first and shut off all the switches. The 0 output 
of the inverter represents the highest current. The operation 
only takes one cycle. Using just small NMOS gate capacitors 
the design is area-efficient and low-power.   
D. Extending the RLNN layer to multi-bit input    
    In RLNN, input of the first layer is 1-bit; while the 
following layers take 3-bit inputs. For 3-bit input DOT 
product, each bit of the input will be calculated separately as 

in 1-bit input case. Each bit of the input fires one WL and 3-
bit input takes 3 WLs (Fig. 6). Also, 3 BLs are used for one 
neuron. 3 by 3 cells represent one weight: 3 of them on the 
diagonal have same conductance as weight; others can be 
programmed to provide offset. During operation, each BL will 
sum up the currents, then current mirrors with 1X, 2X and 4X 
ratios will be used to get the real total current for neurons in 
hidden layers or majority-voting circuit in the output layer.   

X●(IAP + Wj)

X1[0]

X1[1]

X1[2]
  Woffset

  W11

  W11

  W11

Current 
Mirror (X4)

 = X●IAP + Ʃ(Xi x Wij)

Current 
Mirror (X2)

Current 
Mirror (X1)

Neuron / Majority Voting Circuit

  Woffset   Woffset

  Woffset

  Woffset  Woffset

X2[0]

X2[1]

X2[2]
  Woffset

  W21

  W21

  W21

  Woffset   Woffset

  Woffset

  Woffset  Woffset

 
Fig. 6. Final layer of RLNN with 3-bit digital inputs. 

I. SIMULATION RESULTS AND ANALYSIS 

We develop compact Verilog-A models for related MTJ, DW, 
and racetrack nanowire based on published experimental data 
[3, 10, 12-13]. Co-simulation with CMOS circuits (32nm 
technology) is performed in SPICE. We built both spin-based 
BTNN and RLNN containing one input layer, one hidden 
layer and one output layer.  Fig. 7 shows the parameters of the 
synapse and neuron [5, 8, 10]. We use complete 60000 
MNIST digit recognition training sets to train both BTNN and 
RLNN, and use 10000 standard MNIST test sets to evaluate 
the error rates. Fig. 8 (a) and (b) show the error rate decreasing 
with training epochs for both BTNN and RLNN with the same 
number of hidden neurons (100). For BTNN, 8-bit quantized 
weight has little difference with floating-point weight because 
the binary-threshold function itself generates substantial 
quantization error and thus adding weight bits does not reduce 
error rate. However in RLNN additional weight bits serve to 
improve error rate. With 100 hidden neurons, the RLNN can 
achieve 2.5× error rate reduction compared to BTNN (Fig. 
8(c)). Fig. 8(d) compares the error rate change with synapse 
weight bits for both BTNN and RLNN. RLNN shows better 
error rate scaling with number of weight bits. Fig. 8(e) shows 
the error rate decreasing with more hidden neurons. To 
achieve <5% error rate, the RLNN needs only 30 hidden 
neurons; while BTNN requires 100 hidden neurons. As RLNN 
uses an ADC as the neuron instead of a single comparator, the 
error rate can be reduced with more ADC resolution (Fig. 
8(f)). In our experiments, a 3-bit ADC is sufficient to achieve 
good error rates for RLNN. Table I compares CMOS SRAM-
based BTNN, spin BTNN, and spin RLNN with the same 
synapse weight (4 bit) and same error rate. Area and energy of 
peripheral circuits are included. While achieving the same 
accuracy of MNIST task, spin-based BTNN saves area and 
energy by 96% and 14% respectively, compared with CMOS 
SRAM-based BTNN. The proposed spin RLNN further 



reduces area by 67% and energy by 69% compared with spin 
BTNN. 

We take a simple phoneme recognition task as a training 
example to show the effectiveness of spin RNN. As shown in 
Fig. 9(a), the input is a mixed phoneme waveform in which 
one specific frequency needs to be recognized, and the output 
of the neural network remains high once detecting this specific 
frequency. Conventional feed-forward BTNN can deal with 
this task with time-lagged inputs by adding shift registers. 
Fewer hidden neurons are required as more input delay stages 
of the shift registers are added (Fig. 9(b)). However, to solve 
the same task, RNN requires only 3 hidden neurons and 5 
cycles, significantly more effective than conventional time-
lagged feed-forward neural network. 
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Fig. 7. Device parameters used for co-simulation with CMOS; Complete 

MNIST digit recognition benchmark are used for training evaluation. 
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Fig. 8. Error rate decreases with training epochs for BTNN (a) and RLNN 

(b). RLNN achieves 2.5× error rate reduction compared with BTNN (c). 
Error rate can be reduced with more weight bits (d) and hidden neurons (e). 

Higher resolution of ADC neuron can further lower error rate of RLNN (f). 

For memory applications, multi-bit MRAM is challenging due 

to limited sensing margin and cell variation. But in neural 

network application, each BL has hundreds of cells and each 

neuron only need to distinguish 1-bit or 3-bit output of 

summed current. Take 100 3-bit synapses on one BL as 

example, each cell generates 1-8 unit currents. For memory 

application, sense amplifier has to distinguish each unit of 

current. While in neural network, the 3-bit rectified-linear 

neuron only need to distinguish 100/200/…800 rather than 

1/2/…8. Therefore, the sensing margin is not a problem for 

neural network application. Current summation of large 

number of cells can average out the random variation of cell 

current. For systematic variation, the actual measured results 

will show some bias, according to which the offset added to 

each column can be adjusted to compensate the systematic 

variation. Moreover, DNN algorithm is inherently variation-

tolerant. Once systematic offset of different weights is 

measured, it could be incorporated in the training to 

compensate for it by adjusting the weights. 

Table I. Comparison among CMOS BTNN, Spin BTNN and Spin RLNN. 

 CMOS BTNN Spin BTNN Spin  RLNN 

Synapse Weight 4 4 4 

Hidden Neurons 100 100 30 

Error Rate 4.79 % 4.79 % 4.73 % 

Area 89000 um2 3700 um2 1220 um2 

Energy per Frame 16.6 nJ 14.2 nJ 4.4 nJ 

Energy per pixel 21 pJ 18 pJ 5.6 pJ 
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Fig. 9. (a) Phoneme recognition example for training; (b) RNN requires less 
hidden neurons and shorter latency than time-lagged neural network. 

 

II. CONCLUSIONS 

A spin synapse device has been proposed with analog 
programmability using all charge current. The synapse 
devices can be placed in a cross-bar array to form a dense 
neural network. DOT product can be realized using current 
summation. With compact racetrack converter as the neuron, 
spin RLNN is implemented, which saves area by 67% and 
energy by 69% compared to spin BTNN with equal error rate. 
Storing the DW motion in a time-based fashion, the RNN can 
also be realized for time-involved inference tasks. Compared 
to conventional time-lagged feed-forward neural network, 
RNN requires fewer hidden neurons and latency cycles. 
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