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Abstract—We propose Bubble Razor, an architecturally inde-
pendent approach to timing error detection and correction that
avoids hold-time issues and enables large timing speculation win-
dows. A local stalling technique that can be automatically inserted
into any design allows the system to scale to larger processors.
We implemented Bubble Razor on an ARM Cortex-M3 micropro-
cessor in 45 nm CMOS without detailed knowledge of its internal
architecture to demonstrate the technique’s automated capability.
The flip-flop based design was converted to two-phase latch timing
using commercial retiming tools; Bubble Razor was then inserted
using automatic scripts. This system marks the first published im-
plementation of a Razor-style scheme on a complete, commercial
processor. It provides an energy efficiency improvement of 60% or
a throughput gain of up to 100% compared to operating with worst
case timing margins.

Index Terms—Adaptive circuits, dynamic voltage and frequency
scaling (DVFS), error correction, time borrowing, timing specula-
tion, two-phase latches, variation tolerance.

I. INTRODUCTION

C ONVENTIONAL synchronous digital systems require
substantial timing guard bands to ensure proper op-

eration across manufacturing and environmental variations.
While manufacturing guard bands can be reduced by testing a
part after production and adjusting voltage or frequency, this
process is costly and still does not eliminate the guard bands
for dynamic environmental variation. Traditional approaches
to reduce margining at runtime include mimicking critical
path delays with “canary” circuitry and using error prediction
[1]–[7]. The Razor system [8], [9] proposed reducing these
margins by employing in-situ timing error detection latches,
and dynamically tuning the supply voltage during run time to
the point where the circuit is on the edge of failure. Occasional
timing failures are then corrected by replaying the operation
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with greater margin. By always operating at the edge of failure,
manufacturing and environmental guard bands are reduced to a
minimum.
Multiple timing error detection techniques have been pro-

posed, including OutputWaveformAnalysis [10], Time-Redun-
dant Latches [11], Razor I latches[8], [9], Razor II latches [12],
Transition Detector with Time Borrowing (TDTB) [13], and
Double Sampling with Time Borrowing (DSTB) [13]. All focus
on detecting data that arrives shortly after the clock edge and
flagging it as an error. The earlier references focused on SEU
detection and the later on Razor-style voltage tuning to elimi-
nate margins.
Razor II, DSTB, and TDTB provide higher performance at

lower cost than the earlier work. By reducing guard bands, they
have demonstrated better than 30% energy savings [12], [13].
They also move metastability issues out of the datapath and
into the error path, simplifying mitigation of this effect. These
techniques have timing issues similar to pulsed latches in that
they achieve high performance at the expense of a long hold
time, increasing the risk of race failure. These significant hold
time constraints are even more difficult to meet given worsening
timing variability due to the link between speculation window
and minimum delay. In addition, none of these methods have
been applied to a complete commercial processor due to their
architectural invasiveness.
To address these two issues we propose Bubble Razor, which

uses a novel error detection technique based on two-phase latch
timing and a local replay mechanism that can be inserted auto-
matically in any design. The error detection technique breaks the
dependency between minimum delay and speculation window,
restoring hold time constraints to conventional values and al-
lowing timing speculation of up to 100% of nominal delay. The
large timing speculation makes Bubble Razor especially appli-
cable to low voltage designs where timing varies exponentially
with operating conditions.
The remainder of this paper is organized as follows. In

Section II we review prior Razor approaches and their timing
constraints. Section III presents the proposed Bubble-Razor
approach. Section IV discusses a number of specific imple-
mentation issues in the Bubble-Razor method. Section V
presents the silicon implementation of Bubble-Razor on an
ARM Cortex-M3 processor, including silicon measurements.
Finally, Section VI presents concluding remarks.

0018-9200/$31.00 © 2012 IEEE
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Fig. 1. By using two-phase latch based timing, minimum delay constraints are restored to their conventional values allowing for large speculation windows.

II. REVIEW OF PRIOR RAZOR METHODS

A. Conventional Razor System Timing

In all conventional Razor-style systems [8], [9], [12]–[16],
there is a fundamental tradeoff between speculation window
and short path, or minimum delay, constraints (Fig. 1). In a
system that allows 100 ps of timing speculation, when data ar-
rives within 100 ps after the positive edge of a flip-flop or pulsed
latch’s clock, that data must be guaranteed to be from a long
path launched from the previous clock edge. In order to ensure
this, all short paths must be longer than 100 ps such that no short
path can falsely trigger an error. This timing constraint must also
be margined for any degree of timing variation. As Razor-style
systems are targeted for situations with large timing variations,
this constraint can be difficult to meet and causes large area and
power increases due to buffers and other delay elements that are
added to lengthen short paths. Further discussion of the timing
constraints of conventional Razor-style systems is included in
Appendix A.

B. Conventional Razor Error Correction Schemes

Upon detection of an error, some mechanism needs to cor-
rect for that error and allow the system to continue. Razor I [8]
proposes two different styles of error correction, global clock
gating and counterflow pipelining. Global clock gating involves
stalling the entire processor and reloading each Razor flip flop
with the correct value stored in its shadow latch. Counterflow
pipelining has the error detecting stage send a bubble to down-
stream pipeline stages and a flush to upstream stages, which was
propagated throughout the circuit one stage every clock cycle.
Razor II [12] proposes another local signaling technique using
architectural replay to flush the processor pipeline and replay the
failing instruction, similar to how mispredicted branch instruc-
tions are handled. In order to guarantee forward progress the
processor must be slowed during replay to ensure the same in-
struction does not repeatedly cause a timing error. In both coun-
terflow pipelining and architectural replay, the architecture is
designed with Razor in mind and the correction mechanism is
built into the RTL of the design.

Fig. 2. In a two-phase latch based system, instructions can stall without imme-
diately being overwritten.

Razor I’s global clock gating technique is architecture inde-
pendent, but its scale is limited to small designs without aggres-
sive clock periods, as communicating a stall to the entire chip
within one cycle can be impossible for large high performance
designs. In all conventional Razor systems, if architecture inde-
pendent stalling is used to correct for errors, it needs to be done
at the global level. This is because the datapaths are based on
edge-triggered flip-flops or pulsed latches, which have similar
timing constraints to edge-triggered flip-flops. If one pipeline
stage in a conventional Razor style system stalls, by gating its
clock, the instruction held in the previous stage is lost, as every
pipeline stage holds an instruction during every cycle and all of
them update their state concurrently.

III. PROPOSED BUBBLE RAZOR APPROACH

A. Bubble Razor Timing

Unlike conventional Razor style systems, Bubble Razor uses
a two-phase latch based datapath instead of a flip-flop based
datapath. This has two main benefits: 1) it breaks the depen-
dency between short path constraints and speculation window,
enabling large speculation windows, and 2) it allows for archi-
tecture independent local correction, which can scale to large
high performance systems. A flip-flop based datapath can be



68 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013

Fig. 3. Timing errors are corrected by propagating bubbles which gate off clock pulses throughout the circuit.

converted into a two-phase latch based datapath by breaking
the flip-flops into their constituent master and slave latches. By
using commercial retiming tools to move the latches throughout
the datapath, logic delay in each phase can be balanced such
that no time borrowing occurs during error-free operation. Re-
timing can be performed to the same timing constraints, though
the number of latches in the design may change due to retiming
across gates with unequal fanins and fanouts.
During normal (error-free) operation data arrives at a latch

input before the latch opens and no time borrowing occurs. If
data arrives after the latch opens due to operating at the edge
of failure, Bubble Razor flags an error. Unlike with flip-flop
based systems, these errors are guaranteed to be caused by long
paths taking more than a clock phase instead of by short paths,
breaking the link between speculation window and short path
constraints (Fig. 1). With a flip-flop based system, a flip-flop
in one pipeline stage is clocked at the same time as the flip-
flops in the preceding pipeline stage, creating the possibility of
short paths being falsely flagged as timing errors. With two-
phase latches, when one latch is opening the latches in the pre-
ceding stage are already closed. Thus, since new data is not
being launched at that time, there is no possibility of short paths
being falsely flagged as timing errors. The short path constraints
in a Bubble Razor system are thus the same as in a conventional
two-phase latch based system, which are easy to meet with non-
overlapping clocks. This enables large speculation windows, up
to 100% of circuit delay.

B. Bubble Razor Error Correction

Regarding error correction, the key observation is that errors
do not immediately corrupt processor state as they borrow time
from later pipeline stages. A failure will occur when data ar-
rives after a latch closes, which can arise if the time borrowing
effect is not corrected and compounds through multiple stages.
Upon detection of a timing error, it is critical to recover quickly
before time borrowing accumulates to a point of failure. Error
clock gating control signals (bubbles) are propagated to neigh-
boring latches (Fig. 3). A bubble causes a latch to skip its next
transparent clock phase, giving it an additional cycle for correct
data to arrive.
Unlike with flip-flop based systems, error correction can be

accomplished by local stalling (Fig. 2). When a flip-flop stalls,
data is immediately lost as its neighboring flip-flops transition
their state at the same point in time. With two-phase latches, if a
latch stalls, data is not immediately lost because its neighboring
latches operate out of phase. In order to not lose data, neigh-
boring latches must stall one clock phase later. Because of this
time difference, the stalling can be distributed in time and only
needs to be communicated to neighboring stages, stages with
which data is already being communicated. Because stall sig-
nals need only be distributed to neighboring stages in the same
amount of time given to communicate data, the system is scal-
able to processors of arbitrary size.
A key challenge lies in how to prevent bubbles from propa-

gating indefinitely along loops and forwarding paths and bring
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Fig. 4. Bubbles are communicated to neighboring latches. Upon error resolution, every latch has stalled for exactly one cycle.

the circuit back to a consistent, bubble-free state. To address
this, we propose a novel bubble propagation algorithm: (1) a
latch that receives a bubble from one or more of its neigh-
bors stalls and sends its other neighbors (input and output) a
bubble one half-cycle later; (2) a latch that receives a bubble
from all of its neighbors stalls but does not send out any bubbles
(Fig. 4). Despite the fact that latches stall at different times, the
system maintains correct operation with every latch in the de-
sign stalling exactly once. The stalling technique is agnostic to
state machine architecture or structure, allowing bubble clock
gates and control logic to be automatically inserted. The only
change to the external behavior of the system is an occasional
single stall cycle on the inputs and outputs.
Other key questions include how the system behaves in the

presence of multiple timing errors during the same cycle, the
presence of multiple bubble sequences in flight at the same time,
and whether forward progress is maintained during high error
rates. The bubble algorithm does not need to be modified to ad-
dress any of these concerns. Multiple errors during the same
cycle will cause multiple bubble stalling sequences to take place
at the same time, but when stall events collide they combine.
The latches receiving bubbles are not aware of where the initial
error occurred and they do not need to, as the stalling constraints

from each error sequence overlap. It is beneficial to have mul-
tiple bubble sequences combine as multiple timing errors can be
corrected by a single stall cycle, reducing correction overhead.
The algorithm is also guaranteed to make forward progress as
a latch will never stall indefinitely. A latch stalls when sent a
bubble by one or more neighbors and then sends a bubble to its
other neighbors. An equivalent definition for bubble propaga-
tion is for the latch to send a bubble to all its neighbors but ignore
bubbles if it stalled in the previous cycle. Since a latch will never
stall two cycles in a row, it will always make forward progress.
We have shown that the system operates correctly even with
every latch reporting a timing error during every cycle. In this
case, every latch spends exactly 50% of its cycles stalling.

IV. BUBBLE RAZOR IMPLEMENTATION ISSUES

A. Speculation Window Selection

A Razor-style system can be tuned such that it is running
error-free but with no timing margins in order to increase
system performance. At this point, the circuit is susceptible
to timing errors if logic delay suddenly increases due to a
voltage droop, temperature spike, or other transient event. The
speculation window determines the amount this logic delay is
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allowed to increase such that the system can still detect and
correct errors and maintain correct operation. With Bubble
Razor, as with other Razor systems, the speculation window
can be limited by either the technique or the amount and
location of latches with error checking. The maximum allowed
speculation window is a full clock phase minus the delay of
the error propagation circuitry. The theoretical maximum is
therefore 100% of circuit delay, meaning correct operation
could be maintained even if circuit delay suddenly doubles,
although in practice the error correction circuits have non-zero
delay. Because of the large allowable speculation windows, it is
possible to tradeoff between speculation window and allowable
time borrowing. Allowing some time borrowing can improve
variation tolerance due to mismatch between stages, as well
as reduce area overhead by limiting the number of latches
introduced by retiming.
Placing error detection on every latch in the design is very

costly in terms of area and power, and is not desirable. In addi-
tion, error detection is not required on all latches; if the critical
path feeding into a latch is less than 50% of a clock phase, that
latch will never experience a timing error even with a doubling
of circuit delay.
Because the datapath is two-phase latch based, removing

error detection from certain stages could allow time borrowing
to occur without generating errors, complicating speculation
window analysis. Fig. 5 shows an example of a system with a
30% speculation window. During error-free operation near the
point of first failure (PoFF), the delay from Latch B to C is a
full clock phase, 50% of a clock cycle, and the delay from C to
D is only 20% of a clock cycle. Due to a voltage droop or other
event, circuit delay becomes 130% of its nominal value such
that the design is now operating at the edge of its speculation
window. In this case, data does not arrive at C before it opens,
however when looking at the combined path from B to D, the
delay is only 91% of a clock period and data still arrives before
Latch D opens. Because of the small delay between C and D,
the path from B to C is able to borrow time and the timing error
corrects itself without any need for bubbles. This would imply
that error detection is not needed on C or D.
However, this analysis assumes that data is launched from

Latch B at its opening edge. If the delay from A to B was nomi-
nally 50% of a clock cycle, and 65% after a voltage droop, then
data arrives at B late and pushes back all the subsequent stages
such that data arrives late at D. Thismulti-phase analysis is com-
plex, even for the simple in-order pipeline shown. For a general
finite state machine with loops and forwarding paths the anal-
ysis is substantially more complicated.
To simplify the process of determining where error detec-

tion is needed, we propose disallowing all undetected time
borrowing. Thus, a latch assumes that data is launched at the
opening edge of the latches preceding it, and determines that
error detection is needed if its data arrives late under worst case
conditions. In the above example, Latches B and C add error
detection because the worst-case delay of their critical inputs
paths are 65% of a clock cycle, which is greater than a clock
phase. This analysis only requires looking at one path at a time,
though it can produce a larger set of latches with error checking
than strictly necessary.

Fig. 5. When determining where error detection is needed for a given specula-
tion window, time borrowing can complicate analysis.

B. SRAM Interface

The Bubble Razor algorithm works seamlessly for two-phase
latches but adjustments need to be made when dealing with edge
triggered peripherals such as SRAM. If speculative state was in-
correctly written to memory that error could not be corrected
for. SRAMs were treated as positive latches for the purpose
of the Bubble Razor algorithm and wrapper logic was placed
around SRAMs to make them behave similarly to level-sensi-
tive latches when given a stall cycle (Fig. 6). In this implementa-
tion, the register file was synthesized logic and was transformed
to two-phase latches along with the rest of the processor.
When retiming the design, negative latches are first placed on

the outputs of the processor interface to memory such that the
circuit is of legal configuration: all neighboring latches of the
positive SRAM are negative latches. Assuming error checking
occurs on the negative latches in the fanout of the SRAM, reads
are constrained to operate in one clock phase. Depending on
the configuration of the processor, this may introduce a tighter
timing constraint. In the Cortex-M3 implementation timing was
unaffected as SRAM was already operating in approximately
50% of a clock cycle with the other 50% of a clock cycle being
used by combinational logic between the processor’s inputs and
first flip-flops.
To avoid writing incorrect data to SRAM, the system uses

a commercial two-port, high-speed SRAM that separates read
and write ports. Writes are clocked on the negative edge of the
clock, after the speculation window, when data is guaranteed to
be error free. A single entry store buffer could alternately be
used to stabilize writes. Writes are disabled when the SRAM
receives a bubble.
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Fig. 6. Wrapper logic is placed around the SRAM such that it can be treated as a positive latch.

Since reads cannot be delayed without reducing system per-
formance, they continue speculatively at the positive edge. If
the read inputs to SRAM such as address arrive late, the SRAM
would capture incorrect values at the positive edge of the clock
and return the wrong data. Unlike with a level sensitive latch,
this error will not automatically be corrected when given more
time. Fortunately, due to the nature of the Bubble Razor al-
gorithm, in all cases where the SRAM receives late inputs it
will receive a bubble during the next cycle. Upon receiving
this bubble, the SRAM uses the available cycle to repeat the
read with the correct inputs that were captured by a bank of
flip-flops on the negative clock edge. These approaches to han-
dling SRAM can be automatically added to any system.

C. Latch Clustering

To reduce the logic area overhead of bubble propagation,
latches that share neighbors were automatically grouped to-
gether into clusters. Latches in each cluster share a gated clock
and combine their error signals into a common cluster error
signal. A cluster then behaves as a single latch for the purpose
of the Bubble Razor algorithm. It is possible for the designer to
manually assign latches into clusters such as grouping together
pipeline stages. Alternatively, we proposed an automated ap-
proach to assigning clusters. A positive and negative graph was

extracted based on latch connectivity (Fig. 7). In each graph,
the vertices represented the latches and the edge weights rep-
resented the number of paths through opposite polarity latches
that connect the two vertices. Each latch was then assigned a
cluster by inputting the graphs into a hypergraph partitioning
tool [18].
Although the assignment of clusters is performed automati-

cally, the designer choses the number of both positive and nega-
tive clusters. A tradeoff exists between the size of the OR gates
needed to combine error signals within a cluster into a cluster
error signal and the size of the OR gates needed to combine bub-
bles from neighboring clusters. With many clusters, the size of
each cluster is small but each cluster has many neighbors. Alter-
natively, with few clusters each cluster has few neighbors but a
large number of members. In the implemented design, 100 neg-
ative clusters and 70 positive clusters was chosen to balance the
size of these competing OR gates.

V. BUBBLE RAZOR SILICON VERIFICATION

To demonstrate the automated and architecture independent
nature of the Bubble Razor technique, it was implemented on
an ARM Cortex-M3 microcontroller, a processor with which
we have no knowledge of its internal architecture. Flip-flops in
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Fig. 7. Clustering was performed automatically by building two graphs based on latch connectivity. A tradeoff exists between the size of OR gates which is
balanced by the choice of the number of clusters.

Fig. 8. Transforming the Cortex-M3 to two-phase latches can incur an 8% area
penalty or 7% performance penalty.

the M3 were split into latches and the design was retimed and
modified using scripts and automatic tools.

A. Retiming the Cortex-M3

Retiming the M3 was achieved by holding the positive
latches in place and moving negative latches. Under ideal
circumstances, this retiming can be performed with no per-
formance penalty without modifying the combinational logic.
In practice, the additional area resulting from the changing
number of latches causes a small performance penalty for the
design. Fig. 8 shows the results of topographical synthesis
performed at various timing constraints. As the synthesis and
retiming software uses heuristic based optimizations on large
datasets, it is possible for it to produce non-optimal outputs as
well as non-monotonic results when sweeping a variable such
as target clock period. This effect is more pronounced when the
software is unable to meet the target clock period and is seen
in the rightmost datapoints of Fig. 8. The maximum possible
operating frequency for the latch-based M3 is 7% lower than
the flip-flop based M3 due to this area increase. At a reasonable

design point, the latch based M3 meets the same timing as
the flip-flop based M3 but with an 8% area overhead. This
operating point was chosen for further overhead analysis.

B. Speculation Window Selection for the Cortex-M3

The selection of latches which require error detection can be
determined by examining the critical paths at the input of each
latch. Fig. 9 shows the distribution of critical path delays for
flip-flops in the original design and latches in the retimed design.
As a result of only moving negative latches, 64% of the latches
in design are negative. In addition, many negative latches have
very low critical path delays. These low delays result from flip-
flops in the original design with critical paths below 50% of a
clock period, where latches do not need to be moved to meet
timing.
We propose three different methods for selecting paths with

error checking which make use of these timing characteristics:
checking a subset of all latches, only positive latches, or only
negative latches. When checking all latches, the maximum pos-
sible speculation window is 100%, while checking all positive
or all negative latches would yield a speculation window of 50%
since every other latch in a timing path has no error detection.
Fig. 10 shows the area overhead and speculation window re-

sults for these three techniques when applied to the Cortex-M3.
When only checking positive latches, sincemost latches are near
critical, most of the area overhead is present with small specula-
tion windows, but futher pushing speculation window comes at
low area cost. When only checking negative latches, area over-
head drastically increases once the large number of latches with
small critical paths require checking. Depending on the desired
speculation window, either of the three techniques may be op-
timal. For a good design point, 30% speculation can be achieved
with a retiming and error checking area overhead of 20%.

C. Implementation Circuitry

Error detection was performed using the Bubble Razor Latch,
similar in design to the error detection flip-flop in [8]. A shadow
latch captures data as the main datapath latch opens (Fig. 11).
An XOR compares the two values and will flag an error if data
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Fig. 9. The Cortex-M3 has an imbalanced path distribution as a result of retiming.

Fig. 10. Error checking can be added to a subset of latches, or a subset of only
positive or only negative latches, yielding different area overheads. This is due
to the distribution of critical path delays at the inputs of each latch.

arrives late and changes the value in the main latch. The Bubble
Razor algorithm is not dependent on the type of error checking
latch, and hence transition detectors based on [12] could also be
used.
Errors and bubbles are combined using wide dynamic OR

gates, in our implementation made up of trees of 16 input dy-
namic ORs. Latches are used after trees of OR gates to hold the
resulting values during the dynamic precharge phase.

Clock gating and bubble propagation is handled by the
Cluster Control Logic blocks. This logic is based on the al-
ternate definition of the Bubble Razor algorithm: when sent a
bubble by one or more neighbors: stall and send a bubble to all
neighbors if and only if you did not stall in the previous cycle.
By using this approach, latches do not need to store which
neighbors they received bubbles from, drastically reducing
implementation area. Additionally, it was noted that upon
initiating the bubble propagation sequence after detecting a
timing error, the first clock gating event is optional, so clock
gating does not take place during the first bubble.
Although the design uses dynamic cells and latch-based

timing, the models given to synthesis, placement, and routing
software are fully static and edge-based. Since the dynamic
ORs are always followed by more ORs or a latch, the ORs are
modeled as static and the latch is modeled as a flip-flop. Latches
in the datapath are modeled as flip-flops, since time borrowing
during error-free operation is disallowed. The resulting design
appears to the tool chain as a standard, flip-flop based design
with clock gating, allowing fully automated, standard integra-
tion with no designer intervention.

D. Silicon Test Chip

Bubble Razor was applied to the Cortex-M3 processor, a
1.25 DMIPS/MHz microcontroller [19], and implemented in a
45 nm SOI process. This silicon test chip is the first published
Razor-style implementation to demonstrate a transformed
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Fig. 11. Bubbles are combined using dynamic OR gates. A cluster ignores bubbles if it stalled in the previous cycle.

commercial processor operating correctly under the presence
of timing errors. Several robust design decisions were made re-
sulting in large area overheads for the silicon test chip. Timing
error checking was added to all latches, even those which are
not capable of failing timing, in order to allow us to find the
maximum possible speculation window: one clock phase minus
the propagation delay of the error detection circuits, which
provides 55% timing speculation in this implementation. All
latches in the design had an asynchronous reset although it
is only strictly required for either all positive or all negative
latches. Robust short path constraints were also put in place,
and were met through buffer insertion.
These design decisions, when combined with retiming over-

head, resulted in an artificially large cell area overhead of 87%
for the latch based M3 compared to the original flip-flop based
M3. This comprised a 21% increase in combinational logic area
and a 280% increase in sequential area. The additional cluster
control logic added 16% area compared to the original flip-flop
design, resulting in a total area overhead over the flip-flop de-
sign of 103%. The number of gates increased from 32,805 to
36,206 when transforming to Bubble Razor, with the majority
of the new cells comprising new latches as each flip-flop became

an average of 3 latches after retiming. Estimated clock loading
increased by 230% with 88% of the loading coming from the
Razor latches and the remainder coming from flip-flops in the
JTAG test harness, latches in cluster control logic, and dynamic
OR gates. Reducing the number of latches with error detection
would drastically reduce the increase in sequential area, addi-
tional cluster control area, total area, and clock loading.
Synthesis results since the silicon implementation are shown

in Sections V-A and V-B, whichmeet short path constraints with
nonoverlapping clocks, only resets positive latches, and only
uses Razor latches in timing critical locations. It is shown that
error detection with a 30% speculation window can be achieved
with 20% area overhead, which increases to approximately 25%
when the additional cluster control logic is added. This area in-
crease is for the core logic only and reduces when amortized
over cache area.

E. Silicon Measurement Results

Because of the robust design decisions mentioned in
Section V-D, a silicon comparison was not made between a
conventional M3 and the test chip, so the silicon test chip
compares against itself operating at worst case margins when
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Fig. 12. By running the system under nominal conditions instead of with worst case margins, performance or energy can be improved.

calculating performance increases and energy savings. Syn-
thesis results show the implemented test chip can operate at the
same frequency as a conventional flip-flop based Cortex-M3
when designed to the same timing constrain, however the
addition of Bubble Razor will come at a cost of area and power
which is highly dependent on the desired speculation window
as discussed in Sections V-A, V-B and V-D. Additionally, if
DFT is added to a design it will come at a higher cost for the
latch based Bubble Razor implementation as the scan chain
will contain twice as many elements. These costs must be taken
into account when calculating the energy savings from using
Bubble Razor.
The silicon test chip was programmed to perform software

FFT computations. At 85 with 10% supply drop, process
variation, and 5% safety margin, the maximum operating fre-
quency of the M3 design is measured as 200 MHz, setting a fre-

quency ceiling for a conventionalmargined design.With Bubble
Razor the design can be tuned to the point of first failure (PoFF)
which was 290/333/363 MHz for three shown chips, increasing
throughput by 45, 67, and 82% (Fig. 12). Alternatively, supply
voltage can be lowered at iso-performance, reducingM3 energy
consumption by 43, 54, and 60%, respectively.
Fig. 13 shows system behavior when sweeping frequency or

voltage beyond the PoFF. As clock frequency linearly increases,
throughput initially linearly increases. As timing errors become
more prevalent at higher frequencies, throughput improvement
slows down and eventually reverses due to stall cycles con-
suming a large portion of processor runtime. Similarly, voltage
scaling reduces energy consumption until timing errors become
too common.When running at a voltage substantially lower than
the PoFF, the large number of stall cycles cause the program to
take longer to execute which increases total energy consump-
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Fig. 13. Due to only a single cycle penalty for fixing timing errors, an additional 22% performance gain or 17% energy reduction can be made by running beyond
the Point of First Failure.

TABLE I
TERMINOLOGY.

tion. If frequency or voltage is scaled too far, the system will
begin operating outside of its speculation window, timing er-
rors will not be properly corrected for, and the system will fail.

All points in Fig. 13 represent the system executing its pro-
gram correctly with the rightmost throughput and leftmost en-
ergy points representing limits of frequency and voltage scaling.
Overall, an additional 22% performance or 17% energy reduc-
tion is obtained from running beyond the PoFF. This is signifi-
cantly better than previous Razor approaches since only a single
cycle is lost per corrected error, allowing beneficial operation at
relatively high error rates. The combination of eliminating mar-
gins and running beyond the PoFF allows for a 100% throughput
increase or 60% energy reduction when compared to operating
with worst case timing margins.
We used ring oscillators on each chip as “canary” circuits to

provide for a comparison of energy/performance gains from ca-
nary circuits and with Bubble Razor. Canary circuits allow some
timing margins to be reduced, but cannot eliminate all margins
as there may be mismatch between the canary and datapath. In
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TABLE II
TIMING CONSTRAINTS FOR CONVENTIONAL SYSTEMS.

Fig. 14. Die photo and system information.

addition, canary circuits can only adapt to slow changing oper-
ating conditions due to the time required to change the processor
clock frequency, and thus canary circuits cannot eliminate the
margins for supply droop. Addingmargin for 3s of mismatch be-
tween the canary frequency and processor frequency, a margin
for 10% supply droop, and an additional 5% safety margin, the
design can be tuned to 217/250/272 MHz for the three shown
chips. Running with Bubble Razor at the optimal throughput
point provides gains of 70%, 63%, and 56% respectively when
compared to running with canary circuits. Equivalently, Bubble
Razor at the optimum energy point provides gains of 46%, 41%,
and 41% over canary circuits.

VI. CONCLUSION

A novel Razor style technique was proposed that breaks
the link between speculation window and minimum delay
constraints, allowing large speculation windows. In addition,
a local stalling technique was proposed that is independent of
design architecture and scalable to designs of arbitrary size.
Bubble Razor was successfully applied to the ARM Cortex-M3
microprocessor, the first Razor style implementation of a
complete commercial processor. A test chip was fabricated in
45 nm CMOS to validate the technique and showed a 100%
throughput improvement or 60% energy savings over running
with worst-case timing margins.

APPENDIX

This appendix compares the timing constraints of prior
Razor-style systems to Bubble Razor.

A. Conventional System Timing

The timing constraints of timing error detection sequencing
systems have many similarities to conventional systems. The
maximum logic delay (propagation delay ), minimum logic
delay (contamination delay ), and maximum allowable time
borrowing for three conventional synchronization sys-
tems are summarized in Table II [20].
Two phase latch and pulse latch systems allow for time bor-

rowing to help deal with unbalanced delays and clock skew. In
all three systems, contamination delay is small and manageable,
though in the pulse latch system it is proportional to , which
creates a tradeoff between time borrowing and contamination
delay.

B. DSTB Timing Constraints

This section explains the timing constraints for DSTB [13].
TDTB has similar timing, with the setup time of the flip-flop
analogous to the setup time of the TD. Fig. 15 shows the timing
diagram for a DSTB system.
The primary datapath resembles an ordinary pulse-latched se-

quencing system [21]. Each pipeline stage contains a pulsed
latch followed by combinational logic. However, the data input
is also sampled by a flip-flop on the rising edge of the pulse
. If misses the flip-flop, it is considered late. If is slightly

late, as shown in the gray region, the pulsed latch will sample
correctly even though the flip-flop misses . The difference

is detected by the XOR, which generates an error signal. If is
too late, both the pulsed latch and flip-flop will miss the data and
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Fig. 15. Timing Diagram for DSTB System.

an undetected error will occur. The latch, flip-flop, and XOR to-
gether form a DSTB register. Errors from each register are com-
bined to produce error signals for each pipeline stage and for the
overall system.
1) Detection Window: must stabilize at least before

the rising edge of to be sampled correctly by the flip-flop. But
as long as it stabilizes before the falling edge of , the
late data will be detected. In summary, DSTB has a detection
window in which it can detect late-arriving data:

(1)

Notice that this detection window grows with the pulse
width. The detection window should be as wide as possible (e.g
25–30% of the cycle) to eliminate large guard bands.
2) Propagation Delay: In normal operation, there should be

no late data. Hence, should arrive safely before the rising
clock edge and will propagate through the latch upon the rising
edge of the clock. It will then propagate through the logic and
setup at the next flip-flop before the next rising clock edge. The
maximum logic delay in a cycle is

(2)

This is similar to the logic delay in a flip-flop based system.
3) Contamination Delay: The input to the next pulsed latch

must not change until at least a hold time after the end of the
pulse. The minimum logic delay is

(3)

Note that the contamination delay growswith the pulse width.
This is the same as the hold time constraint in a pulsed-latch
based system. Contamination delay problems are difficult to
solve and catastrophic if they occur, so the pulse is normally

made quite narrow (ideally to permit ). This runs con-
trary to the desire for a wide detection window.
4) Clock Skew: Clock skew reduces the maximum propaga-

tion delay and increases the maximum contamination delay by
in (2) and (3) [21].

5) Time Borrowing: Because the flip-flop samples on the
same edge that the latch becomes transparent, no time bor-
rowing is possible. If the clock to the flip-flop were delayed by
, the time available for borrowing (or skew tolerance) would

become

(4)

The detection window reduces by this delay:

(5)

The delay also makes it possible to hide the flip-flop setup
time from the critical path:

(6)

C. Razor II Timing Constraints

This section explains the timing constraints for Razor II [12].
Fig. 16 shows the timing diagram for a Razor II system. As with
DSTB, the primary datapath resembles a pulse-latched system.
The error path involves feeding the internal latch node into
a transition detector which is enabled by a detection clock

. The transition detector is always enabled except for a small
window in which transitions during normal operation. If
a transition on occurs outside of this small window, an error
is flagged. plays a role analogous to . is kept high
even when the latch is opaque in order to detect soft errors. If
arrives too late and misses the latch, the error will go undetected
even though is high.
1) Detection Window: To ensure that normal transitions

are not flagged as errors, must be greater than the longest
clock-to- delay, . The difference between these two
values is the amount of time borrowing allowed by the system.

(7)

A transition on within after the rising edge of
will not be flagged as an error. To be correctly sampled by the
latch, must stabilize at least before the falling edge of
. Razor II therefore has a detection window :

(8)

As with DSTB, this window grows with pulse width and
shrinks with time borrowing.
2) Propagation Delay: In normal operation with no late data,
will arrive as the clock edge is rising, so the maximum logic

delay in a cycle is

(9)

3) Contamination Delay: The contamination delay for Razor
II is identical to DSTB:

(10)
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Fig. 16. Timing Diagram for Razor II System.

4) Clock Skew: Clock skew increases the maximum contam-
ination delay by as with DSTB, but can
be tolerated for propagation delay.
5) System Operation: Suppose that the system normally op-

erates correctly at some clock period . However, under un-
usual circumstances, the worst-case period required is . As
long as , the system can be clocked at and
yet catch and replay the unusual timing errors.
Some systems offer time borrowing to balance logic between

uneven pipeline stages and to opportunistically compensate for
variations and skew [20]. However, both DSTB and Razor II
have the poor hold time constraints of a pulsed-latch system.
The detection window suffers from an unpleasant tradeoff be-
tween contamination delay and the detection window because
both are linked to the pulse width. This severely limits the de-
tection window.

D. Bubble Razor Timing Constraints

This paper proposes adding a mid-cycle latch to the DSTB
system and using clocks with roughly 50% duty cycles. In the
same way that two-phase latches eliminate the hold time prob-
lems in pulsed latch systems and provide time borrowing [21],
the proposed sequencing methodology increases the detection
window, eliminates or greatly simplifies hold time problems,
and permits time borrowing to balance logic and compensate
for further variation. The improvements come at the cost of the
added latches in each pipeline stage.

Fig. 17. Timing Diagram for Bubble Razor System.

1) Two-Phase Timing Diagram: Fig. 17 shows a timing di-
agram for the proposed system. In the most general case, the
latches are controlled by two-phase non-overlapping clocks that
are high for and the flip-flop clock
is delayed by . The primary datapath now resembles an or-
dinary two-phase latch sequencing system [21]. Each pipeline
stage contains a transparent latch, approximately half of the
combinational logic, a transparent latch, and the remainder
of the combinational logic. However, is also sampled some
delay after the rising edge of phase 1. When the system is op-
erating at low frequency, data arrives at each latch while it is
opaque and waits until the latch becomes transparent. As the
frequency increases, data may arrive at some latches after they
become transparent. This is called time borrowing. As the fre-
quency increases further, the data will miss the setup time of
the flip-flop and an error will be detected. At even higher fre-
quencies, both the latch and flip-flop will miss the data and an
undetectable error occurs.
2) Detection Window: The detection window is now related

to the width of phase rather than of a short pulse. However, the
delay used for time borrowing cuts into the detection window:

(11)

This detection window can be substantially wider than in
Razor II because it does not trade against contamination delay.
3) Propagation Delay: In normal operation at maximum fre-

quency, data arrives at each latch while it is transparent so it
does not have to wait. In the absence of time borrowing, the
sum of the propagation delays through the two blocks of logic,

, must be less than one cycle minus the two
latch delays. Hence, the maximum logic delay in a cycle is

(12)

This is analogous to the logic delay in a two-phase latch based
system and is similar to the performance of DSTB. The system
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faces the same issues of balancing logic between phases that an
ordinary two-phase latch based system has.
4) Contamination Delay: A pipeline stage has two hold time

constraints, one at each latch. The data may depart a latch on
the rising edge of the phase and arrive at the next latch after the
contamination delay of the latch. This arrival time must be at
least a hold time after the following latch became opaque:

(13)

This is identical to the hold time constraint in an ordinary
two-phase latch based system. Even if the two phases are com-
plementary clocks with zero nonoverlap, the constraint is rela-
tively easy to meet.

5) Time Borrowing: The system may only borrow time past
the rising edge of until the flip-flop misses its setup time:

(14)

Hence, the detection window and time borrowing directly
trade off against each other as with the other techniques.

(15)

In an ordinary two-phase latch based system, no detection
window is provided, so all of the time is available for borrowing.
In this adaptive two-phase system, part of the phase is allocated
for detection and part for time borrowing.
The systemmay only borrow substantially more time past the

rising edge of .

(16)

However, the designer should not exploit this full amount of
time borrowing because a late input to a phase 2 latch cannot
be detected. Specifically, the maximum borrowing should be
reduced by so that timing errors detectable at the phase
1 latch do not result in undetected errors at the phase 2 latch.
Subtracting (15) from (17) gives a more conservative borrowing
limit that allows the full use of the detection window.

(17)

Note that this is exactly the same as the borrowing past the
rising edge of given in (14).
6) Clock Skew: As with Razor II, if , clock

skew can be tolerated so that it does not cut into the propagation
delay. Skew does increase the contamination delays necessary
in each phase.
7) Summary: In summary, two-phase adaptive latches are

much like regular two-phase latches. Their performance is better
than flip-flops because they can tolerate some skew, but worse
than pulsed latches because they have a second latch in the
critical path. Their hold time difficulties are minor compared
to pulsed latches. The first phase is divided into a first portion
available for time borrowing and a second part portion for de-
tecting late inputs.
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