28.1 A 4.5Tb/s 3.4Tb/s/W 64×64 Switch Fabric with Self-Updating Least-Recently-Granted Priority and Quality-of-Service Arbitration in 45nm CMOS

Sudhir Satpathy, Korey Sewell, Thomas Manville, Yen-Po Chen, Ronald Drexlinski, Dennis Sylvester, Trevor Mudge, David Blaauw

University of Michigan, Ann Arbor, MI

High-speed and low-power routers form the basic building blocks of on-die interconnect fabrics that are critical to overall throughput and energy efficiency of high performance systems [1,2]. Conventional routers use distinct logic blocks for routing data and handling arbitration [3,4]. At higher radices, connections between different blocks become more complex, limiting router scalability and degrading performance. Recently, two switch topologies [5,6] merged the data-routing fabric with arbitration control, avoiding this bottleneck. However, [6] relies on centralized control for channel allocation, limiting performance, while [5] is restricted to a small set of fixed priorities, rendering input ports prone to starvation. In addition, ever larger CMPs will require continued increases in bandwidth over previous designs. To address these issues, we present a 64×64 single-stage swizzle-switch network (SSN) with 128b data buses (8192 total input/output wires). The SSN can connect any input to any output, including itself. It has a peak measured throughput of 4.5Tb/s at 1.1V in 45nm SOI CMOS at 25°C. The SSN’s key features are: 1) a single-cycle least-recently- granted (LRG) priority arbitration technique that reuses the already present input and output data buses and their drivers and sense amps; 2) an additional 4-level message-based priority arbitration for quality of service (QoS) with 2b logic and 3% wiring overhead; 3) a bidirectional bitline repeater that allows the router to scale to >8000 wires. These features result in a compact fabric (4.06mm²) with throughput gain of 2.1× over [5] at 3.4Tb/s/W efficiency, which improves to 7.4Tb/s/W at 600mV.

Conventional least-recently-granted LRG implementations use controllable elements to resolve conflicts [4]. Large routers require many such delay elements, incurring overhead and the probability of meta-stability failures. In contrast, SSN uses a fully static circuit technique that is completely embedded in the data routing fabric by reusing the data-routing bitlines as “priority lines” for arbitration. The LRG and QoS priorities and the switch configuration are all stored locally at each crosspoint using an encoding. Since the data routing fabric is routing limited, this additional logic imposes zero area overhead over a simple switch. Furthermore, as the arbitration logic reuses the data bitlines and peripherals, arbitration has the same latency as data transfer and the two scale in tandem with the switch radix.

The SSN is a matrix-type fabric (Fig. 28.1.1) with input buses running horizontally and output buses vertically. When data is routed, the input and output buses transfer data traffic. During arbitration, the input bus routes a multi-hot code indicating which output channel(s) are requested by that input, and the output bus is used for conflict detection and arbitration. Each crosspoint stores a connectivity status bit indicating whether the input bus was granted access to the output channel. A 63b priority vector is also stored to represent the priority of the input bus with respect to all other inputs for that output bus. Figure 28.1.1 shows the priority vector at each crosspoint in a blow-up of a single output channel. Each input bus is assigned a unique bitline from the channel as its priority line which, if high, indicates it as the winner in a particular arbitration cycle. Similarly, each bit in the priority vector at a crosspoint corresponds with a priority line (bitline) and indicates whether the input bus at that crosspoint has higher or lower priority than the input bus associated with that priority line. For instance, in Fig. 28.1.1, priority line m corresponds to input bus m while the m-th priority bit of bus n is a 1, indicating that n has higher priority than m. When input n requests the output channel, this bit high results in the discharge of priority line m, suppressing access by input m. In contrast, input / stores a 0 at its m-th priority bit and hence does not suppress an access request from input m, meaning that l has lower priority than input m. Priority vectors need to be set consistently. In Fig. 28.1.1, the 0 at bit m of input / must be mirrored with a 1 at bit l of input m. Furthermore, the priority bits need to be correctly updated after each arbitration cycle to implement the LRG policy. We propose a simple mechanism to accomplish this update. In Fig. 28.1.1, inputs l and m request the output channel in an arbitration cycle. Input m wins owing to its higher priority, and its connectivity status bit is set to 1. After data transfer, input m releases its channel during a channel release cycle. In this cycle, input m first resets all its priority bits. This guarantees that m now has lowest priority, as required by the LRG algorithm. At the same time, input m also lowers its priority line m, which is a signal to other crosspoints in the output channel to set their m-th priority bit. This ensures that all other input buses now have higher priority than m. Input buses with higher priority than m remain unchanged and only inputs with lower priority than input m are increased in their priority by exactly one level. This simple and fast update mechanism guarantees both consistency of all priority vectors and a correct LRG priority update, which enables efficient and deadlock-free routing [7].

Figure 28.1.2 shows an SSN crosspoint circuit and the priority storage latch. During a request/release cycle, channels are indexed using the lower 64 bits from the input bus. Crosspoints send an acknowledgement over the upper 64 bits. The SSN also features a 4-level message-based QoS arbitration technique that allows only input buses with the highest message priority to arbitrate for the channel (Fig. 28.1.3.) A 2b message priority is decoded into a 4b thermometer code at the crosspoint, which is used to selectively discharge priority bitlines comprising the QoS priority bus. A multiplexer samples one of those priority bitlines using its own message priority and the input bus progresses to the LRG arbitration cycle if the monitored priority bit is not discharged. Using separate wires for QoS arbitration incurs 3% area overhead. However, the additional QoS arbitration cycle can be overlapped with the prior routing operation for the output bus, avoiding a latency penalty. The SSN features 8448 word-lines and 8576 bitlines spread across 4096 crosspoints. The low overhead integration of the LRG and QoS control within this fabric greatly improves SSN scalability and allows realization of large fabric sizes. In addition, new bidirectional repeaters (Fig. 28.1.3.) are used for bitlines that use a regenerative sensing element to improve delay despite high slew rates on long bitlines. The regeneration reduces bitline delay by 32% and allows for a 50% smaller bitline driver compared to a conventional repeater (Fig. 28.1.4), simulated. Simulated fabric latency shows 1.6× performance benefit from repeated bitlines (Fig. 28.1.4) and near-linear latency increase with radix size. Fine-grain clock gating reduces clock power by 16× at each crosspoint with 2.3% added delay. A crosspoint is clocked only if its connectivity status is ON, a request is asserted, or an LRG priority update occurs. Adjacent input ports are driven from opposite directions, reducing routing congestion and local Ldi/dt drop when repeaters on the 2.5mm long input bus switch.

The SSN achieves 4.5Tb/s at 1.1V with an efficiency of 3.4Tb/s/W (Fig. 28.1.5), which is 3.7× higher than [4] at similar bandwidth. The work in [4] uses an 8×8 mesh topology based on 5×5 routers at each node to connect 64 units, whereas the SSN uses a 64×64 single-stage fabric. The SSN is fully functional down to 550mV with a measured peak efficiency of 7.4Tb/s/W at 0.6V. Architectural simulations show that the worst-case cache access latency for conflicting requests improves by 1.8× for an SSN-enabled 64-core system due to the implemented LRG algorithm (Fig. 28.1.6). A routing study shows that only one metal layer in each direction (NS/EW) is needed, requiring 12% of routing tracks in these layers to connect 64 cores and caches with the SSN.

Acknowledgement:

We are thankful to NSF and ARM Ltd. for funding this research.

References:

Figure 28.1.1: SSN architecture with LRG priority update.

Figure 28.1.2: Crosspoint circuit and priority storage latch.

Figure 28.1.3: QoS arbitration technique and bitline repeater.

Figure 28.1.4: Simulated SSN delay and efficiency scaling.

Figure 28.1.5: Measured SSN performance and power and comparison with prior switch fabrics.

Figure 28.1.6: LRG reduces worst-case cache access latency by 1.83× and 2.03×, on average, over round robin and random arbitration schemes, respectively, in a 64-core SSN enabled CMP for SPLASH 2 benchmarks.
Figure 28.1.7: Die micrograph of test prototype. Crosspoint aspect ratio (1:0.73) is chosen to shorten bit-lines, improving fabric latency at low Vdd. Bit-lines are pre-charged within every 16×16 SSN macro, reducing pre-charge time by 59% over a similar sized single driver.

<table>
<thead>
<tr>
<th>Process</th>
<th>65nm SOI CMOS 12 metal layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die area</td>
<td>15.4 mm²</td>
</tr>
<tr>
<td>Fabric area, Total units</td>
<td>4.04 mm², 6.55G, 1192</td>
</tr>
<tr>
<td>Throughput, Frequency</td>
<td>4.47Tbps @ 1.1V, 590MHz, 15°C</td>
</tr>
<tr>
<td>Energy Efficiency @ peak throughput</td>
<td>3.47W/s/W</td>
</tr>
<tr>
<td>Peak energy efficiency</td>
<td>7.43W/s/°C @ 0.8W</td>
</tr>
</tbody>
</table>