
OuterSPACE: An Outer Product based Sparse Matrix
Multiplication Accelerator

Subhankar Pal∗ Jonathan Beaumont∗ Dong-Hyeon Park∗ Aporva Amarnath∗ Siying Feng∗

Chaitali Chakrabarti† Hun-Seok Kim∗ David Blaauw∗ Trevor Mudge∗ Ronald Dreslinski∗

∗University of Michigan, Ann Arbor, MI †Arizona State University, Tempe, AZ
∗{subh, jbbeau, dohypark, aporvaa, fengsy, hunseok, blaauw, tnm, rdreslin}@umich.edu

†chaitali@asu.edu

ABSTRACT
Sparse matrices are widely used in graph and data ana-
lytics, machine learning, engineering and scientific appli-
cations. This paper describes and analyzes OuterSPACE,
an accelerator targeted at applications that involve
large sparse matrices. OuterSPACE is a highly-scalable,
energy-efficient, reconfigurable design, consisting of mas-
sively parallel Single Program, Multiple Data (SPMD)-
style processing units, distributed memories, high-speed
crossbars and High Bandwidth Memory (HBM).

We identify redundant memory accesses to non-zeros
as a key bottleneck in traditional sparse matrix-matrix
multiplication algorithms. To ameliorate this, we imple-
ment an outer product based matrix multiplication tech-
nique that eliminates redundant accesses by decoupling
multiplication from accumulation. We demonstrate that
traditional architectures, due to limitations in their mem-
ory hierarchies and ability to harness parallelism in the
algorithm, are unable to take advantage of this reduction
without incurring significant overheads. OuterSPACE is
designed to specifically overcome these challenges.
We simulate the key components of our architecture

using gem5 on a diverse set of matrices from the Univer-
sity of Florida’s SuiteSparse collection and the Stanford
Network Analysis Project and show a mean speedup of
7.9× over Intel Math Kernel Library on a Xeon CPU,
13.0× against cuSPARSE and 14.0× against CUSP when
run on an NVIDIA K40 GPU, while achieving an aver-
age throughput of 2.9 GFLOPS within a 24 W power
budget in an area of 87 mm2.

KEYWORDS
Sparse matrix processing, application-specific hardware,
parallel computer architecture, hardware-software co-
design, hardware accelerators

1. INTRODUCTION
Generalized sparse matrix-matrix multiplication (Sp-

GEMM) and sparse matrix-vector multiplication (SpMV)
are two key kernels of complex operations in domains
such as graph analytics, machine learning, and scientific
computation, as we elaborate in Section 2. The per-
centage of non-zero elements in the matrices involved

can be very small. For example, the number of active
daily Facebook users is currently 1.08 billion and the
average number of friends per user is 338 [56]. A graph
representing Facebook users as vertices and “friendships”
between users as edges results in an adjacency matrix
of dimension 1.08 billion with a density of just 0.0003%.
Sparse matrix-based computations are becoming an

increasingly important problem. These applications are
typically bottlenecked by memory rather than computa-
tion, primarily due to irregular, data-dependent memory
accesses in existing matrix libraries, leading to poor
throughput and performance [25, 43].

The demise of Moore’s Law has led to renewed inter-
est in accelerators to improve performance and reduce
energy and cost. In order to address these issues for ap-
plications involving sparse matrix computations, we pro-
pose a custom accelerator, OuterSPACE, that consists of
asynchronous Single Program, Multiple Data (SPMD)-
style processing units with dynamically-reconfigurable
non-coherent caches and crossbars. OuterSPACE is de-
signed to work with the unconventional outer product
based matrix multiplication approach [16, 60], which
involves multiplying the ith column of the first matrix
(A) with the ith row of the second matrix (B), for all i.
Each multiplication generates a partial product matrix
and all the generated matrices are then accumulated
element-wise to form the final result. A seemingly obvi-
ous drawback of this approach is the maintenance and
storage of these partial product matrices. In the case
of sparse matrices, however, this is much less of a con-
cern and other considerations dominate. We identify
contrasting data-sharing patterns in the two distinct,
highly parallel compute phases: multiply and merge.
The multiply phase involves data-sharing across parallel
computation streams, while the merge phase involves
strictly independent processing with little-to-no com-
munication or synchronization between streams. This
discrepancy leads to sub-optimal execution of the outer
product method on mainstream architectures, namely
GPUs and multi-core/many-core CPUs (Section 4.4).
The reconfigurability of OuterSPACE enables us to

meet the contrasting computational needs of the outer
product method’s two compute phases. Employing asyn-
chronous SPMD-style processing elements allows for

724

2018 IEEE International Symposium on High Performance Computer Architecture

2378-203X/18/$31.00 ©2018 IEEE
DOI 10.1109/HPCA.2018.00067

control-divergent code to operate fully in parallel, as
opposed to SIMD architectures, which need to at least
partially serialize it. Software-controlled scratchpads,
coupled with hardware-controlled caches, prevent wasted
data accesses to the main memory. Further, allowing
non-coherence relieves pressure on the memory system
associated with excess broadcasts and writebacks (which
can contribute up to 30-70% of the total write traf-
fic [38]), providing a fraction of the performance benefits.
While the main focus of our work is the acceleration

of sparse matrix-matrix multiplication, we also present
results of sparse matrix-vector multiplication and de-
scribe how element-wise operations can be performed
on the OuterSPACE system.
We use a server-class multi-core CPU and GPU as

baselines to compare our architecture against. For sparse
matrix multiplication on the CPU, we use state-of-the-
art sparse BLAS functions from Intel Math Kernel Li-
brary (MKL). MKL provides math routines for appli-
cations that solve large computational problems and
are extensively parallelized by OpenMP threading while
using vector operations provided by the AVX instruc-
tion set. For the GPU, we compare our architecture
against the cuSPARSE and CUSP libraries. cuSPARSE
[2] applies row-by-row parallelism and uses a hash table
to merge partial products for each row of the output
matrix. CUSP [10, 19] presents fined-grained parallelism
by accessing the input matrices row-by-row and storing
the partial result with possible duplicates into an inter-
mediate coordinate format. The intermediate structure
is then sorted and compressed into the output matrix.
The rest of the paper is organized as follows. Sec-

tion 2 discusses a wide spectrum of applications that
utilize sparse matrix operation kernels. Section 3 pro-
vides a brief background on inner and outer product
multiplication and sparse matrix storage formats. Sec-
tion 4 discusses our outer product implementations for
sparse matrix-matrix multiplication and evaluates their
performance on the CPU and GPU. Section 5 provides
details of the OuterSPACE architecture and how the
outer product algorithm efficiently maps to it. Section 6
presents our experimental setup and Section 7 presents
results and insights drawn from them. Section 8 briefly
discusses how OuterSPACE can be scaled up to support
larger matrices. Lastly, Section 9 discusses related work
and Section 10 provides a few concluding remarks.

2. MOTIVATION
Sparse matrices are ubiquitous in most modern ap-

plications that operate on big data. It is the general
consensus that a selection of linear algebra routines op-
timized over years of research can be used to accelerate
a wide range of graph and scientific algorithms [22].

Sparse matrix-matrix multiplication, in particular, is
a significant building block of multiple algorithms preva-
lent in graph analytics, such as breadth-first search [23][24],
matching [49], graph contraction [15], peer pressure clus-
tering [54], cycle detection [65], Markov clustering [61],
and triangle counting [9]. It is also a key kernel in
many scientific-computing applications. For example,

fast sparse matrix-matrix multiplication is a performance
bottleneck in the hybrid linear solver applying the Schur
complement method [63] and algebraic multigrid meth-
ods [10]. Other computing applications, such as color
intersection searching [33], context-free grammar pars-
ing [48], finite element simulations based on domain
decomposition [27], molecular dynamics [30], and in-
terior point methods [34] also rely heavily on sparse
matrix-matrix multiplication.
Sparse matrix-vector multiplication is also predomi-

nant across diverse applications, such as PageRank [14],
minimal spanning tree, single-source shortest path and
vertex/edge-betweenness centrality calculations. It serves
as a dominant compute primitive in Machine Learning
(ML) algorithms such as support vector machine [47]
and ML-based text analytics applications [44].
While GPUs demonstrate satisfactory compute effi-

ciency on sparse matrix-vector multiplication and suffi-
ciently dense matrix-matrix multiplication [11], we show
that compute units are significantly underutilized when
the density drops below 0.1%, often achieving fewer than
1 GFLOPS, despite a peak theoretical throughput of
over 4 TFLOPS [59]. This is further supported by the
fact that rankings, such as the Green Graph 500 list [4],
are dominated by CPU-based systems.

For large dense matrices, inner product multiplication,
block partitioning and tiling techniques are used to take
advantage of data locality. However, when the density
of the input matrices is decreased, the run-time is domi-
nated by irregular memory accesses and index-matching
in order to perform the inner product operations. More-
over, while tiling techniques can reduce redundant reads
to main memory in the short-term, the on-chip storage
constraints still necessitate that many data elements be
redundantly fetched multiple times across tiles [31]. The
stark inefficiencies on both the hardware and algorithmic
fronts motivate our work to formulate a new approach
for sparse matrix multiplication acceleration.

3. BACKGROUND
This section outlines a few fundamental concepts be-

hind matrix-matrix multiplication and storage formats
for representation of sparse matrices in memory.

3.1 Matrix Multiplication

3.1.1 The Inner Product Approach
Traditionally, generalized matrix-matrix multiplica-

tion (GEMM) is performed using the inner product
approach. This is computed using a series of dot prod-
uct operations between rows of the first matrix (A) and
columns of the second matrix (B) and results in elements
of the final product (C):

ci,j =
∑N−1

k=0 ai,k × bk,j

Here, N is the number of columns in A (or rows
in B), while i and j are the row and column indices,
respectively, of an element in the final matrix. Thus,
each element of the final matrix is computed through
a series of multiply-and-accumulate (MAC) operations.

725

Figure 1: Outer product multiplication of matrices A and B.
Each column-of-A and the corresponding row-of-B are multiplied
with each other to produce N partial product matrices, Ci. These
are then summed together to produce the final result matrix C.

This is generally optimized using block partitioning and
tiling techniques [62].

3.1.2 The Outer Product Approach
The outer product method [16, 60] multiples two ma-

trices A and B by decomposing the operation into outer
product multiplications of pairs of columns-of-A and
rows-of-B, as illustrated in Figure 1. Mathematically,

C =
∑N−1

i=0 Ci =
∑N−1

i=0 aibi

where ai is the ith column-of-A, bi is the ith row-of-B
and Ci is a partial product matrix. Thus, the compu-
tation is divided into two sets: multiply operations to
generate the partial products, followed by merge opera-
tions to accumulate the partial products into the final
result. In Section 4, we propose an outer product based
sparse matrix multiplication paradigm based on this.

3.2 Compressed Storage Formats
An M×N matrix is often represented in the dense

format as a 2-D array laid out in the memory as an
M×N contiguous block. For sparse matrices, however,
most of the elements are zeros, and hence, there is little
merit in storing such matrices in the dense format.

The Compressed Sparse Row (CSR) format represents
a matrix in a compressed manner using three arrays.
The vals array consists of the non-zero elements of the
matrix in row-major order, the cols array contains the
column indices of the elements in vals, the row-ptrs array
contains pointers to the start of each row of the matrix
in the cols and vals arrays. The dual of the CSR format
is the Compressed Sparse Column (CSC) format, which
is comprised of the vals, rows and col-ptrs arrays.

In our implementation, while not being restrictive, we
employ a similar storage scheme, consisting of a contigu-
ous block of row pointers each pointing to contiguous
arrays of column index-value pairs. We henceforth refer
to this as the Compressed Row (CR) format. The com-
plementary format, Compressed Column (CC) format,
consists of column pointers pointing to arrays of row
index-value pairs.

4. OUTER PRODUCT IMPLEMENTATION
This section details the highly parallel outer product

algorithm alluded to in Section 3.1.2, which maximizes
memory reuse and avoids redundant reads to non-zeros.

A major inefficiency of sparse inner product multipli-
cation (i.e., row-of-A × column-of-B) is that multipli-
cations are performed selectively on matched non-zero
indices. The outer product technique benefits over other
conventional methods of multiplying matrices through:

• Elimination of index-matching : Each pair of non-
zero elements from column-of-A and the corre-
sponding row-of-B produce meaningful outputs.
This is in contrast to inner product like algorithms,
where the indices need to be matched before multi-
plication, leading to inefficient utilization of mem-
ory bandwidth to fetch elements redundantly.

• Maximized reuse of non-zeros : All elements in a
row-of-B are shared for all elements in a column-
of-A within an outer product. This maximizes the
amount of reuse within a particular outer prod-
uct calculation to its theoretical maximum, as we
illustrate later in Figure 2.

• Minimized loads of a column and row : As a result
of maximized data reuse within a outer product
calculation, we have no available data reuse across
different outer products. Thus, once the computa-
tion between a column-of-A and the corresponding
row-of-B is completed, they are never used again
and can be evicted from local memory.

In the rest of the section, we present details about
the two phases of outer product multiplication: multiply
and merge. Since our algorithm requires that A be in
CC format and B be in CR, we describe in Section 4.3
how we convert a matrix into its complementary format.

4.1 Multiply Phase
Figure 2 shows an example multiplication of two 4×4

sparse matrices, given three parallel processing units
in the system. For clarity of understanding, the dense
representations of matrices A and B are shown on the
top-left of the figure. These matrices are decomposed
into pairs of columns-of-A and rows-of-B. An outer

Figure 2: Outer product multiplication of matrices A (in CC)
and B (in CR), illustrated in dense format, using three processing
elements, and the layout of the partial products in memory. Both
the CR and the CC modes of operation are shown here. Note that
the third row of B is empty and hence no outer product is formed
corresponding to it. The blue blocks represent the row/column
pointers and the orange + green blocks are the partial product
rows/columns containing index-value pairs.

726

product operation between each pair generates a full 4×4
compressed matrix and each of the generated matrices
are summed together to produce the final result. In the
CR mode of operation, each processing unit multiplies
one non-zero element from a column-of-A with all the
non-zeros in the corresponding row-of-B. The processing
units are greedily scheduled in this example.

In our implementation, we store the intermediate par-
tial products as a set of linked lists corresponding to
each row (pointed to by Ri), where each node of the list
contains a contiguous set of values representing a partial
row of an outer product (Figure 2).
The CC mode of operation is analogous to the CR

mode, where we re-program the processing units to
multiply an element of a row-of-B with all the non-zeros
in the corresponding column of A. The row pointers, Ri

are replaced by column pointers, Ci. This is illustrated
in the bottom-right part of Figure 2.

4.2 Merge Phase
The outer products pointed to by a row/column pointer

need to be merged to form the final result. We assign the
processing units to walk through the linked list pointed
to by Ri/Ci and merge them to form a complete final
row/column. In the event that multiple data values
from different outer products correspond to the same
index, they must be summed together. However, this
gets increasingly rare with sparser matrices.
In Section 5, we elaborate the merging scheme that

maps efficiently to the architecture of OuterSPACE. The
hardware can be programmed to produce the resultant
matrix in either the CR or the CC format. For brevity,
we assume CR mode operation in the rest of the paper.

4.3 Matrix Format Conversion
When matrices A and B are not available in the CC

and CR formats, respectively, either one or both will
have to be converted to the complementary format. This
is a one-time requirement for chained multiplication op-
erations of the typeA×B×C. . . , since OuterSPACE can
output the result in either CR or CC formats. However,
computations such as AN can be decomposed into a loga-
rithmic number of operations (A2=A×A, A4=A2×A2

and so on), where each operation would consist of conver-
sion followed by actual computation. The requirement
of conversion is obviated for symmetric matrices, since
the CR and CC forms are equivalent.
In our evaluations, we assume that both the inputs,

A and B, are available in the CR format, such that A
must be converted. We partition the conversion opera-
tion into conversion-load and conversion-merge phases,
analogous to the multiply and merge phases. The pro-
cessing elements stream through A and store it into
the intermediate data structure (Figure 2) in parallel.
Conceptually, this is similar to multiplying Matrix A
with an Identity Matrix of the same dimension:

ICC×ACR →ACC (CC mode)

where, ICC is the Identity Matrix and the subscripts
represent the respective storage formats.

4.4 Performance on Traditional Hardware
Outer product multiplication is a well-established lin-

ear algebra routine. Yet, it is not widely implemented
in mainstream hardware, as these designs are not well-
suited for such algorithms. We expose the inefficiencies of
this paradigm on traditional hardware by quantitatively
comparing our outer product implementations against
state-of-the art libraries, due to the absence of readily
available libraries based on outer product multiplication.

4.4.1 Multi-Core CPU (Intel Xeon)
Figure 3 compares the execution times of our CPU

implementation of the outer product algorithm, using the
POSIX threads library, against the Intel MKL SpGEMM
library, on an Intel Xeon processor with 6 threads.

Figure 3: Comparison of our outer product implementation
against Intel MKL on a Xeon multi-core CPU. The matrices are
uniformly random with increasing dimension and decreasing den-
sity, keeping the number of non-zeros constant at 1 million. Format
conversion and memory allocation times are not considered.

While the execution time of MKL drops exponentially
with decreasing matrix density, the outer product al-
gorithm must overcome two overheads with increasing
matrix dimension (N): the decreasing number of useful
operations performed at each matrix datum and the
increasing number of book-keeping operations due to
the growing size of the data structure in Figure 2. Thus,
the price of no index-matching and minimized redundant
reads of non-zeros in the outer product technique is paid
for by additional pressure on the memory system, as N
N×N partial product matrices are streamed out during
the multiply phase and back in during the merge phase.

This necessitates larger memory bandwidth and more
cores to churn through the data streams than available
on our 6-core CPU. It is further exacerbated by the
absence of software-controlled scratchpad memories and
the ineffectiveness of CPU caching for the merge phase,
which does not exhibit any data sharing within caches
and thus leads to thrashing. This is substantiated by
our studies of cache performance of the matrices in
Figure 3, which show mean L2 hit rates of 0.14 and 0.12
during the multiply and merge phases, respectively. In
comparison, MKL spGEMM routines are vectorized and
heavily optimized for the multi-core architecture.
Table 1 presents data generated using Intel VTune

Amplifier for a Core i7 CPU running the MKL on the
same matrices as in Figure 3. The under-utilization of
bandwidth (average of 62%) suggests that bandwidth is
not the primary bottleneck for the MKL and increasing
it will likely provide only sub-linear speedups.

727

Table 1: Bandwidth utilization of the MKL sparse GEMM on
an Intel Core i7 running 4 threads. Each matrix has a uniform
random distribution of 10 million non-zeros.

Matrix
Dimension

Peak Bandwidth
Utilization (%)

Avg. Bandwidth
Utilization (%)

1,048,576 62.5 44.2
2,097,152 67.5 58.4
4,194,304 67.5 62.0
8,388,608 85.0 62.4

4.4.2 GPU (NVIDIA Tesla)
NVIDIA’s implementations for matrix multiplication

provided in their CUSP and cuSPARSE libraries perform
very poorly at density levels below 0.01%. Running syn-
thetic workloads at this level of sparsity achieves fewer
than 1 GFLOPS. L1 cache hit rate and utilized mem-
ory bandwidth drop to under 40% and 10 GB/s, from
86% and 30 GB/s at 10% density. We compare the per-
formance of our custom outer product implementation,
written in CUDA, against CUSP. Our implementation
makes use of the GPU’s available scratchpad storage.
Figure 4 compares the execution times when run on an
NVIDIA K40 GPU.

Figure 4: Comparison of a GPU outer product implementation
against CUSP. The matrices are uniform random with increasing
size while density is decreased, keeping the number of non-zeros
constant at 1 million.

A comparison of results from Figure 3 and Figure 4
show that the GPU makes better use of available pro-
cessing power and bandwidth than the CPU. The mul-
tiplication phase streams and processes the data much
faster than the CPU implementation, scaling roughly
linearly with decreasing density.
However, latency is quickly dominated by the merge

phase. Despite both phases achieving similarly high
L1 hit rates (> 80%) and low data dependency stalls
(< 5%), the merge phase suffers from a much lower total
throughput. This is a result of numerous conditional
branches within the code to handle different relative
column indices as they are read in and sorted. Because
there is little correlation between adjacent threads as
they process these branches, many threads within a given
warp diverge and must be executed serially. Thus, while
the high degree of parallelism available is attractive, the
SIMD nature of the GPU’s processing elements prevent
an overall win of the algorithm over traditional libraries.

4.4.3 Many-Core CPU (Intel Xeon Phi)
Our experiments with the CPU outer product code

on an Intel Xeon Phi Knights Corner system show an

average slowdown of 14.7× compared to the CPU, for
uniformly random matrices of dimensions varying from
32K to 524K with the number of non-zeros fixed at
1 million. We also note that denser matrices incur a
significant amount of memory allocation overhead, which
worsens the overall execution time. Although the outer
product approach has high degrees of parallelism, it lacks
an equivalent vectorizability. Moreover, Akbudak and
Aykanat show in [6] that the memory latency, rather
than bandwidth, is the performance bottleneck for the
many-core Xeon Phi system.
Intel MKL’s spGEMM function also shows 1.1× to

8.9× increase in execution time with respect to that on
the Xeon CPU with decreasing density. The large caches
of CPUs result in significantly better sparse matrix-
matrix multiplication performance of CPUs as compared
to the Xeon Phi, because repeatedly accessed rows in
B may already be available in cache. The throughput-
oriented Xeon Phi architecture has much smaller caches,
resulting in many inefficient reloads of data from global
memory. This trend is similar to what is observed in [50]
for both the CPU and the Xeon Phi.
To combat the inefficiencies of existing architectures,

we design a many-core architecture using an SPMD
paradigm to exploit the massive parallelism inherent
in the algorithm. We allow simple, dynamic resource
allocation using asynchronous tiles and a non-coherent
memory system. The SPMD paradigm allows computa-
tion to drift among the cores when work is imbalanced,
leading to better compute utilization than the SIMT
programming model in GPUs. Furthermore, to address
the performance discrepancy between the multiply and
merge phases due to different memory access patterns,
we employ a reconfigurable cache hierarchy to allow
data-sharing across multiple cores when it is needed and
segmenting storage to isolated units when it is not.

5. THE OUTERSPACE ARCHITECTURE
Qualitative analysis and results from the previous sec-

tion reveal two key reasons why outer product multipli-
cation does not perform well on conventional hardware:

• Outside of a particular outer product calculation
during the multiply phase, there is no reuse of ele-
ments, as explained in Section 4. During this phase,
the corresponding columns-of-A and rows-of-B can
be shared across processing elements, whereas there
is no data sharing between the processing units dur-
ing the merge phase. Traditional hardware lacks
the support to optimize for both of these phases,
while dealing with variable memory allocation.

• While the multiply phase has consistent control
flow between adjacent threads, dynamic execution
paths in the merge phase necessitate fine-grained
asynchrony across processing elements to fully uti-
lize the available parallelism. An ideal architecture
will allow for fully decoupled processing without
sacrificing the ability to effectively share data.

To harness the massive parallelism and data reuse
through fine-grained control over what data is fetched

728

Figure 5: The memory hierarchy (left) and the architectures of the Processing Tile (center) and the Processing Element (right). The
solid dark lines represent 64-bit bidirectional links.

from memory, we propose our custom architecture, Out-
erSPACE. Figure 5 shows the microarchitecture of the
OuterSPACE system. Our architecture is a system-
on-chip consisting of SPMD-style parallel processing
elements arranged as tiles, with two levels of shared,
reconfigurable caches, and a set of control processors for
scheduling and coordination, all connected to an HBM.
In this work, we implement simple cache-to-scratchpad
reconfiguration by switching-off tag arrays, although re-
cent work such as coherent scratchpads [8] and Stash [37]
have the potential to make OuterSPACE more general.
Following is a summary of the key elements of our

proposed architecture:

• Processing Element (PE): A custom data-streaming
and compute engine comprised of an ALU with a
floating point unit, scratchpad memory, a control
unit, a work queue and an outstanding request
queue (PEs are grouped into processing tiles)

• Local Control Processor (LCP): A small in-order
core that coordinates the PEs within a tile, stream-
ing instructions for the PEs to execute

• Central Control Processor (CCP): A power-efficient
core that is responsible for scheduling work and
allocating memory for intermediate data structures

• High-speed crossbars and coalescing caches that
can be reconfigured into scratchpad memories

• High Bandwidth Memory that stores the input ma-
trices and the intermediate partial products

In the following subsections, we present a detailed
description of each element of the OuterSPACE system.
We model 16 PEs per tile and 16 tiles based on scala-
bility studies [53] to ensure that crossbar sizes do not
bottleneck our architecture.

5.1 Processing Element
A block diagram of the Processing Element (PE) is

shown on the right side of Figure 5. At the core of the PE
is a floating-point capable ALU for multiplication and
summation of the matrix elements. These elements are
streamed-in from the memory hierarchy (Section 5.3),
orchestrated by the Control Unit, which generates loads
and stores to memory. An outstanding request queue
keeps track of the loads and stores that are in-flight.
Lastly, there is a small private scratchpad and a FIFO

work queue for decoded instructions and bookkeeping
data, which are supplied to the PE by the LCP.

5.2 Processing Tile
A processing tile in our design consists of 16 PEs, an

LCP and a reconfigurable cache with 16 processor-side
read/write ports and 4 memory-side ports. These caches
internally consist of 16 single-ported cache banks and a
controller (not shown) that interfaces with the LCP to
reconfigure the cache into a scratchpad. As mentioned in
Section 4, this is the key structure that reconfigures our
system from a shared memory architecture into a non-
shared one. The PEs within a tile communicate with
the lower memory levels through a 4-ported crossbar.

5.3 Memory Hierarchy
Figure 5 shows 16 processing tiles that interface with

the main memory through 4 L1 caches. These caches act
like victim caches [32] and thus are smaller than their L0
counterparts, in order to minimize undesired eviction of
data that is going to be reused. They cache-in elements
that are evicted from the L0 caches when some PEs
start drifting away in their execution flow from others
within a tile, which occurs when the PEs are operating
on multiple rows simultaneously. The L0 caches also
contain a 16×16 crossbar (not shown).

Our baseline main memory features an HBM 2.0 x64
interface [55], with 16 memory channels and a total
memory bandwidth of 128 GB/s. With a PE clocked at
1.5 GHz, the total bandwidth for all the PEs is 9.2 TB/s
(256 PEs × 1.5 giga-operations per second × 12 B per
access for double-precision value and index pair × read +
write channels). We overcome this bandwidth gap with a
multi-level cache-crossbar hierarchy connecting the PEs
to the memory. This hierarchy provides extensive reuse
of temporally correlated data within an outer product.
The PEs in our system execute in an SPMD-fashion,

often drifting apart from each other and only synchro-
nizing at the end of the multiply and merge phases, as
outlined in Section 4. This contrasts with the GPU,
which traditionally employs a SIMT execution model,
where compute units operate in locksteps over a dataset.

This also opens up avenues for various circuit-level
techniques to improve energy efficiency, such as voltage
throttling and dynamic bandwidth allocation. Further-
more, the PEs only share read-only data, which allow

729

for the crossbars to be non-coherent structures without
breaking correctness. Incorporating techniques such as
SARC [35], VIPS [36] or DeNovo [18] would help expand
OuterSPACE to algorithms demanding coherence, which
we defer to a future work.

5.4 Mapping the Outer Product Algorithm
This subsection illustrates how the outer product al-

gorithm described in Section 4 maps to OuterSPACE.

5.4.1 Multiply Phase
As mentioned in Section 4.1 and illustrated in Fig-

ure 2, processing units (PEs in OuterSPACE) multiply
an element of a column-of-A with the entire correspond-
ing row-of-B. The L0 caches retain the rows-of-B until
all the PEs within a tile are finished with this set of
multiplication. The PEs store the multiplied results in
contiguous memory chunks, which are part of the linked
list corresponding to a row-pointer (Ri), using a write-
no-allocate policy to avoid results evicting elements of
B. The memory layout described in Figure 2, where
chunks of memory in each node of the list are discon-
tiguous, allows each PE to work independently without
any synchronization. Thus, the only data that the PEs
share throughout the multiply phase is read-only data
(values and column-indices within rows-of-B).

5.4.2 Merge Phase
A subset of the PEs within each tile is assigned to

merge all the partial products corresponding to a single
row of the resultant final matrix at the start of the merge
phase. The values to be merged are distributed across
the partial products, as indicated by Ri in Figure 2.
For minimum computational complexity, a parallel

merge-sort algorithm would be optimal for merging rows
across partial products in rN log(rN) time, where rN is
the total number of elements in the row. However, this
will result in multiple re-fetches of the same data when
the entire row cannot be contained within the upper
memory hierarchy, which will dominate the execution
time. Instead, we focus on minimizing memory traffic.
Our algorithm operates as follows (assuming the number
of rows to merge is rN , each of which contains rN
elements, where r and N are the density and dimension
of the matrix, respectively):

1. Fetch the head of each row and sort by column
index into a linked list (O(r2N2) operations)

2. Store the smallest-indexed element from the list
into the final location, load the next element from
the corresponding row and sort it into the list
(O(rN) operations)

3. Repeat 2 until all elements of each row have been
sorted and shipped to memory (r2N2 iterations)

The overall complexity is O(r3N3). While less effi-
cient algorithmically, number of elements stored in local
memory is only on the order of rN . A local buffer of the
next elements to sort can help hide the latency of insert-
ing elements into the list under the latency of grabbing
a new element from main memory. Given our target

workloads and system specifications, the time to sort the
values is expected to be on the order of one-tenth to one-
millionth of the time for memory to supply the values,
with sparser matrices having a smaller discrepancy.

Because this phase requires no data sharing across tiles
(each set of rows that is being merged reads independent
data), the shared cache can be reconfigured into private
scratchpads. This minimizes memory transactions by
eliminating conflict cache misses within a processing tile
and saves energy by eliminating tag bank lookups. If a
scratchpad bank is too small to buffer the entire merge
operation of each row, we recursively merge a subset of
the rows into a single row until the number of rows is
sufficiently small.

Figure 5 illustrates the reconfigurability of the tiles to
handle the different phases of computation. Specifically:

• A batch of the PEs within a tile are disabled to
throttle bandwidth to each PE and conserve power.
Half of the PEs load the row buffers, while the
remainder sort the incoming values and store them
to the resultant matrix.

• A subset of the cache banks within a tile are recon-
figured as private scratchpad memories for the PEs
(Figure 5). The reconfiguration can be achieved sim-
ply by power-gating the tag array of the cache. The
address range of each bank is remapped by software,
with assistance from the LCP. Thus, the reconfig-
ured private cache-scratchpad structure maximizes
memory-level parallelism (MLP), while minimizing
stalls due to computation. This technique has been
employed on a smaller scale in GPUs [3].

5.5 Memory Management
Precise memory pre-allocation for the intermediate

partial products is impossible, as the sizes of the outer
products are dependent on the specific row/column
sizes [41]. However, due to the predictable nature of
the two phases, we can greatly reduce the overhead of
dynamic memory allocation over general schemes.

For the multiply phase, we statically assign each par-
tial product enough storage to handle the average case
(the average number of non-zero elements can be quickly
calculated from the compressed format before computa-
tion begins), as well as a large spillover stack to be used
dynamically for larger products. As a statically assigned
PE (one per row/column pair) begins computation of
a given product, it can evaluate from the row-pointers
exactly how much spillover space is needed. The PE
sends a single atomic instruction to increment a global
stack pointer by the appropriate amount, and writes the
current value location visible to the other PEs. As long
as the PEs do not consume the entirety of their static
allocation before the atomic load returns, the latency of
memory allocation can be entirely hidden.
In the merge phase, we perform a single memory al-

location before computation by maintaining a set of
counters for the size of each row in the multiply phase.
Data is then streamed from two contiguous memory seg-
ments for each partial product row: the static partition
from the multiply phase and, if used, a portion of the

730

Table 2: Simulation parameters of OuterSPACE.

Processing
Element

1.5 GHz clock speed, 64-entry outstanding re-
quests queue, 1 kB scratchpad memory
Multiply phase: All 16 PEs per tile active
Merge phase: 8 PEs per tile active, rest disabled

L0 cache/
scratchpad

Multiply phase: 16 kB, 4-way set-associative,
16-ported, shared, non-coherent cache with
32 MSHRs and 64 B block size per tile
Merge phase: 2 kB, 4-way set-associative, single-
ported, private cache with 8 MSHRs and 64 B
block size + 2 kB scratchpad per active PE-pair

L1 cache
4 kB, 2-way set-associative, 16-ported, shared,
non-coherent with 32 MSHRs and 64 B blocks

Crossbar 16×16 & 4×4 non-coherent, swizzle-switch based
Main
Memory

HBM 2.0 with 16 64-bit pseudo-channels each @
8000 MB/s with 80-150 ns average access latency

spillover space. The data is merged and streamed-out to
the separately-allocated merge phase storage. As matri-
ces get sparser, the amount of space wasted due to merge
collisions in this space becomes negligibly small. We
discuss further about allocation overheads in Section 7.3.

The memory footprint of the outer product approach
can be represented as (α·N+β·N2·r+γ ·N3·r2), where α,
β and γ are small, implementation-dependent constants,
for uniformly random sparse matrices with dimension
N and density r. For non-uniform matrices, this metric
is not easily quantifiable, as the sparsity patterns of the
two matrices heavily influence the number of collisions
between non-zeros.

5.6 Other Matrix Operations
We evaluate a sparse-matrix sparse-vector multiplica-

tion algorithm similar to our matrix-matrix implemen-
tation, with a few simplifications. In particular, the
amount of work assigned to each PE is reduced and
no scratchpad is needed in the merge phase, as partial
products do not need to be sorted.
Element-wise matrix operations follow a similar pro-

cedure as the merge phase of the matrix-matrix mul-
tiplication algorithm described in Section 4.2. Given
N matrices A1, A2, ..., AN with the same dimensions,
the data can be reorganized into a data structure simi-
lar to the one illustrated in Figure 2 and element-wise
operations (+, -, ×, /, ==) can be performed on it.

There is close to a one-to-one correspondence between
data operations in each of the typical element-wise ma-
trix routines (addition, subtraction, multiplication and
comparison) and themerge phase of outer product sparse
matrix-matrix multiplication. Thus, they are expected
to have similar complexities and we do not evaluate
them separately in this work.

6. EXPERIMENTAL SETUP
To evaluate the performance of the outer product al-

gorithm on OuterSPACE, we modeled the key elements,
namely, the PEs, the cache-crossbar hierarchy and the
HBM, using the gem5 simulator [13]. We created two
separate models pertaining to the two phases. We ig-
nored the start-up time, since it can be easily hidden by
the latency of a few memory accesses, and scheduling
delays. We also assumed that the PEs are greedily sched-

Table 3: CPU and GPU configurations.

CPU
3.6 GHz Intel Xeon E5-1650V4, 6 cores/12 threads
128 GB RAM, solid state drives

GPU
NVIDIA Tesla K40, 2880 CUDA cores @ 745 MHz,
12 GB GDDR5 at 288 GB/s

uled for the multiply phase. We modeled an outstanding
request queue with 64 entries, for each PE, which is
at par with the number of load-store units in modern
GPUs [1] and CPUs [29], in order to hide latencies of
memory accesses. The simulation parameters used are
shown in Table 2.

We chose our parameters to optimize for performance
and power efficiency. For the merge phase, we enabled
only 8 of the 16 PEs per tile and reconfigure a propor-
tional number of cache banks into private scratchpad
memories. We, in fact, observed that enabling a greater
number of PEs results in slight performance degradation
due to thrashing in the L1 cache. The scratchpad size
was chosen to be large enough to hide the load latency
during sort operations.
CACTI 6.5 [45] was used for modeling cache latency,

area and power values. For power dissipated by the core,
we used static and dynamic power consumption values
for an ARM Cortex-A5 with VFPv4 in 32 nm from [53].
We pessimistically used the same aggressive core model
for the PEs in addition to the LCPs and CCP. Dynamic
power consumption was calculated by capturing activity
factors of the cache and cores from simulation. The
HBM power was derived from the JEDEC specification
document [55] and [7]. The parameters for modeling the
crossbars were obtained from [53].
We built an instruction trace generator for the PEs

and ran the generated traces through our gem5 model
in order to process large matrices. Due to the practi-
cal limitations of this approach, we did not model the
dynamic memory allocation overhead in OuterSPACE,
and thus do not consider this overhead across any other
platform in our evaluation. However, in Section 7.3,
we provide an analysis of this overhead by quantifying
the number of dynamic allocation requests using the
allocation approach in Section 5.5.

7. EVALUATION
We evaluate the OuterSPACE architecture by compar-

ing against state-of-the-art library packages on commer-
cial systems, namely, Intel MKL (Version 2017 Initial
Release) on the CPU, NVIDIA cuSPARSE (Version 8.0)
and CUSP (Version 0.5.1) on the GPU. The specifica-
tions of these hardware are summarized in Table 3. We
show the performance of OuterSPACE on two important
classes of matrix operations, sparse matrix-matrix and
sparse matrix-vector multiplication.
We report the simulation times obtained from our

gem5 models for the multiply and merge models running
instruction traces that exclude memory-allocation code.
In order to provide fair basis for comparison against

the CPU and the GPU, we discard memory allocation
time and only consider the execution time of computa-
tion functions for the MKL, cuSPARSE and CUSP im-
plementations (memory-allocation and computation are

731

Table 4: Matrices from University of Florida SuiteSparse (SS) [21] and Stanford Network Analysis Project (SNAP) [39] with their plots,
dimensions, number of non-zeros (nnz), average number of non-zeros per row/column (nnzav) and problem domain.

Matrix Plot
Dim.
nnz
nnzav

Kind

2cubes -
sphere

101K
1.6M
16.2

EM
problem

amazon-
0312

401K
3.2M
8.0

Co-
purchase
network

ca-Cond-
Mat

23K
187K
8.1

Conden-
sed

matter

cage12
130K
2.0M
15.6

Directed
weighted
graph

cit-
Patents

3.8M
16.5M
4.4

Patent
citation
network

Matrix Plot
Dim.
nnz
nnzav

Kind

cop20k-
A

121K
2.6M
21.7

Accele-
rator
design

email-
Enron

36.7K
368K
10.0

Enron
email

network

facebook
4K

176K
43.7

Friend-
ship

network

filter3D
106K
2.7M
25.4

Reduc-
tion

problem

m133-b3
200K
801K
4.0

Combi-
natorial
problem

Matrix Plot
Dim.
nnz
nnzav

Kind

mario-
002

390K
2.1M
5.4

2D/3D
problem

offshore
260K
4.2M
16.3

EM
problem

p2p-
Gnutella-

31

63K
148K
2.4

p2p
network

patents -
main

241K
561K
2.3

Directed
weighted
graph

poisson-
3Da

14K
353K
26.1

Fluid
Dynam-

ics

Matrix Plot
Dim.
nnz
nnzav

Kind

roadNet-
CA

2.0M
5.5M
2.8

Road
network

scircuit
171K
959K
5.6

Circuit
simula-
tion

webbase-
1M

1M
3.1M
3.1

Directed
weighted
graph

web-
Google

916K
5.1M
5.6

Google
web
graph

wiki-
Vote

8.3K
104K
12.5

Wiki-
pedia

network

discrete functions for these libraries). While reporting
throughput, we only consider operations associated with
multiplication and accumulation in order to maintain
consistency across algorithms and to avoid artificially
inflating performance by accounting for additional book-
keeping. We verify that the raw GFLOPS reported by
our GPU performance counters on the Florida bench-
mark suite (Section 7.1.2) are similar to those reported
by Liu and Vinter [41], but omit the results for brevity.

7.1 Sparse Matrix-Matrix Multiplication
Without loss of generality, we evaluate the perfor-

mance of sparse matrix-matrix multiplication on our
platform by multiplying a sparse matrix with itself (C =
A×A; A in CR format to begin with, generating C in
CR), in order to closely mimic the multiplication of two
matrices of similar sizes/densities. We use two different
sets of matrices, synthetic and real-world, as benchmarks
to evaluate OuterSPACE. We account for format conver-
sion overheads for non-symmetric matrices (Section 4.3)
while reporting performance results for OuterSPACE, in
order to model the worst-case scenario.

7.1.1 Synthetic Matrices
In Figure 6, we compare the performance-scaling of

the outer product algorithm on OuterSPACE against
the CPU and GPU libraries, using a set of synthetic
datasets obtained from the Graph500 R-MAT data gen-
erator [46]. The R-MAT parameters were set to their
default values (A=0.57, B=C=0.19) used for Graph500
to generate undirected power-law graphs, which is also
employed in recent work in graph analytics [51] [58]. We
present results for medium-sized matrices correspond-
ing to nEdges equal to 100,000 with nVertices swept
between 5,000 and 80,000. In order to illustrate the im-
pact of sparsity pattern on performance, we also provide
comparisons against uniformly random matrices of same
dimensions and densities.

OuterSPACE performs consistently well with respect
to other platforms. It outperforms MKL and CUSP
with a greater margin for the R-MATs than for the uni-
formly random matrices, with the execution time chang-

ing only slightly across matrix densities. cuSPARSE, on
the other hand, performs better with increasing density.
OuterSPACE exhibits slight performance degradation
with increasing density for uniformly random matrices,
but gets starker speedups over the GPU for power-law
graphs. This data also substantiates that the outer prod-
uct algorithm is much less sensitive to a change in size
for a given number of non-zeros than the MKL, which
correlates with our observations on the CPU (Figure 3).

7.1.2 Real-World Matrices
The real-world matrices we evaluate are derived from

the University of Florida SuiteSparse Matrix Collec-
tion [21] and the Stanford Network Analysis Project
(SNAP) [39], containing a wide spectrum of real-world
sparse matrices from diverse domains such as structural
engineering, computational fluid dynamics, model reduc-
tion, social networks, web graphs, citation networks, etc.
These matrices have been widely used for performance
evaluation in prior work in this area [20, 26, 42, 52].
We choose matrices from this collection that have both
regular and irregular structures. Table 4 presents a sum-
mary of the structure and properties of these matrices,
which have dimensions varying from 4,096 to 3,774,768
and densities ranging between 0.001% and 1.082%.

In Figure 7, we present the speedups of OuterSPACE
over the MKL, cuSPARSE and CUSP. OuterSPACE
steadily achieves speedups across all the matrices identi-

Figure 6: Performance-scaling comparison of OuterSPACE with
change in matrix dimension and density. The set of data on the
left is for R-MATs with parameters (A=0.57, B=C=0.19) for
undirected graphs. The set on the right is for uniformly random
matrices of the same size and density as the R-MATs.

732

Figure 7: Speedups of OuterSPACE over the CPU running Intel MKL and the GPU running cuSPARSE and CUSP.

fied in Table 4, with an average of 7.9× over the Intel
MKL, 13.0× over cuSPARSE and 14.0× over CUSP.

Some of the matrices that show relatively lesser speed-
ups over the MKL and cuSPARSE are filter3D and
roadNet-CA. These matrices are regular (i.e. have most
of their non-zeros along their diagonals) and work better
with the multiplication algorithms used by the libraries,
because they incur fewer comparisons while multiply-
ing two regular matrices. OuterSPACE performs only
3.9× better than MKL for the m133-b3 matrix due to
the uneven distribution of non-zeros along the columns,
which leads to load imbalances during the merge phase
and uneven data sharing patterns during the multiply
phase. MKL performs particularly bad on email-Enron,
a real-world email dataset with the characteristics of
a power-law graph [17], substantiating the observation
made in Section 7.1.1. OuterSPACE also achieves the
highest speedups over cuSPARSE for matrices that have
a more smeared (irregular) distribution of non-zeros,
such as ca-CondMat, cit-Patents, p2p-Gnutella31 and
web-Google (Table 4).

OuterSPACE running the outer product algorithm
over this suite of matrices achieves an average through-
put of 2.9 GFLOPS, accounting only for useful opera-
tions (multiplications and summations). We also observe
a memory bandwidth utilization of 59.5-68.9% for the
multiply phase and a slightly lower 46.5-64.8% for the
merge phase. This is due to fewer active PEs and greater
use of local memory during the merge phase. This can
be further improved if the matrices are strategically laid
out in memory such that there is fairer access to ev-
ery memory channel, but this would require compiler
support and is beyond the scope of our work.

7.2 Sparse Matrix-Vector Multiplication
In this section, we evaluate the performance of sparse

matrix-vector multiplication on OuterSPACE. Table 5
shows the speedups of OuterSPACE over the CPU run-
ning MKL and GPU running cuSPARSE with vector
densities ranging from 0.01 to 1.0 (fully dense). The
performance of MKL is constant across different vector
densities for a given matrix dimension and density, be-
cause MKL’s sparse matrix-vector method performs the
best when the vector is treated as a dense vector regard-
less of the number of zeros in the vector. cuSPARSE,
however, scales with change in vector density.

Table 5: Speedups of OuterSPACE over CPU (MKL) and GPU
(cuSPARSE) for sparse matrix-vector multiplication. The density
of the vector (r) is varied from 0.01 to 1.0. The sparse matrices
contain uniformly random distribution of one million non-zeros.

Speedup over CPU Speedup over GPU

Matrix
Dim.

r=
0.01

r=
0.1

r=
1.0

r=
0.01

r=
0.1

r=
1.0

65,536 93.2 8.7 0.8 92.5 11.2 3.8
131,072 107.5 9.9 1.0 98.2 11.2 2.8
262,144 152.1 12.6 1.2 126.0 12.5 2.3
524,287 196.3 17.2 1.7 154.4 17.4 2.2

Across all matrix sizes, the speedup of OuterSPACE
scales linearly with vector density, with a 10× reduc-
tion in density resulting in approximately a 10× gain
in speedup. Such performance scaling is possible be-
cause the outer product algorithm only accesses specific
columns in the input matrix that match the indices of
the non-zero elements of the vector. This eliminates all
redundant accesses to the matrix that are present in a
conventional inner product algorithm. Thus, the num-
ber of memory accesses to the sparse matrix is directly
proportional to the number of non-zeros in the vector.

We identify two striking differences between the outer
product algorithm on OuterSPACE and existing matrix-
vector multiplication on CPUs and GPUs. First, unlike
conventional algorithms where the performance depends
heavily on the dimensions of the matrix regardless of
the density, the performance of the outer product algo-
rithm scales with the number of non-zero elements in
the matrix, while remaining independent of the matrix
dimension, for uniformly random matrices. Second, the
performance of the sparse matrix-vector algorithm on
OuterSPACE also scales linearly with the density of
the vector, which allows OuterSPACE to outperform
traditional algorithms for sparse vectors. Even while
working on small, dense vectors, OuterSPACE achieves
within 80% of the MKL’s performance, as reflected in
the fourth column of Table 5.

7.3 Dynamic Memory Allocation
As detailed in Section 5.5, the latency of dynamic

allocation requests by the PEs can typically be hid-
den by sending the atomic request to increment the
spill-over pointer before the PE begins multiplication.
Increasing the amount of space statically assigned for

733

partial products lowers the execution time by decreas-
ing the number of accesses for dynamic allocation, at
the expense of wasted storage, illustrating a common
performance-storage trade-off.

We assume α · nnz2

N elements are allocated statically,

where nnz2

N is the amount of storage needed for and
average row and α is a parameter. Our analysis of the
total number of dynamic requests to increment the spill-
over pointer, while sweeping (α), shows that the count
of these requests drops to less than 10,000 for α>=2 for
almost all the matrices in Table 4. m133-b3 is an outlier,
with zero dynamic requests, as it has exactly 4 non-zeros
per row, which fits within the statically allocated space
even for α=1. Our strategy works best for matrices that
are more uniformly distributed, since a suitable value of
α can eliminate most of the dynamic allocation requests.
However, this overhead for real-world matrices is largely
dependent on the sparsity patterns of the matrices.

7.4 Power and Area Analysis
Table 6 presents the area and power estimates for

OuterSPACE in 32 nm. The total chip area, excluding
the HBM controllers, is calculated to be 87 mm2. The
power consumption of the system is calculated to be
24 W, using the parameters presented in Section 6. This
yields on average 0.12 GFLOPS/W for OuterSPACE.

Table 6: Power and area estimates for OuterSPACE (Figure 5).
Component Area (mm2) Power (W)

All PEs, LCPs, CCP 49.14 7.98
All L0 caches/scratchpads 34.40 0.82
All L1 caches 3.13 0.06
All crossbars 0.07 0.53
Main memory N/A 14.60

Total 86.74 23.99

For comparison, the mean measured power consump-
tion of the K40 GPU while running the workloads was
85 W. With the GPU achieving only 0.067 GFLOPS
on an average, this yields 0.8 MFLOPS/W. The Out-
erSPACE system is, thus, approximately 150× better
than the GPU on the performance/power metric.

8. OUTERSPACE SCALING
Our current architecture is still well below current reti-

cle sizes and power limitations. In order to handle matrix
sizes larger than a few million, a silicon-interposed sys-
tem with 4 HBMs and 4× the PEs on-chip could be
realized. This extended configuration would support
matrices containing tens to hundreds of millions of non-
zero elements, limited by the capacity of the HBM. In
order to process larger matrices, we conceive equipping
our architecture with node-to-node serializer-deserializer
(SerDes) channels to allow multiple OuterSPACE nodes
connected in a torus topology, thus minimizing system la-
tency and maximizing throughput. Such a system would
be able to process matrices with billions of non-zeros.
To scale to problems involving matrices with trillions
of non-zeros, we envision interconnecting many such 16
OuterSPACE-node clusters.

9. RELATED WORK
With the prevalence of sparse matrix operation ker-

nels in big data applications and their rising significance
in a multitude of areas, there has been abundant work
on accelerating sparse matrix-dense vector/matrix mul-
tiplication [5, 12, 28, 43]. However, there has been
relatively less work done to accelerate sparse matrix-
sparse vector/matrix multiplication and more on cre-
ating software frameworks for existing state-of-the-art
architectures like multi-core and many-core CPUs [6,
52, 57], GPUs [20, 26, 41, 43] and heterogeneous (CPU-
GPU) systems [41, 42, 43]. On the contrary, our work
demonstrates an efficient co-design of outer product
based sparse matrix multiplication with our custom, scal-
able, reconfigurable architecture, achieving significant
speedups over state-of-the-art CPU and GPU libraries.
There has been some work on enhancing the under-

lying hardware for sparse matrix-matrix multiplication.
Lin et al. [40] propose an FPGA-based architecture for
sparse matrix-matrix multiplication that uses on-chip
dedicated DSP blocks and reconfigurable logic as process-
ing elements (PEs). However, the design is significantly
limited by scarce on-chip FPGA resources, including
the number of PEs and the size of the on-chip memory.
Yavits and Ginosar [64] explore a juxtaposed Resistive
CAM and RAM based sparse matrix-matrix and sparse
matrix-vector accelerator, applying a row-by-row algo-
rithm to efficiently match the indices of the multiplier
and multiplicand and select the ReRAM row, where the
corresponding non-zero element of the sparse multipli-
cand matrix/vector is stored. Zhu et al. [66] introduce
a 3D-stacked logic-in-memory system by placing logic
layers between DRAM dies to accelerate a 3D-DRAM
system for sparse data access and build a custom CAM
architecture to speed-up the index-alignment process
of column-by-column matrix multiplication by taking
advantage of its parallel matching characteristics.

However, the aforementioned hardware solutions accel-
erate SpGEMM algorithms with large amount of redun-
dant memory accesses, which we have identified to be a
key performance bottleneck in sparse matrix-matrix mul-
tiplication. With our custom architecture, OuterSPACE,
tailored for the outer product algorithm which eliminates
most of these redundant accesses, we achieve significant
speedups as well as high energy efficiency (Section 7).

There also exists work for accelerating sparse matrix-
vector multiplication. Mishra et al. [44] add blocking
to the baseline software and design fine-grained accel-
erators that augment each core in sparse matrix-vector
multiplication. Nurvitadhi et al. [47] propose a SpM-
SpV algorithm using column-based SpMV, row blocking,
column skipping, unique value compression (UVC), and
bit-level packing of matrix data and a hardware accel-
erator for it, composed of a data management unit and
PEs. In our work, we address both sparse matrix-matrix
multiplication and sparse matrix-vector multiplication.

10. CONCLUSION
The Intel MKL and NVIDIA CUSP and cuSPARSE

libraries are successful state-of-the-art libraries for sparse

734

linear algebra. However, our experiments and analyses
show that MKL and cuSPARSE work optimally only for
regular sparse matrices. While CUSP is insensitive to
the irregularity of sparse matrices, it introduces extra
memory overheads for the intermediate storage [41].

In this work, we explore an outer product based matrix
multiplication approach and implement it on traditional
CPUs and GPUs. We discover inefficiencies in these
architectures, which lead to sub-optimal performance of
the outer product algorithm, and resolve them by build-
ing a new custom reconfigurable hardware. Our novelty
lies in the efficient co-design of the algorithm implemen-
tation and the hardware. We demonstrate OuterSPACE’s
efficiency for two key kernels, sparse matrix-matrix multi-
plication and sparse matrix-vector multiplication, which
form the building blocks of many major applications.

The reconfigurable memory hierarchy of OuterSPACE,
which adapts to the contrary data-sharing patterns of the
outer product algorithm, aids in reducing the number of
main memory accesses. This, coupled with the increased
flexibility across PEs through SPMD-style processing
(due to lack of synchronization and coherence overheads),
enables OuterSPACE to achieve good throughput and
high speedups over traditional hardware. Energy savings
are attributed to the bare-bone PE and energy-efficient
swizzle-switch crossbar designs [53].
In essence, our work demonstrates that a massively-

parallel architecture consisting of asynchronous worker
cores, coupled with memory hierarchies that are tailored
to retain reusable data, uncovers an enormous potential
to accelerate kernels that are heavily memory-bound.

REFERENCES
[1] “NVIDIA’s Next Generation CUDATM Compute Architec-

ture: KeplerTM GK110,”NVIDIA, Tech. Rep., 2012. [Online].
Available: https://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[2] (2014) cuSPARSE Library. https://developer.nvidia.com/
cuSPARSE.

[3] “NVIDIA’s Next Generation CUDATM Compute Archi-
tecture: FermiTM,” http://www.nvidia.com/content/pdf/
fermi white papers/nvidia fermi compute architecture
whitepaper.pdf, NVIDIA, Tech. Rep., 2015.

[4] “Seventh Green Graph 500 List,” 2016. [Online]. Available:
http://green.graph500.org/lists.php

[5] S. Acer, O. Selvitopi, and C. Aykanat, “Improving
performance of sparse matrix dense matrix multiplication
on large-scale parallel systems,” Parallel Computing, vol. 59,
2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167819116301041

[6] K. Akbudak and C. Aykanat. (2017) Exploiting Locality in
Sparse Matrix-Matrix Multiplication on Many-Core Architec-
tures. http://www.prace-ri.eu/IMG/pdf/wp144.pdf.

[7] M. Alfano, B. Black, J. Rearick, J. Siegel, M. Su, and J. Din,
“Unleashing Fury: A New Paradigm for 3-D Design and Test,”
IEEE Design & Test, vol. 34, no. 1, pp. 8–15, 2017.

[8] L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzàlez,
X. Martorell, N. Navarro, E. Ayguadé, and M. Valero, “Co-
herence Protocol for Transparent Management of Scratchpad
Memories in Shared Memory Manycore Architectures,” in
Proceedings of the 42nd Annual Int’l Symposium on Com-
puter Architecture, ser. ISCA ’15. New York, NY, USA:
ACM, 2015, pp. 720–732.

[9] A. Azad, A. Buluç, and J. R. Gilbert, “Parallel Triangle
Counting and Enumeration Using Matrix Algebra,” 2015

IEEE Int’l Parallel and Distributed Processing Symposium
Workshop, pp. 804–811, 2015.

[10] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained
parallelism in algebraic multigrid methods,” SIAM J. Scien-
tific Comput., 2011.

[11] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector
Multiplication on CUDA,” NVIDIA Corporation, NVIDIA
Technical Report NVR-2008-004, Dec. 2008.

[12] M. A. Bender, G. S. Brodal, R. Fagerberg, R. Jacob, and
E. Vicari, “Optimal Sparse Matrix Dense Vector Multipli-
cation in the I/O-Model,” Theory of Computing Systems,
vol. 47, no. 4, pp. 934–962, Nov 2010.

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The Gem5 Simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[14] S. Brin and P. L, “The anatomy of a large-scale hypertextual
web search engine,” 7th Int’l WWW Conference, 1998.

[15] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design
implementation and applications,” The Int’l Journal of High
Performance Computing Applications.

[16] A. Buluç and J. R. Gilbert, “On the representation and
multiplication of hypersparse matrices,” in IEEE Int’l Sym-
posium on Parallel and Distributed Processing, ser. IPDPS
’08. IEEE, 2008, pp. 1–11.

[17] A. Chapanond, M. S. Krishnamoorthy, and B. Yener, “Graph
Theoretic and Spectral Analysis of Enron Email Data,”Com-
putational & Mathematical Organization Theory, vol. 11,
no. 3, pp. 265–281, Oct 2005.

[18] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Hon-
armand, S. V. Adve, V. S. Adve, N. P. Carter, and C. T.
Chou, “DeNovo: Rethinking the Memory Hierarchy for Dis-
ciplined Parallelism,” in 2011 Int’l Conference on Parallel
Architectures and Compilation Techniques, Oct 2011, pp.
155–166.

[19] S. Dalton, N. Bell, L. Olson, and M. Garland. (2015) Cusp:
Generic Parallel Algorithms for Sparse Matrix and Graph
Computations. Version 0.5.1.

[20] S. Dalton, L. Olson, and N. Bell, “Optimizing Sparse Matrix-
Matrix Multiplication for the GPU,” ACM Trans. Math.
Softw., vol. 41, no. 4, pp. 25:1–25:20, Oct. 2015.

[21] T. A. Davis and Y. Hu, “The University of Florida Sparse
Matrix Collection,”ACM Trans. Math. Softw., vol. 38, no. 1,
pp. 1:1–1:25, Dec. 2011.

[22] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the
sparse basic linear algebra subprograms: The new standard
from the BLAS technical forum,” ACM Transactions on
Mathematical Software (TOMS), vol. 28, no. 2, pp. 239–267,
2002.

[23] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A Unified
Framework for Numerical and Combinatorial Computing,”
Computing in Science & Engineering, vol. 10, no. 2, pp.
20–25.

[24] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-
performance Graph Algorithms from Parallel Sparse Matrices,”
Proc. of the Int’l Workshop on Applied Parallel Computing,
2006.

[25] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and
N. Koziris, “Understanding the performance of sparse matrix-
vector multiplication,” in Proceedings of the 16th Euromicro
Conference on Parallel, Distributed and Network-Based Pro-
cessing, ser. PDP ’08. IEEE, 2008.

[26] F. Gremse, A. Höfter, L. O. Schwen, F. Kiessling, and U. Nau-
mann, “GPU-Accelerated Sparse Matrix-Matrix Multiplica-
tion by Iterative Row Merging,” SIAM Journal on Scientific
Computing, vol. 37, no. 1, pp. C54–C71, 2015.

[27] V. Hapla, D. Horák, and M. Merta, Use of Direct Solvers in
TFETI Massively Parallel Implementation. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2013, pp. 192–205.

735

[28] A. F. Heinecke, “Cache Optimised Data Structures and Algo-
rithms for Sparse Matrices,” B.S. thesis, Technical University
of Munich, April 2008.

[29] Intel Corporation, IntelR© 64 and IA-32 Architectures Opti-
mization Reference Manual, June 2011, no. 248966-025.

[30] S. Itoh, P. Ordejón, and R. M. Martin, “Order-N tight-
binding molecular dynamics on parallel computers,” Com-
puter Physics Communications, vol. 88, no. 2, pp. 173–185,
1995.

[31] R. W. Johnson, C. H. Huang, and J. R. Johnson, “Multi-
linear algebra and parallel programming,” The Journal of
Supercomputing, vol. 5, no. 2, pp. 189–217, 1991.

[32] N. P. Jouppi, “Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers,” in Proceedings of the 17th Annual Int’l Symposium
on Computer Architecture, ser. ISCA ’90. IEEE, 1990.

[33] H. Kaplan, M. Sharir, and E. Verbin, “Colored intersection
searching via sparse rectangular matrix multiplication,” SCG
’06: Proceedings of the twenty-second annual symposium on
computational geometry, pp. 52–60, 2006.

[34] G. Karypis, A. Gupta, and V. Kumar, “A Parallel Formu-
lation of Interior Point Algorithms,” in Proceedings of the
1994 ACM/IEEE Conference on Supercomputing, ser. Super-
computing ’94. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1994, pp. 204–213.

[35] S. Kaxiras and G. Keramidas, “SARC Coherence: Scaling
Directory Cache Coherence in Performance and Power,” IEEE
Micro, vol. 30, no. 5, pp. 54–65, Sept 2010.

[36] S. Kaxiras and A. Ros, “Efficient, snoopless, System-on-Chip
coherence,” in 2012 IEEE Int’l SOC Conference, Sept 2012,
pp. 230–235.

[37] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kot-
sifakou, P. Srivastava, S. V. Adve, and V. S. Adve, “Stash:
Have your scratchpad and cache it too,” in Proceedings of
the 42nd Annual Int’l Symposium on Computer Architecture,
ser. ISCA ’15, June 2015, pp. 707–719.

[38] E. Lee, H. Kang, H. Bahn, and K. G. Shin, “Eliminating
Periodic Flush Overhead of File I/O with Non-Volatile Buffer
Cache,” IEEE Transactions on Computers, vol. 65, no. 4, pp.
1145–1157, April 2016.

[39] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data,
Jun. 2014.

[40] C. Y. Lin, Z. Zhang, N. Wong, and H. K. H. So, “Design
space exploration for sparse matrix-matrix multiplication on
FPGAs,” in 2010 Int’l Conference on Field-Programmable
Technology, Dec 2010, pp. 369–372.

[41] W. Liu and B. Vinter, “An Efficient GPU General Sparse
Matrix-Matrix Multiplication for Irregular Data,” in 2014
IEEE 28th Int’l Parallel and Distributed Processing Sympo-
sium, May 2014, pp. 370–381.

[42] W. Liu and B. Vinter, “A Framework for General Sparse
Matrix-Matrix Multiplication on GPUs and Heterogeneous
Processors,”CoRR, vol. abs/1504.05022, 2015.

[43] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse
matrix-matrix multiplication on modern architectures,” in
2012 19th Int’l Conference on High Performance Computing,
Dec 2012, pp. 1–10.

[44] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and
D. Marr, “Fine-grained accelerators for sparse machine learn-
ing workloads,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Jan 2017, pp. 635–640.

[45] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to model large caches.”

[46] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the graph 500,” 2010.

[47] E. Nurvitadhi, A. Mishra, and D. Marr, “A sparse matrix vec-
tor multiply accelerator for support vector machine,” in 2015
Int’l Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), Oct 2015, pp. 109–116.

[48] G. Penn, “Efficient transitive closure of sparse matrices over
closed semirings,” Theoretical Computer Science, vol. 354,
no. 1, pp. 72–81, 2006.

[49] M. O. Rabin and V. V. Vazirani, “Maximum matchings in gen-
eral graphs through randomization,” Journal of Algorithms,
vol. 10, no. 4, pp. 557–567, 1989.

[50] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer,
T. Grasser, A. Jüngel, and S. Selberherr, “ViennaCL-Linear
Algebra Library for Multi- and Many-Core Architectures,”
SIAM Journal on Scientific Computing, vol. 38, no. 5, pp.
S412–S439, 2016.

[51] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park,
M. A. Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navi-
gating the maze of graph analytics frameworks using massive
graph datasets,” in Proceedings of the 2014 ACM SIGMOD
Int’l conference on Management of data. ACM, 2014, pp.
979–990.

[52] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance
Evaluation of Sparse Matrix Multiplication Kernels on Intel
Xeon Phi,”CoRR, vol. abs/1302.1078, 2013.

[53] K. Sewell, R. G. Dreslinski, T. Manville, S. Satpathy, N. Pinck-
ney, G. Blake, M. Cieslak, R. Das, T. F. Wenisch, D. Sylvester,
D. Blaauw, and T. Mudge, “Swizzle-Switch Networks for
Many-Core Systems,” IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, vol. 2, no. 2, pp.
278–294, June 2012.

[54] V. B. Shah, “An Interactive System for Combinatorial Scien-
tific Computing with an Emphasis on Programmer Produc-
tivity,” Ph.D. dissertation, June 2007.

[55] A. Shilov. (2016) JEDEC Publishes HBM2 Specification.
http://www.anandtech.com/show/9969/jedec-publishes-
hbm2-specification.

[56] A. Smith, “6 new facts about Facebook,” Feb 2014.
[Online]. Available: http://www.pewresearch.org/fact-
tank/2014/02/03/6-new-facts-about-facebook/

[57] P. D. Sulatycke and K. Ghose, “Caching-efficient multi-
threaded fast multiplication of sparse matrices,” in Proceed-
ings of the First Merged Int’l Parallel Processing Symposium
and Symposium on Parallel and Distributed Processing, Mar
1998, pp. 117–123.

[58] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,
M. J. Anderson, S. G. Vadlamudi, D. Das, and P. Dubey,
“Graphmat: High performance graph analytics made produc-
tive,” Proceedings of the VLDB Endowment, vol. 8, no. 11,
pp. 1214–1225, 2015.

[59] A. Tech. (2013) NVIDIA Launches Tesla K40. http://www.
anandtech.com/show/7521/nvidia-launches-tesla-k40.

[60] R. A. Van De Geijn and J. Watts, “Summa: Scalable universal
matrix multiplication algorithm.”

[61] S. van Dongen, “Graph Clustering by Flow Simulation,”Ph.D.
dissertation, 2000.

[62] Vuduc, Richard W and Moon, Hyun Jin, “Fast sparse matrix-
vector multiplication by exploiting variable block structure.”
Springer, 2005.

[63] I. Yamazaki and X. S. Li, “On techniques to improve ro-
bustness and scalability of a parallel hybrid linear solver,”
Proceedings of the 9th Int’l meeting on high performance
computing for computational science, pp. 421–434, 2010.

[64] L. Yavits and R. Ginosar, “Sparse Matrix Multiplication on
CAM Based Accelerator,”CoRR, vol. abs/1705.09937, 2017.
[Online]. Available: http://arxiv.org/abs/1705.09937

[65] R. Yuster and U. Zwick, “Detecting short directed cycles using
rectangular matrix multiplication and dynamic programming,”
Proceedings of the 15th annual ACM-SIAM symposium on
discrete algorithms, 2004.

[66] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti,
“Accelerating sparse matrix-matrix multiplication with 3D-
stacked logic-in-memory hardware,” in 2013 IEEE High Per-
formance Extreme Computing Conference (HPEC), Sept
2013, pp. 1–6.

736

