
C150 978-4-86348-718-5 ©2019 JSAP 2019 Symposium on VLSI Circuits Digest of Technical Papers

A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication Accelerator
using Memory Reconfiguration in 40 nm

Subhankar Pal, Dong-hyeon Park, Siying Feng, Paul Gao†, Jielun Tan, Austin Rovinski, Shaolin Xie†, Chun
Zhao†, Aporva Amarnath, Timothy Wesley, Jonathan Beaumont, Kuan-Yu Chen, Chaitali Chakrabarti∗,

Michael Taylor†, Trevor Mudge, David Blaauw, Hun-Seok Kim, Ronald Dreslinski (Email: subh@umich.edu)

University of Michigan, Ann Arbor, MI †University of Washington, Seattle, WA ∗Arizona State University, Tempe, AZ

Abstract
A Sparse Matrix-Matrix multiplication (SpMM) accelerator

with 48 heterogeneous cores and a reconfigurable memory hier-
archy is fabricated in 40 nm CMOS. On-chip memories are re-
configured as scratchpad or cache and interconnected with syn-
thesizable coalescing crossbars for efficient memory access in
each phase of the algorithm. The 2.0 mm×2.6 mm chip exhibits
12.6× (8.4×) energy efficiency gain, 11.7× (77.6×) off-chip
bandwidth efficiency gain and 17.1× (36.9×) compute density
gain against a high-end CPU (GPU) across a diverse set of syn-
thetic and real-world power-law graph based sparse matrices.
Keywords: Sparse matrix multiplier, synthesizable crossbar,
decoupled access-execution, reconfigurablility and accelerator

Introduction
SpMM is a fundamental kernel in graph analytics and ma-

chine learning, where matrices are typically very large but have
low densities, e.g. an adjacency matrix of Facebook friend-
ships is 1.08 B×1.08 B with only 0.0003% Non-Zero Elements
(NZEs) [1]. SpMM is quintessentially memory-bound rather
than compute-bound, due to low data locality and compute-to-
communication ratio. Thus, accelerating SpMM requires elimi-
nating redundant memory accesses and maximizing data reuse.

The inner product method (Fig. 1) produces a small Num-
ber of Non-Zeros (NNZs) per byte fetched from off-chip due to
failed index matches, leading to unproductive loads. Limited
on-chip storage further forces repetitive fetching of the same
data, worsening the memory bottleneck. Prior designs only
demonstrate sparse matrix-vector multiplication [2] and rela-
tively high-density (≥3%) matrix-matrix multiplication with
small dimensions (≤256) [3]. This paper presents the first cus-
tom chip accelerating SpMM that addresses the off-chip mem-
ory access bottleneck for real-world sized matrices, evaluating
densities ≥0.002% and dimensions ≤120k. It uses an outer
product algorithm that we first proposed in [1], where each
memory fetch generates useful results. A novel synthesizable
coalescing crossbar magnifies on-chip bandwidth for accessing
reconfigurable memory, attuned for maximum data reuse in the
multiply phase using shared cache and deterministic accesses in
the merge phase using scratchpads. Our chip achieves an energy
efficiency of 7.3 M output NNZ/J and bandwidth efficiency of
11.7 M output NNZ per GB of fetched data (NNZ/GB).

Approach and Architecture
The outer product approach consists of two phases with dis-

parate dataflow patterns to compute A×B=C (Fig. 1). In the
multiply phase, each Processing Element (PE) multiplies an
NZE of column i of A with all NZEs of row i of B, gener-
ating one Partial Product Matrix (PPM) row, with each NZE
fetched only once. PPMs are stored as a set of linked lists of
pointers to “chunks” in DRAM, where each list corresponds to
one row of C and a chunk holds (index, value) pairs of a PPM
row. This phase computes multiplications of all combinations
of fetched elements, resulting in theoretically maximum reuse
of inputs without index matching, thus circumventing the prob-
lem of unproductive loads. The on-chip memory is configured
as shared cache to enable maximum reuse of NZEs in a row of
B between PEs operating on different NZEs in a column of A.

During merge, each PE traverses certain PPM rows and
merges them into single, sorted lists each corresponding to a
row of C. Caches are seamlessly reconfigured into software-
managed scratchpads to avoid evictions and take advantage of
merge’s deterministic dataflow. If the chunks of a row of C ex-
ceed the on-chip scratchpad capacity, they are merged over mul-
tiple iterations with intermediate data being stored in DRAM.

Circuit Implementation
Fig. 4 shows the design consisting of two compute substrates.

The first, composed of 32 PEs (4 PEs/tile), computes the multi-
ply phase. Each PE has a 32-bit Floating-Point (FP) multiplier
and supports out-of-order loads/stores. The second substrate
consists of 8 Cortex M0+M4F pairs (1 pair/tile) for merge. Each
M0/M4F shares the reconfigurable network resources with 4
PEs. The network consists of a fully-synthesizable Swizzle-
Switch Network (SSN) crossbar based on [4], with the pull-
down networks replaced by OR trees (Fig. 7). This enables
fast process migration, especially at advance nodes. The cross-
bars support request coalescing+multicast (Fig. 2) and Least-
Recently Granted (LRG) arbitration (Fig. 3). The downstream
L0 crossbar connects to the reconfigurable L0 cache, which pro-
vides second-level coalescing. For the multiply phase, the L0 is
a multi-banked cache, allowing NZEs of B to be shared. For
merge, it is reconfigured into a multi-banked scratchpad by dis-
abling the tag array and is shared by an M0-M4F pair. Through
another set of crossbars, the L0 cache in each tile connects to
the L1 layer, which interfaces to the front side bus (FSB).

During the multiply phase, the PE manager fetches and dis-
tributes work to PEs. In the merge phase, the head elements of
each PPM row are loaded into the L0 scratchpad by the M0,
and sorted in pipeline fashion by the M4F, resulting in decou-
pled access-execution, which is key to maximizing memory-
level parallelism for efficient use of off-chip bandwidth. The
element with the smallest index is stored to memory and the
next element in that PPM row is fetched, until the list is empty.
When matching indices are encountered, elements are summed
together before they are stored to memory. The M0/M4Fs and
PEs are clock-gated during multiply and merge, respectively.

Measured Results
SpMM was evaluated using matrix squaring on synthetic ma-

trices and power-law graphs, representative of real-world sparse
matrices. The 2.0 mm×2.6 mm accelerator achieves 6.1-8.4 M
NNZ/J and 6.4-15.5 M NNZ/GB. The chip operates with opti-
mal energy efficiency at (41.7 MHz, 0.860 V) for multiply and
(352.0 MHz, 0.864 V) for merge (Fig. 5). Clock sweeps show
that while multiply performance hits a roofline, merge perfor-
mance saturates slowly, as merge is more compute-heavy. For
the bandwidth sweeps, simulation results are appended to mea-
sured results considering higher bandwidth and more compute
units. The “knee” lines show that multiply is ∼30× more sensi-
tive to bandwidth than merge. Based on Fig. 5, scaling out our
chip to 16× the current configuration would meet the CPU’s
performance at 9.5× less bandwidth, 16.7× lower power and
0.08× the area, as the chip makes optimal use of available band-
width by minimizing off-chip traffic. For merge, the measured
average performance benefit of reconfiguring from L0 cache to
scratchpad across the suite of matrices in Fig. 8 is 25.7%. Our
SSN crossbar gives the chip a 24.9% performance gain at 86.3%
the energy and 1.3% more area over a MUX crossbar based de-
sign. Fig. 6 compares against state-of-the-art software libraries
on high-end CPU and GPU. The improvements show similar
trends, except for power-law graphs, where the rate of runtime
increase with increasing NNZ is greater for CPU than GPU.

In summary, our chip achieves measured energy efficiency
improvements of 12.6× against a Core i7 CPU and 8.4× over
a V100 GPU. A summary and comparison table are given in
Tables 1 and 2 and die photo in Fig. 9. Owing to the memory-
bound nature of SpMM, bandwidth efficiency is considered the
paramount metric, for which our design achieves 11.7× and
77.6× improvements over the CPU and GPU, respectively.

JFS1-2

C1512019 Symposium on VLSI Circuits Digest of Technical Papers

�eferences
[1] S. Pal et al., HPCA, pp. 724-736,

February, 2018.
[2] R. Dorrance and D. Markovi�,

VLSI, pp. 1-2, June 2016.
[3] M. Anders et al., ISSCC, pp. 39-
 40, June 2018.
[4] S. Satpathy et al., ISSCC, pp.

478-480, February 2012.
[5] F. Khorasani et al., PACT, pp.

39-50, October 2015.

��

Fig 1. Inner and outer product SpMM algorithms. Outer product involves zero wasted loads/index comparisons.

Fig 7. Crossbar schematic showing crosspoints and OR tree.

Fig 3. Least Recently Granted (LRG) Scheme.

Table 2. Key metrics and comparison vs. CPU/GPU and prior work.

Table 1. Chip characterization summary.

Fig 9. Annotated die photo with GDS overlay.

Fig 8. Measured merge performance.

Fig 4. Microarchitectural diagram of top level, a tile and a PE.

Fig 2. Crossbar and cache coalescence.

Fig 6. Measured results over different matrices showing energy and bandwidth efficiency of
the proposed chip normalized to Core i7 CPU and V100 GPU running SpMM packages.

,

Fig 2 Crossbar and cache coalescence

Fig 1. Inner and outer product SpMM algorithms.

i 8 f

g p p g

Fig 7 Crossbar schematic showing crosspoints and OR tree

Tabl

Fig 5. Clock and bandwidth sweeps for matrix dim. 100k, density 0.0008%. For measurements
with increased bandwidth, on-chip LFSR is used for multiply and M0 is used for merge.

