
76 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

A 28-nm Compute SRAM With Bit-Serial Logic/
Arithmetic Operations for Programmable

In-Memory Vector Computing
Jingcheng Wang , Student Member, IEEE, Xiaowei Wang , Student Member, IEEE,

Charles Eckert , Student Member, IEEE, Arun Subramaniyan , Student Member, IEEE,

Reetuparna Das, Member, IEEE, David Blaauw , Fellow, IEEE,
and Dennis Sylvester, Fellow, IEEE

Abstract— This article proposes a general-purpose hybrid
in-/near-memory compute SRAM (CRAM) that combines an
8T transposable bit cell with vector-based, bit-serial in-memory
arithmetic to accommodate a wide range of bit-widths, from
single to 32 or 64 bits, as well as a complete set of operation types,
including integer and floating-point addition, multiplication, and
division. This approach provides the flexibility and programma-
bility necessary for evolving software algorithms ranging from
neural networks to graph and signal processing. The proposed
design was implemented in a small Internet of Things (IoT)
processor in the 28-nm CMOS consisting of a Cortex-M0 CPU
and 8 CRAM banks of 16 kB each (128 kB total). The system
achieves 475-MHz operation at 1.1 V and, with all CRAMs
active, produces 30 GOPS or 1.4 GFLOPS on 32-bit operands.
It achieves an energy efficiency of 0.56 TOPS/W for 8-bit multipli-
cation and 5.27 TOPS/W for 8-bit addition at 0.6 V and 114 MHz.

Index Terms— 8T transposable bit cell, bit-serial arithmetic,
flexible bit-width, in-memory computing (IMC), near-memory
computing, memory, SRAM, single instruction multiple data
(SIMD) architecture.

I. INTRODUCTION

IN THE conventional von Neumann architecture, a clear gap
lies between data storage and processing: memories store

data, while processors compute on data. Owing to Moore’s
law, in the past few decades, the computing power of the
integrated circuits has rapidly scaled as logic gates became
faster and the number of processing cores increased steadily
until we hit the “Memory Wall” [1]. The on-chip global inter-
connects’ latency and energy cannot keep up with the scaling
of logic gates. Thus, the computation throughput and energy
have become dominated by the memory bandwidth and data
movement energy. As shown in Fig. 1(a), the bandwidth at the

Manuscript received May 3, 2019; revised July 26, 2019 and August 30,
2019; accepted September 2, 2019. Date of publication September 23, 2019;
date of current version December 27, 2019. This article was approved by
Associate Editor Mingoo Seok. This work was supported by the Applica-
tions Driving Architectures (ADA) Joint University Microelectronics Program
(JUMP) Center, a Semiconductor Research Corporation (SRC) Program spon-
sored by the Defense Advanced Research Projects Agency (DARPA).
(Corresponding author: Jingcheng Wang.)

The authors are with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: jiwang@umich.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2019.2939682

Fig. 1. Bottlenecks in the conventional von Neumann architecture. (a) Low
on-chip network bandwidth. (b) High data movement energy.

I/Os of all SRAM banks inside a big memory macro such as a
20-MB L3 cache, which is over a hundred TB per second [2],
[3], and is comparable to the theoretical maximum computa-
tion bandwidth of the state-of-the-art systolic processing array
[4]. Hence, the bottleneck is the local data network inside the
memory macro and the global data bus on chip. Furthermore,
a large fraction of energy consumption today is spent on
moving data back and forth between memory and compute
units [5]. As shown in Fig. 1(b), it only takes sub-pico joules
of energy to do a 32-bit addition while tens of pico joules are
spent on retrieving data from far away memory banks.

Previously, people tried to overcome the “Memory Wall” by
introducing more memory hierarchies, in an effort to bring the
data closer to the computation. However, the memory problem

0018-9200 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 28-nm CRAM WITH BIT-SERIAL LOGIC/ARITHMETIC OPERATIONS 77

is further exacerbated by the advent of data-intensive applica-
tions such as neural networks [6], [7], computer vision [8], and
stream processing [9]. The shift from computation-centric to
data-centric architecture has led to extensive research focused
on in-/near-memory computing, which moves computation to
where the data are located. Recently, we have seen many
studies that try to bring computation to different levels of
memory hierarchies, including DRAM [10] and non-volatile
memories like STT-MRAM [11], ReRAM[12], and Flash [13].
This article focuses on designing computational SRAM banks.
Most SRAM in today’s chips is located in the caches of CPUs
or GPUs. These large CPU and GPU SRAMs present an
opportunity for extensive IMC and have, to date, remained
largely untapped.

Many types of analog IMC architectures have been
proposed. For example, some perform computation in the
current domain. In this case, one operand is pre-stored in
the SRAM array, while the other operand can be modu-
lated into the word-line voltage level [14] or pulsewidth
of the word-line enable signal [15], [16]. The multiplica-
tion result of the two operands is then represented by the
various discharge currents of the bit cells. Often multiple
word-lines are activated simultaneously, and the multiplication
results are accumulated on the bitline as the total bitline
discharge current is the sum of each individual bit-cell current.
The final multiply–accumulate (MAC) result is naturally rep-
resented by the analog bitline voltage sensed by an analog-to-
digital converter (ADC). Other in-memory approaches have
proposed the use of time-domain computation [17], where
the operands are modulated into the reference voltages to
the voltage-controlled oscillator (VCO) and the MAC results
are represented by various pulse widths sensed by time-to-
digital converters (TDCs). These analog IMC approaches can
usually achieve very high energy efficiency and throughput,
but suffer from other problems. First, they usually require
expensive analog-to-digital and digital-to-analog conversions
at the array boundary. Second, the computation accuracy is
highly susceptible to noise and process voltage temperature
(PVT) variations, which limits the functionality to low preci-
sion addition or multiplication and algorithm to binary-weight
networks (BWNs). Recently, charge-domain computing has
been proposed to substantially improve the robustness and
bit-precision scalability because modern very large scale inte-
gration (VLSI) processes have better control over the capac-
itances than the transistor parameters [18], [19]. However,
the signal-to-quantization-noise ratio (SQNR) still limits pre-
cision in these approaches to <8 bits.

Although traditional computing architectures such as CPU
and GPU show limitations in energy efficiency and memory
bandwidth, their appeal lies in their general functionality
and programmability. They can perform a wide range of
operations from bit-wise logic operation to integer/floating-
point arithmetic. Not only are these computations accurate
and robust because the designs are fully digital, but also
they are highly flexible and can implement many algorithms
and neural network types and sizes. In this respect, most
current in-memory approaches suffer from the same major
limitation: they accelerate only one type of algorithm and

are inherently restricted to a very specific application domain
due to their limited bit-width precision and non-programmable
architecture. On the other hand, software algorithms continue
to evolve rapidly, especially in novel application domains such
as neural networks, vision, and graph processing, which make
rigid accelerators of limited use. This has led to at least one
recent work to improve the programmability of IMC with
instruction set architecture (ISA) and compiler design [20].

To address these limitations, we present a general-purpose
hybrid in-/near-memory compute SRAM (CRAM) [21] that
combines the efficiency of in-memory computation with the
flexibility and programmability necessary for evolving soft-
ware algorithms. It does part of the logic operations in
SRAM bit-lines and most arithmetic operations in pitch-
matched, near-memory peripherals at the end of each bitline.
It can accommodate a wide range of bit-widths, from single
to 32 or 64 bits, and operation types, including integer
and floating-point addition, multiplication, and division, with
a small amount of hardware overhead. Its high-throughput
digital-domain computation is accurate and robust, and the
design offers good energy efficiency. The CRAM tries to
repurpose the large existing on-chip memory storage by
augmenting a conventional SRAM bank in a cache with
vector-based, bit-serial in-memory/near-memory arithmetic.

The remainder of this article is organized as follows.
Section II generally introduces the bit-serial operation and the
architecture of the proposed computational SRAM. Section III
describes the 8T transposable bit cell and the computing
peripheral in detail. Section IV presents the algorithm of
multi-bit arithmetic operations. Section V discusses the mea-
surement results of the proposed design, and finally, the con-
clusions are presented in Section VI.

II. OVERVIEW OF BIT-SERIAL ARITHMETIC AND

CRAM ARCHITECTURE

A. Bit-Serial Arithmetic

Several previous digital IMC works [22]–[24] supported
some simple bit-parallel operations such as bit-wise logic
and copy. However, these are carry-less operations that do
not require interaction between bit-lines. To make IMC as
general purpose as the ALU in a CPU, support is needed
for more complex arithmetic operations such as addition,
multiplication, and even floating-point operation. The main
challenge in supporting these complex arithmetic operations
is facilitating carry propagation between bit-lines. We propose
a bit-serial implementation to address this challenge.

Since the 1980s, bit-serial computing architectures have
been widely used for digital signal processing because it can
usually provide the most area-efficient design in the presence
of a massive bit-level parallelism [25], [26]. The key idea is to
process 1 bit of multiple data elements every cycle. This model
is particularly useful in scenarios where the same operation is
applied to the same bit of all data elements in a vector, like
in the single instruction multiple data (SIMD) architectures.
For example, to compute the element-wise sum of two arrays
with 512 32-bit elements, a conventional processor would take
at least 512 cycles to get the operands element-by-element

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

78 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

Fig. 2. Proposed CRAM architecture.

from the SRAM and then perform the operation. A bit-serial
processor, on the other hand, would complete the operation
in 32 steps as it processes the arrays bit-slice by bit-slice
instead of element-by-element. Besides, bit-serial operation
allows for flexible operand bit-width, which can especially be
advantageous in DNN hardware designs where the required
bit width can vary from layer to layer [27], [28].

Although some bit-parallel approaches [29] can perform
addition/subtraction with the same throughput and energy
efficiency as the bit-serial approach, they cannot support more
complex arithmetic operations such as multiplication. How-
ever, the near-memory components in the CRAM are akin to a
small reduced instruction set computer (RISC) machine. With
a well-designed instruction set, the CRAM can support many
complex arithmetic operations using only software. Therefore,
a bit-serial approach provides the CRAM the advantages of
greater programmability and versatility.

B. CRAM Architecture

Fig. 2 shows the overall architecture of one 16-KB CRAM
bank. Each CRAM bank consists of four 128×256 arrays that
load or store data conventionally using horizontal word-lines
and vertical bit-lines. The normal SRAM peripherals, such as a
row decoder, column mux, and sense amp, are shown in blue.
In this diagram, the array has been preloaded with two vectors
of data, vectors A and B. The data elements from the same vec-
tor are placed into different rows, while the various bits of the
data elements are spread into different columns from the most
significant bits (MSBs) to the least significant bits (LSBs).
The corresponding elements from the two vectors that are
going to be operated must be aligned on the same word-line.
To perform bit-serial operation, we need to activate the same
bit position from two vectors. Therefore, the column decoder
and pitch-matched compute logic are added so that IMC can

Fig. 3. Schematic and layout of 8T transposable bit cell.

be performed using vertical compute word-lines (CWLs) and
horizontal compute bit-lines (CBLs). For example, in the first
cycle, we simultaneously activate the vertical word-lines of the
LSB from the two vectors. Then, the computation is performed
in both horizontal bit-lines and the compute logics at the end of
the bit-lines. Near the end of the cycle, the result is then stored

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 28-nm CRAM WITH BIT-SERIAL LOGIC/ARITHMETIC OPERATIONS 79

Fig. 4. CRAM array architecture (top-left), computation control signal timing diagram (top-right), and in-/near-memory computing peripherals (bottom).

back in the array at some destination bit location selected
by a third vertical word-line. In the next cycle, other bits of
each operand are activated to continue the computation. Again,
the result is stored back at the designated position at the end
of the cycle. By repeating single-bit operations cycle-by-cycle,
we can perform any complex multi-bit arithmetic with carry-
propagation. For example, a 32-bit adder will take 32 cycles to
finish. Note that although bit-serial computation is expected to
have high latency per operation, it gains significantly in terms
of throughput. A 16-KB SRAM bank contains 256 horizontal
CBLs in total, and a 35-MB last level cache (LLC) in the
Haswell server processor can accommodate 2240 such 16-KB
banks [2], which means a total of 573 440 bit-lines can do
computations in parallel. In this case, the maximum throughput
would be equivalent to 17 920 32-bit adders or 71 680 8-bit
adders.

The computing logic is shared between the arrays on the
left and right and takes 4.5% of the CRAM bank area. The
instruction decoder and controller in the middle of the bank,
shared by all four arrays, take 32-bit instruction and generate
control signals for the computing logic. They occupy 5.2% of
the bank area. The details of the controller instructions will
be presented in Section III.

III. CRAM CIRCUITRY

A. 8T Transposable Bit Cell

Many previous IMC works [16], [24] choose to store
each word unconventionally by spreading bits into different
rows of the same vertical bitline. This approach makes the
computation much easier and can directly use 6T bit cell for

minimizing area. However, the conventional SRAM read/write
operations become much more complicated and incompatible
with modern computer architectures where bits of a word
are spread into bit cells on the same row. To maintain
compatibility with the mainstream CPU/GPU architecture,
the CRAM writes/reads operands conventionally with horizon-
tal word-lines and vertical bit-lines, which is made possible by
the 8T transposable bit cell. Fig. 3 shows the schematic and
the layout of the bit cell [30]. Four of the transistors form
the cross-coupled inverter pair to hold the data, and there are
two pairs of access transistors for read/write. The structure
is similar to the conventional 8T dual-port SRAM bit cell
except that it provides bidirectional access: the bit cell can
be read or written from either vertical bitline or horizontal
bitline. Therefore, the CRAM can operate directly on the
stored operands in memory by enabling the same bit position
from two vector elements with vertical word-lines and perform
the computation on horizontal bit-lines. Furthermore, it can
also directly read a complete word by enabling the horizontal
word-line and sense the result from vertical bit-lines. With the
logic rule transistor in the 28-nm CMOS, the bit cell area is
0.782 µm2 (0.405 µm × 1.93 µm), which is 638F2 when
normalized to technology node feature size (F). If we are
allowed to use a push-rule transistor, as is commonly done in
the foundry bit cell, the transposable 8T bit cell area would be
0.543 µm2, which is 40% larger than a foundry-provided
dual-port 8T cell (0.389 µm2) and 3.5× larger than a standard
6T cell (0.157 µm2). The extra area overhead is mainly due
to the non-shared source/drain and poly contacts between the
adjacent cells.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

80 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

If the area density is of primary concern, such as in a
very large (multiple MB) cache, we have proposed another
solution [31] that uses a standard push-rule 6T cell with the
data words stored and computed in the vertical data format.
The bit-serial peripherals remain the same. This so-called
neural cache design uses only a few transpose memory units
(TMUs), which are built out of arrays of 8T transposable bit
cells, at the gateway of the cache to serve as a translator
between the conventional bit-parallel word layout and the
transpose vertical layout.

B. Computing Peripherals

Fig. 4 shows a detailed view of one row in the bit cell
array. The logic operations are performed on the bitline
(in-memory), while small additional in-row logic (near-
memory) enables carry-propagation between successive
bit-serial calculations. An example of 1-bit addition will
be used to illustrate the CRAM single-cycle operation and
computing peripherals. Ax,y stands for the yth bit of the x th
elements of the vector A. Here, we add the second bit from
vector A (AX,1) and vector B (BX,1) with carry-in (Cin) from
the previous cycle and store the sum back to the second bit
of vector D (DX,1), and latch the carry-out (Cout) for the
next cycle. First, the CRAM instruction decoder receives the
ADD instruction with the three column addresses for bits
AX,1, BX,1, and DX,1. After pre-charging (PCH) the CBL
and CBL bar (CBLB), we activate the vertical CWLs of
AX,1 and BX,1 simultaneously to generate “A AND B” on
CBL and “() AND ()” on CBLB. To prevent potential read
disturbance issues caused by reading simultaneously from two
bit cells, we have a separate supply voltage rail for the driver
of CWLA/B, so that we can lower the word-line voltage when
necessary. In addition, the pseudo-differential sense amplifiers
are used at the end of CBL and CBLB, allowing for early
sensing of results at a much smaller bitline voltage swing.
This is the in-memory part of the computation. Next, after the
dual sense amps are enabled, the in-memory logic operation
results propagate into the near-memory region located at the
end of each CBL. The NOR gate generates “A XOR B,” which
combined with Cin from the C latch produces sum and Cout.
Then CWLD is activated, and the sum is written back to
destination bit D1. Finally, near the end of the cycle, Cout
updates the C latch, which provides Cin for the next cycle.

When we activate the CWL, all 256 CBLs in the 16-KB
CRAM banks are performing the same single-bit instruction
in an SIMD fashion. To support complex multibit arithmetic,
the CRAM has to be able to execute instructions only on
certain selected CBLs; and therefore, we add the Tag (T) latch
to enable conditional operation. The Tag latch is used as the
enable signal of the write-back driver. Therefore, for the CBL
whose Tag latch stores 0, the computation result will not
be written back to the memory, as if the instruction is not
executed at all. The content of the Tag latch can be loaded
from or written into the memory array. In addition to the logics
introduced before, we also add a multiplexer to allow for the
write-back of the signals besides the sum, such as A AND B,
A OR B, Cout, or Tag.

TABLE I

CRAM INSTRUCTION SET

TABLE II

SAMPLE OF SUPPORTED OPERATIONS AND CYCLE COUNTS

With the computing peripherals as shown in Fig. 4,
the CRAM controller can support up to 16 single-cycle
instructions, given in Table I. Besides the logic and add
operation, it includes copy, inversion, load/store of carry or
tag, comparison, and set/reset carry. The CRAM controller
takes 32-bit instruction. Four bits ([31:28]) are used for various
enable signals for different features. Four bits ([27:24]) are
used for the opcode for the 16 instructions. Eight bits are
used for the address because every memory array contains
256 CWLs. Bits [23:16], [15:8], and [7:0] represent the bit
address of operand A (RA), operand B (RB), and the desti-
nation location D (RD), respectively. Using these single-cycle
micro instructions, we can build complex multi-cycle macro
instructions, including search, multiplication, division, and
floating-point arithmetic.

IV. MULTI-CYCLE ARITHMETIC

The users can program the CRAM to achieve many complex
computations. Table II shows a sample list of the supported
multi-cycle operations and the number of single-cycle instruc-
tions each takes. Next, we will introduce some commonly
used arithmetic operations and the way to program them in
the CRAM.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 28-nm CRAM WITH BIT-SERIAL LOGIC/ARITHMETIC OPERATIONS 81

Fig. 5. 3-bit addition cycle-by-cycle demonstration (left) and 2-bit multiplication cycle-by-cycle demonstration (right).

A. Integer Addition and Subtraction

We use the addition of two vectors of 3-bit numbers
(A and B) to explain how the addition algorithm is carried out
bit-by-bit starting from the LSB (Fig. 5). The two vectors, each
occupying three columns, need to be placed in the same array
with their corresponding elements aligned on the same row
but not necessarily abutted. In cycle 0, we first initialize the
entire carry latch to 0 using instruction “Reset C.” In cycle 1,
we apply instruction “ADD” and provide the column address
of the LSBs for RA and RB. We can either write the sum to an
empty column of the array or one of the operand LSBs can be
directly overwritten by the result depending on the destination
address, RD, we give in the instruction. The carry latch is
automatically updated with Cout at the end of the cycle. In
cycles 2 and 3, we add the second and third bits’ location the
same way as we did in cycle 1. Thus, an N-bit addition takes
N + 1 cycles. Subtraction can be performed by first inverting
vector B and then adding to A with the carry latch initialized
to 1.

B. Unsigned Integer Multiplication

One way to perform multiplication is using shift and
add. It requires the conditional copy and addition instruction
enabled by the tag latch. As explained in Section III-B, if we
enable the conditional execution feature, the tag latch becomes
the local write bitline enable signal of the row, and the
result of any instruction will only be written back into the
destination bit RD if the tag latch stores 1. Fig. 5 demonstrates
the example of a 2-bit multiplication. Suppose that vector A

is the multiplicand and vector B is the multiplier. Initially,
four columns in the array are reserved for the product and
initialized to zero by setting all carry latches to 0 first using
“Reset C” and then writing the carry latch back to the product
columns in four cycles using “Store C.” In the first computing
cycle, the LSB of the multiplier is loaded to the tag latch using
“Load T” instruction. In cycles 2 and 3, the multiplicands are
copied to the product columns only if the tag latch in that
row equals 1. In cycle 4, the second bit of the multiplier is
loaded to the tag latch. In the next two cycles, for rows with
tag equal to 1, the multiplicands are added to the second and
third bits of the product, shifting the multiplicands by 1 to
account for the multiplier bit position. Finally, we store Cout
in the MSB of the product to complete the multiplication. Note
that partial products are implicitly shifted as they are added
using appropriate bit addressing in the bit-serial operation, and
no explicit shift is performed.

C. Unsigned Integer Division

Division is conducted similarly by implicit shifting and
subtracting from a partial result. The pseudo-code for the
CRAM is given in Table III. The quotient is computed starting
from the MSB. First, we copy the MSB of the dividend to the
partial result (remainder). Then, we subtract the divisor from
the partial result, put the result into a temporary location, and
check whether the result is positive or negative by looking at
the overflow bit Cout in the carry latch. A positive result from
subtraction means the partial result is greater than the divisor,
and the tag latch of that row will be set to 1. We conditionally

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

82 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

TABLE III

PSEUDO-CODE: UNSIGNED INTEGER DIVISION

update the corresponding bit in the quotient and the remainder
if the tag is 1. We repeat the previous steps N times until all
the bits of the quotient are computed.

D. Comparison and Search

The arithmetic comparison between two operands in mem-
ory like “greater/less than” or “equal to” can be performed
using subtraction or XOR logic operation. The CRAM also
provides a multi-bit search operation between the operands
stored in memory and the pattern given in the instruction,
as in a content addressable memory (CAM). The “Search”
operation is achieved by repeatedly using the CRAM single-
cycle instruction “Equal,” which compares all the bits in the
column specified by bit-address RA with the 8th bit of the
CRAM instruction (the LSB of bit-address RB field) and
writes the result into the Tag latch. An N-bit pattern is
compared bit-by-bit with N CRAM instructions, and therefore
requires N cycles to finish the Search operation. The Search
operation is frequently used in floating-point addition and
subtraction.

E. Floating-Point Arithmetic

Taking 32-bit IEEE-754 floating point as an example,
we will demonstrate one way to implement floating-point
arithmetic on the CRAM using repeated conditional integer
addition, subtraction, multiplication, division, and search oper-
ation. A 32-bit floating number is represented by 1 sign bit in
the MSB followed by an 8-bit exponent and a 23-bit mantissa.
During computation, we always use one extra memory column
of all 1s to represent the implicit 24th bit of the mantissa.
Floating-point multiplication and division is relatively simple.
First, the result sign bit can be determined by XOR the operand
sign bits. Then, an 8-bit addition between the two exponents
is performed if it is multiplication or 8-bit subtraction if it is
division. Then, a 24-bit multiplication or division between the
mantissa is performed. However, floating-point addition and
subtraction is much more complicated. Table IV shows the
pseudo-code for floating-point addition. First, we equalize the
exponents of the operands by shifting the one of the mantissa.
If the operand A has a larger exponent, we right-shift the
mantissa of operand B by the difference of the two exponents.
Because the mantissa has at most 24 bits, we shift at most
24 times. Next, we add the mantissa if the signs of A and B

TABLE IV

PSEUDO-CODE: FLOATING-POINT ADDITION

are the same. Otherwise, we subtract B from A if A has a
larger mantissa or subtract A from B if mantissa B is larger.
Finally, we need to normalize the result by left-shifting the
result until the 24th bit of the mantissa is 1.

V. TEST CHIP AND MEASUREMENT RESULTS

To test the proposed in-/near-memory concept, we
incorporate the CRAM into an Internet of Things (IoT)
processor. The chip consists of an ARM Cortex-M0 CPU [32],
a separate CRAM control bus, and eight 16-KB CRAM
banks (in total 128-kB memory with 2048 computing rows).
These memories can function either as traditional or compute
memories. The ARM core can load or store data using
standard memory I/O or perform computation in memory by
directly generating and sending 32-bit CRAM instructions to
the CRAM controller in each bank using memory mapped
I/O. The CRAM control bus servers as a direct memory
access (DMA) controller. Complex multi-cycle computing
instructions can be first stored in one of the CRAM banks
and the ARM M0 core can then program the DMA controller
to stream instructions from one bank to one or multiple
other selected banks, while M0 simultaneously performs other
processing with the remaining memory banks.

Fig. 6 shows the layout of the CRAM bank and die
photograph of the prototype chip fabricated in the 28-nm
CMOS. A single memory bank is 245 × 625 µm with 70%
array efficiency. The chip size is 1.5 by 1.7 mm. Fig. 7 shows
the measured frequency and energy efficiency of 8-bit addition
and multiplication across the supply voltage. The energy
efficiency ratio between 8-bit addition and multiplication is
constant over voltage because of the constant CRAM cycle
counts’ ratio between the two operations. Therefore, their
energy efficiency curves are overlapped in Fig. 7. During
testing, we found that the low-swing sensing technique was
sufficient to prevent read disturbance issues, and therefore

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 28-nm CRAM WITH BIT-SERIAL LOGIC/ARITHMETIC OPERATIONS 83

Fig. 6. Layout of the CRAM bank and die photograph.

Fig. 7. Frequency and energy efficiency of 8-bit multiplication and addition
at different VDD.

Fig. 8. Maximum frequency and leakage power distribution of 21 dies at
1.1 V.

word-line voltage underdrive was not used, which would
have otherwise slowed down the CRAM. The best energy
efficiency is achieved at 0.6 V and 114 MHz, resulting
in 0.56 TOPS/W for 8-bit multiplication and 5.27 TOPS/W for
8-bit addition. At 1.1 V, the average frequency of 475 MHz
results in 122 GOPS for 8-bit addition and 9.4 GOPS for 8-bit
multiplication. If the memory size is scaled to 35 MB, which
has a similar capacity of an L3 cache in a modern server-class
processor, the CRAM is estimated to provide 34.2 TOPS
of 8-bit additions while consuming 51.2 W. Fig. 8 gives
the measured frequency and leakage power distributions for
21 measured dies. The performance of different multi-cycle
operations is summarized in Table V.

Fig. 9 shows the performance of the test chip for diverse
computationally intensive tasks ranging from neural networks
to graph and signal processing. The total latency in terms of
micro seconds is compared with a baseline operation where the

TABLE V

PERFORMANCE OF TEST CHIP AT 475 MHz

CRAMs are only used as data memories and the computation
is entirely performed on the ARM CPU. The baseline memory
clock frequency is 1.2× faster than the CRAM, because it
does not have the write-back and latch-update phases in each
cycle. The first benchmark is the first convolutional layer from
Cuda-convnet [33], and the second is the last fully connected
layer from Alex-net [34]. Due to their size, these layers
must be executed in multiple smaller sub-sections. The third
application consists of 512 simultaneous 32-tap FIR filters,
and the fourth application performs traversal of a directed
graph represented by a 192 × 192 adjacency matrix. The
type of applications that are suitable for the CRAM should
always have part of the operands remain stationary in memory.
For example, the filter weights of the convolutional neural
networks are assumed to be preloaded in memory already.
Before the computation, we only need to transfer the input
feature maps from other banks, and after the in-memory
computation partial outputs are read out to be aggregated in
the CPU. The details of how a convolutional layer is mapped
into the CRAM are given in [35]. Fig. 9 shows the percentage
of time that each application spends on input loading, output
storing, and in-memory computation. Speedup, compared with
executing the same workload with the ARM Cortex-M0,
varies from 6.04× to 87×. The largest performance gain is
achieved when the application is compute-heavy and low on
input–output movement.

Table VI compares the proposed approach with recent state-
of-the-art in-memory accelerators and one non in-memory
digital system-on-chip (SoC) [36]. We can see that the CRAM
provides a good trade-off point among in-memory and non
in-memory architectures. From the comparison table, the ana-
log in-memory architectures show excellent (best reported)
energy efficiency but suffer from poor precision (mostly 1-bit
weight), scalability (small macro size), and limited functional-
ity (add and multiply only). The conventional digital SoCs can
perform general-purpose high-precision arithmetic operations,
but have poor energy efficiency. The CRAM is a digital
in-/near-memory solution that provides an intermediate design
point between the analog in-memory and the conventional Von
Neumann architectures. It offers better precision, scalability,

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

84 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

Fig. 9. Performance comparison between the CRAM and baseline scenario (top) and workload breakdown (bottom).

TABLE VI

COMPARISON WITH PREVIOUS WORK

and programmability than analog IMC and improved energy
efficiency over conventional architectures.

VI. CONCLUSION

To summarize, we have presented an approach to general
IMC that repurposes conventional SRAMs in caches to enable
a wide range of flexible bit-width operations, enabling a host of
rapidly evolving software algorithms such as neural networks.
The CRAM is an area-efficient and low invasive technique
that exploits vector-based, bit-serial in-/near-memory arith-
metic. It achieves high throughputs by exploiting the massive
bandwidth inside the SRAM banks and good energy efficiency
by suppressing data movement energy.

ACKNOWLEDGMENT

The authors would like to thank TSMC University Shuttle
Program for chip fabrication.

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[2] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy efficient
32-nm 20-MB shared on-die L3 cache for intel Xeon processor E5
family,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1954–1962,
Aug. 2013.

[3] D. G. Elliott, W. M. Snelgrove, and M. Stumm, “Computational ram:
A memory-simd hybrid and its application to Dsp,” in Proc. IEEE
Custom Integr. Circuits Conf., May 1992, pp. 30–36.

[4] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” ACM SIGARCH Comput. Archit. News, vol. 45, no. 2,
pp. 1–12, 2017.

[5] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE ISSCC Dig. Tech. Papers, Feb. 2014, pp. 10–14.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[8] Z. Li, J. Wang, D. Sylvester, D. Blaauw, and H. S. Kim, “A
1920 × 1080 25-frames/s 2.4-tops/W low-power 6-D vision processor
for unified optical flow and stereo depth with semi-global match-
ing,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 1048–1058,
Apr. 2019.

[9] S. Smets, T. Goedemé, A. Mittal, and M. Verhelst, “A 978GOPS/W
flexible streaming processor for real-time image processing applications
in 22 nm FDSOI,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2019,
pp. 44–46.

[10] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A dram-based reconfigurable In-Situ accelerator,” in Proc. 50th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2017,
pp. 288–301.

[11] M. N. Bojnordi and E. Ipek, “Memristive Boltzmann machine:
A hardware accelerator for combinatorial optimization and deep learn-
ing,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Mar. 2016, pp. 1–13.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: 28-nm CRAM WITH BIT-SERIAL LOGIC/ARITHMETIC OPERATIONS 85

[12] W.-H. Chen et al., “A 65 nm 1 Mb nonvolatile computing-in-memory
ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN
AI edge processors,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2018, pp. 494–496.

[13] L. Fick, D. Blaauw, D. Sylvester, S. Skrzyniarz, M. Parikh, and D. Fick,
“Analog in-memory subthreshold deep neural network accelerator,” in
Proc. IEEE Custom Integr. Circuits Conf. (CICC), Apr./May 2017,
pp. 1–4.

[14] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE J.
Solid-State Circuits, vol. 52, no. 4, pp. 915–924, Apr. 2017.

[15] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019.

[16] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag,
“A multi-functional in-memory inference processor using a standard 6T
SRAM array,” IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 642–655,
Feb. 2018.

[17] J. Yang et al., “24.4 sandwich-RAM: An energy-efficient in-
memory BWN architecture with pulse-width modulation,” in
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, CA, USA, Feb. 2019, pp. 394–396.

[18] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma, “A microprocessor
implemented in 65 nm CMOS with configurable and bit-scalable acceler-
ator for programmable in-memory computing,” 2018, arXiv:1811.04047.
[Online]. Available: https://arxiv.org/abs/1811.04047

[19] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-Tile 2.4-
Mb in-memory-computing CNN accelerator employing charge-domain
compute,” IEEE J. Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799,
Jun. 2019.

[20] P. Srivastava et al., “PROMISE: An end-to-end design of a program-
mable mixed-signal accelerator for machine-learning algorithms,” in
Proc. 5th Annu. Int. Symp. Comput. Archit., Los Angeles, CA, USA,
2018, pp. 43–56.

[21] J. Wang et al., “A compute SRAM with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019,
pp. 224–226.

[22] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw, and D. Sylvester,
“Recryptor: A reconfigurable cryptographic cortex-M0 processor with
in-memory and near-memory computing for IoT security,” IEEE J. Solid-
State Circuits, vol. 53, no. 4, pp. 995–1005, Apr. 2018.

[23] Q. Dong et al., “A 4+2T SRAM for searching and in-memory computing
with 0.3-V VDDmin ,” IEEE J. Solid-State Circuits, vol. 53, no. 4,
pp. 1006–1015, Apr. 2018.

[24] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE J. Solid-State Circuits, vol. 51,
no. 4, pp. 1009–1021, Apr. 2016.

[25] K. E. Batcher, “Bit-serial parallel processing systems,” IEEE Trans.
Comput., vol. C-31, no. 5, pp. 377–384, May 1982.

[26] P. Denyer and D. Renshaw, VLSI Signal Processing A Bit-Serial
Approach. Reading, MA, USA: Addison-Wesley, 1985.

[27] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[28] K. Ueyoshi et al., “QUEST: Multi-purpose log-quantized DNN inference
engine stacked on 96-MB 3-D SRAM using inductive coupling technol-
ogy in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 186–196, Jan. 2019.

[29] K. C. Akyel et al., “DRC2: Dynamically reconfigurable computing cir-
cuit based on memory architecture,” in Proc. IEEE Int. Conf. Rebooting
Comput. (ICRC), San Diego, CA, USA, Oct. 2016, pp. 1–8.

[30] J. Seo et al., “A 45 nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons,” in Proc. IEEE
Custom Integr. Circuits Conf. (CICC), Sep. 2011, pp. 1–4.

[31] C. Eckert et al., “Neural Cache: Bit-serial in-cache acceleration of deep
neural networks,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), Jun. 2018. vol. 39, no. 3, pp. 11–19.

[32] ARM CORTEX-M Series. Accessed: Oct. 2017. [Online]. Available:
http://www.arm.com/products/processors/cortex-m

[33] Cuda-Convnet. Accessed: Sep. 2018. [Online]. Available: https://code.
google.com/archive/p/cuda-convnet/

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[35] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” in Proc. 45th Annu. Int. Symp. Comput. Archit., Los
Angeles, CA, USA, 2018, pp. 383–396.

[36] P. N. Whatmough, S. K. Lee, D. Brooks, and G.-Y. Wei, “DNN engine:
A 28-nm timing-error tolerant sparse deep neural network processor
for IoT applications,” IEEE J. Solid-State Circuits, vol. 53, no. 9,
pp. 2722–2731, Sep. 2018.

Jingcheng Wang (S’15) received the B.S. degree
in electrical engineering and computer science from
the University of Michigan, Ann Arbor, MI, USA,
and Shanghai Jiaotong University, Shanghai, China,
in 2014, and the M.S. degree from the University
of Michigan in 2017, where he is currently pursuing
the Ph.D. degree in electrical engineering.

His current research interests include low-power
system and memory design, near-/in-memory com-
puting, and neural network accelerators.

Mr. Wang was a recipient of the Dwight F. Benton
Fellowship in 2015 from the University of Michigan.

Xiaowei Wang (S’19) received the B.Eng. degree in
electronic information science and technology from
Tsinghua University, Beijing, China, in 2015, and
the M.S. degree in computer science and engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2017, where he is currently pursuing the
Ph.D. degree in computer science and engineering.

His current research interests include application-
specific architectures based on in-memory comput-
ing and hardware/software co-design for machine
learning workloads.

Charles Eckert (S’16) received the B.S. degree
in computer engineering from SUNY Binghamton,
Binghamton, NY, USA, in 2017, and the M.S.E.
degree in computer science and engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2018, where he is currently pursuing the Ph.D.
degree in computer science and engineering.

His research focuses on using in-memory comput-
ing to accelerate machine learning applications.

Mr. Eckert was a recipient of the NDSEG
Fellowship along with NSF GFRP Honorable
mention in 2019.

Arun Subramaniyan (S’16) received the B.E.
degree (Hons.) in electrical and electronics from
the Birla Institute of Technology and Science-Pilani,
Pilani, India, in 2015, and the M.S. degree in com-
puter science and engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2018, where he
is currently pursuing the Ph.D. degree in computer
science and engineering.

He is broadly interested in computer architecture,
specifically in-memory computing and developing
hardware accelerated systems for genomics.

Mr. Subramaniyan was a recipient of the Rackham International Student
Fellowship in 2017 and the Precision Health Scholar Award in 2018 from the
University of Michigan.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

86 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 1, JANUARY 2020

Reetuparna Das (M’13) received the Ph.D. degree
in computer science and engineering from Pennsyl-
vania State University, University Park, PA, USA.

She was a Research Scientist with Intel Labs
and the Researcher-in-Residence with the Center for
Future Architectures Research. She is currently an
Assistant Professor with the University of Michigan,
Ann Arbor, MI, USA. She also serves as the Co-
Founder and CTO of a precision medicine startup,
Sequal Inc. Some of her recent projects include
in-memory architectures, custom computing for

precision health and AI, fine-grain heterogeneous core architectures for mobile
systems, and low-power scalable interconnects for kilo-core processors.
She has authored more than 45 articles. She holds seven patents.

Dr. Das was a recipient of the two IEEE Top Picks Awards, the NSF
CAREER Award, the CRA-W’s Borg Early Career Award, and the Sloan
Foundation Fellowship. She has been inducted into IEEE/ACM MICRO and
ISCA Hall of Fame. She has served on over 30 Technical Program Committees
and is serving as the Program Co-Chair for MICRO-52.

David Blaauw (M’94–SM’07–F’12) received the
B.S. degree in physics and computer science from
Duke University, Durham, NC, USA, in 1986,
and the Ph.D. degree in computer science from
the University of Illinois at Urbana–Champaign,
Champaign, IL, USA, in 1991.

In 2001, he was with Motorola, Inc., Austin,
TX, USA, where he was the Manager of the
High Performance Design Technology Group. Since
August 2001, he has been with the faculty of the
University of Michigan, Ann Arbor, MI, USA, where

he is the Kensall D. Wise Collegiate Professor of electrical engineering and
computer science (EECS). He is also the Director of the Michigan Integrated
Circuits Laboratory. He has authored or coauthored more than 600 arti-
cles. He holds 65 patents. He has extensively researched ultralow-power
computing using subthreshold computing and analog circuits for millimeter
sensor systems, which was selected by the MIT Technology Review as
one of the year’s most significant innovations. For high-end servers, his
research group introduced a so-called near-threshold computing, which has
become a common concept in semiconductor design. Recently, he has pursued
research in cognitive computing using analog, in-memory neural networks for
edge-devices and genomics acceleration.

Dr. Blaauw was a recipient of the Motorola Innovation Award at Motorola,
Inc., the 2016 SIA-SRC Faculty Award for lifetime research contributions to
the U.S. semiconductor industry, and the numerous Best Paper Awards and
nominations. He was the General Chair of the IEEE International Symposium
on Low Power, the Technical Program Chair for the ACM/IEEE Design
Automation Conference, and serves on the IEEE International Solid-State
Circuits Conference’s Technical Program Committee.

Dennis Sylvester (S’95–M’00–SM’04–F’11)
received the Ph.D. degree in electrical engineering
from the University of California at Berkeley
(UC Berkeley), Berkeley, CA, USA, where his
dissertation was recognized with the David J.
Sakrison Memorial Prize as the most outstanding
research in the electrical engineering and computer
science (EECS) Department.

He was the Founding Director of the Michigan
Integrated Circuits Laboratory (MICL), University
of Michigan, Ann Arbor, MI, USA, a group of

10 faculty and 70+ graduate students. He was a Research Staff with the
Advanced Technology Group of Synopsys, Mountain View, CA, USA, and
also with Hewlett-Packard Laboratories, Palo Alto, CA, USA, and a Visiting
Professor with the National University of Singapore, Singapore, and Nanyang
Technological University, Singapore. He co-founded Ambiq Micro, Austin,
TX, USA, a Fabless Semiconductor Company, developing ultralow-power
mixed-signal solutions for compact wireless devices. He is currently a
Professor with the Department of Electrical Engineering and Computer
Science, University of Michigan. He has authored or coauthored more than
500 articles along with one book and several book chapters. He holds 48
U.S. patents. His research interests include the design of millimeter-scale
computing systems and energy-efficient near-threshold computing.

Dr. Sylvester was a recipient of the NSF CAREER Award, the Beatrice
Winner Award at ISSCC, the IBM Faculty Award, the SRC Inventor
Recognition Award, the University of Michigan Henry Russel Award for
Distinguished Scholarship, and ten Best Paper Awards and nominations.
He was named one of the Top Contributing Authors at ISSCC and most
prolific author at IEEE Symposium on VLSI Circuits. He serves on the
Technical Program Committee for the IEEE International Solid-State Circuits
Conference and on the Administrative Committee for the IEEE Solid-State
Circuits Society. He continues to serve as an Associate Editor for the
IEEE JOURNAL OF SOLID-STATE CIRCUITS, the IEEE TRANSACTIONS

ON CAD, and the IEEE TRANSACTIONS ON VERY LARGE SCALE

INTEGRATION (VLSI) SYSTEMS, and was an IEEE Solid-State Circuits
Society Distinguished Lecturer.

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 02,2020 at 20:03:17 UTC from IEEE Xplore. Restrictions apply.

