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Abstract—This article presents a voice and acoustic activity
detector that uses a mixer-based architecture and ultra-low-
power neural network (NN)-based classifier. By sequentially
scanning 4 kHz of frequency bands and down-converting to below
500 Hz, feature extraction power consumption is reduced by 4 x.
The NN processor employs computational sprinting, enabling
12x power reduction. The system also features inaudible acoustic
signature detection for intentional remote silent wakeup of the
system while re-using a subset of the same system components.
The measurement results achieve 91.5%/90% speech/non-speech
hit rates at 10-dB SNR with babble noise and 142-nW power
consumption. Acoustic signature detection consumes 66 nW,
successfully detecting a signature 10 dB below the noise level.

Index Terms— Acoustic event detection, acoustic wakeup detec-
tion, audio signal processing, deep neural network, feature
extraction, Internet of Things, machine learning, ultra-low
power (ULP), voice activity detection.

I. INTRODUCTION

OICE user interfaces are widely adopted in various

devices as the human voice is one of the most natural and
information-rich interfaces between humans and machines.
Minimizing the power consumption of voice processing is
particularly crucial to meet power budgets when the system
becomes smaller as the battery size imposes severe power
and energy constraints on system design [1]. In many practi-
cal applications, acoustic events-of-interest occur infrequently.
Constant listening and detection of keywords are very power-
hungry. Instead, the use of an always-on voice activity detec-
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Fig. 1. Always-on voice activity detection as a wakeup mechanism. Advanced
processing is enabled upon voice activity detection to save the overall power.

tor (VAD) as a system wakeup mechanism is a popular
alternative [2]-[7], and subsequent power-hungry processing
is enabled by the VAD to save overall system power, as shown
in Fig. 1. The acoustic wakeup detector consumes much
less power than constant listening for keywords since it only
detects whether an incoming signal contains a human voice.
However, since the events occur infrequently, the always-
on acoustic wakeup detector typically dominates the system
power consumption, and therefore, minimizing the VAD power
consumption itself is a critical design challenge.

A previous acoustic wakeup detector [8] consumes just
12 nW but it is specifically designed to detect “stationary”
events whose signal features are invariant over a relatively
long time (a few seconds) and very narrow in frequency
(2-Hz bandwidth or 0.5-s extraction time for each feature).
The approach in [8] is not applicable to a non-stationary
target, such as voice activity containing time-varying features
that need to be extracted with a short (tens of ms) interval.
Prior VAD chips [2], [3] demonstrated reliable performance
but consumed significant power (>20 xW) and lacked an
analog front end (AFE), which would further increase the
power. More recent analog-domain feature extraction-based
VAD chips [4], [5] also reported ¢ W-level power consumption,
and their simple decision tree [4] or fixed neural network
(NN)-based approach [5] limited broader use for various
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Fig. 2. (a) VAD system architecture. (b) Operating principle of mixer-based sequential frequency scanning.

acoustic event targets. Moreover, the VAD chips [2]-[5] were
tested using only electric analog audio signals, rather than
actual audio signals. Therefore, additional components and
their power consumption overhead need to be added for real
audio to electric analog signal conversion.

Typical VADs consist of two parts [9]-[11]. A feature
extractor which converts the incoming signal into low-
dimensional but dense acoustic features, and a classifier that
takes a feature set input and produces a binary decision:
Speech or non-speech. Both design of feature extractor and
classifier significantly affect overall system power, accuracy,
latency, and scalability.

The main challenge in reducing the overall VAD power is
to reduce the power required for feature extraction since it
is typically computation-intensive and operates continuously
without duty cycling. Conventional approaches [2], [3], [11]
used digital fast Fourier transform (FFT)-based feature extrac-
tion, yet FFT itself consumes >2 uW even with exten-
sively relaxed throughput/latency constraints [2]. To reduce
power consumption, [4], [5] exploited analog-domain feature
extraction techniques. However, the parallel filter bank at the
voice-band is still the most power-hungry block, preventing
sub-uW operation. Instead of using parallel feature extraction,
such as an analog filter bank or digital FFT, a serialized
discrete Fourier transform (DFT) on tones-of-interest approach
was introduced in our previous work [8] for low-frequency
(<500 Hz) signal targets. However, applying the same tech-
nique to the voice-band (up to 4 kHz) frequency significantly
increases the power consumption of both the AFE and the

digital feature extractor proportionally with signal bandwidth,
limiting the usefulness of this technique.

To improve the accuracy and scalability of the VAD
system, the NN-based classifiers have been recently pro-
posed [12]-[16]. Compared to other machine learning clas-
sifiers, such as decision tree [4] or support vector machine
(SVM) [8], NN-based classifier have shown the improved
performance [17], immunity to difficult noise scenarios [18],
and strong scalability to multiple acoustic targets [19] and
large-scale corpora [20], becoming a strong candidate for
real-world applications.

This article presents a programmable acoustic signal
processing system for both VAD and non-voice acoustic event
detection based on NN classifier. We use a mixer-based
architecture that sequentially scans and down-converts the
4-kHz bandwidth signal to a <500-Hz passband, reducing
amplifier, analog-to-digital converter (ADC), and digital signal
processor (DSP) power by 4x. The NN processor employs
computational sprinting, which minimizes static energy domi-
nance in low frequency/voltage regimes, providing 12 x power
reduction in the digital domain. In addition to a VAD,
the system features an inaudible acoustic signature detection
mode to enable remote silent system wakeup. The proposed
always-on VAD consumes 142 nW, which is 8x lower than
that reported in the literature for state-of-the-art works. In this
article, Section II describes the overview of the VAD sys-
tem. Sections III and IV show its circuit implementation,
and Section V discusses the measurement results. Finally,
Section VI concludes this article.
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II. VAD SYSTEM OVERVIEW

Fig. 2(a) shows the overall system architecture with two
signal chains: an always-on ultra-low power (ULP) chain
and a high performance (HP) chain that wakes upon event
detection by the ULP chain. The system has two modes based
on the two chains: a 142-nW ULP mode and an 18-uW
HP mode. The HP chain is power-gated in the ULP mode,
while the ULP chain is always on. When a target event
is detected in ULP mode, an off-chip microprocessor (uP)
activates the HP mode, which enables more powerful feature
extraction and classification to complete additional complex
tasks at the cost of power consumption. The HP mode also
supports real-time audio compressing and streaming to off-
chip eFlash for general purpose post-processing [1]. The HP
chain consists of 4-kHz bandwidth and 8-kS/s sampling rate
with a conventional AFE architecture consisting of a low-noise
amplifier (LNA), programmable amplifier (PGA), ADC driver
(DRV), and ADC. In contrast, the ULP chain employs a
digitally controlled mixer between the LNA and PGA to shift
the desired signal frequency down to 500-Hz bandwidth to
lower the Nyquist rate to 1 kS/s after the PGA. Both the ULP
and HP chains share the same NN processor, but it operates
with a different power scale and network model for each mode.
An external clock from a 32-kHz crystal oscillator is divided
into 8 and 1 kHz for the HP and ULP chain, respectively.

Fig. 2(b) shows the mixer-based sequential frequency scan-
ning operation that reduces AFE and DSP power consumption
in the ULP mode by lowering their bandwidth and sampling
rate to 500 Hz and 1 kHz, respectively. The incoming signal
from the microphone is amplified by an LNA with the full
4-kHz bandwidth. At this point, the mixer, switched by a
binary discrete cosine transform (DCT) sequence, immedi-
ately down-converts the frequency of the desired feature to
a programmable intermediate frequency (IF) of <500 Hz.
The digital binary sequence generator supports an arbitrary
DCT frequency for the mixer switch control; for example,
the 4-kHz band can be divided into 31.25-Hz frequency bins
using a 128-pt DCT, and the energy content of 32 bands
out of 128 is sequentially extracted by sweeping the DCT
frequencies (F1, F», ... F37). The 32 bands are chosen during
NN training for each target event. The IF down-converted
signal is further amplified and low-pass filtered with 500-Hz
bandwidth (via a PGA) and digitized at 1 kS/s. Finally,
the digital IF quadrature mixer down-converts the signal to dc,
and feature power is measured. With a DCT length of 16 ms
per feature (128-pt DCT with 8 kHz binary mixing), 32-feature
extraction requires a 512-ms frame. The mixer-based structure
reduces the bandwidth, sampling rate, and clock frequency of
the AFE and DSP after the mixer; thus, the feature extraction
power consumption is decreased from 225 nW (simulation;
based on LNA and PGA at 4 kHz of bandwidth, DRV and
ADC at 8 kS/s of sampling rate, and digital FFT at 8§ kHz of
clock) to 60 nW (measured; including LNA, PGA, DRV, ADC,
IF mixer/extractor, and binary-DCT sequence generator). The
programmable IF is set to ~250 Hz to reduce the PGA 1/f
noise effect while the image aliasing issue of non-quadrature
mixing and imperfection of first-order filtering is mitigated
(without noticeable event detection accuracy degradation)
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Fig. 3. AFE block diagram with ULP and HP chains.

by an NN trained with the image-aliased and attenuated
signals.

III. ANALOG FRONT-END IMPLEMENTATION
A. Overall Architecture

Fig. 3 shows the AFE circuit diagram with ULP and
HP chains. Both chains share a single MEMS capacitive
microphone and a charge pump. Depending on the operation
mode, the chain selection switches select one chain. The HP
chain consists of a 31.3-dB gain LNA, 4.6-31.3-dB gain PGA,
8-bit ADC, and an ADC DRV. The ULP chain also includes
all the blocks of the HP chain but operates with lower power
consumption as it targets relaxed noise performance and ULP
operation. Moreover, the ULP chain has a mixer between the
LNA and PGA. The mixer is a passive mixer similar to a
typical chopper and is controlled by the binary DCT sequence
generator.

B. Charge Pump and 10-V Level Shifter

Microphone sensitivity is proportional to the microphone
bias voltage, and therefore, we use a three-stage Dickson
charge pump to generate 10-V bias [1]. Because the MEMS
microphone is capacitive, the charge pump only needs to
drive negligible loads. The charge pump uses the 8-kHz
clock to minimize possible clock signal coupling to the signal
chain (4-kHz BW) and consumes only 13 nW (measured).
The diode-connected PMOS sets the corner frequency of the
voltage bias to be well below the microphone response range
(<75 Hz) to avoid altering the acoustic response in the system.
Cp is an external capacitor to match the input impedance.

To switch the modes between ULP and HP, level shifters
shift the control signal voltage level from nominal VDD to
10 V, since the LNA inputs see signals in the 10-V domain.
Fig. 4 shows the proposed level shifter. Because 10 V is much
higher than the transistor oxide breakdown, coupling capaci-
tors implemented with a metal-oxide-metal (MOM) structure
are used to bridge to the high voltage in the level shifter.
However, the coupling capacitors may suffer from transistor
leakage due to infrequent mode switches. To avoid leakage,
the capacitors are periodically refreshed with the clock. It is
complementarily switched for continuous operation.

C. Low-Noise Amplifier and Programmable-Gain Amplifier

The first stage amplifier determines the overall noise
performance of the analog signal chain as it is the most
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noise-sensitive block in the system. Fig. 5(a) shows the block
diagram of the proposed LNA. It uses capacitive feedback and
pseudo-resistor dc-servo loops for low-power and small area
implementation, respectively. LNA gain is set by the ratios
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of C;1 to Cpy. The ULP LNA gain is 18 dB, while the
HP LNA gain is set to 31.3 dB to detect smaller acoustic
signals. Fig. 5(b) shows the main operational transconduc-
tance amplifier (OTA) with common-mode feedback (CMFB).
A conventional differential difference amplifier (DDA)-based
common-mode feedback shows poor linearity when the signal
is large, as shown in Fig. 6 (red line) [21], [22]. To enhance the
output range and linearity, we use two different loops for the
CMEFB. One employs coupling capacitors for high bandwidth
and good linearity across the signal amplitude. The other loop
uses a DDA with a pseudo-resistor and is only responsible for
setting the dc level.

The main OTA adopts an inverter-based cascode amplifier
for better noise efficiency [8], [21]. PMOS and NMOS input
transistor pairs are separately biased, and hence they have two
pairs of Cy; and Cr; and also have two dc-servo loops. The
sizes of the input transistor pairs are determined for balanced
1/f noise and thermal noise. The auxiliary amplifiers (aux-
amp) in the dc-servo loops shift the output common-mode
voltage of the main OTA to an optimal bias point for each
PMOS/NMOS input pair to maximize the LNA output range.
The implementation of the aux-amp is shown in Fig. 5(c). Very
high resistance (>T Q) can be readily achieved with a pseudo
resistor in a small area, but its resistance varies substantially
and is nonlinear when the voltage difference between the two
terminals is large. In particular, mismatch among parasitic
diodes and intrinsic gate diodes causes amplitude-dependent
drift that may cause amplifier saturation. The aux-amps atten-
uate the maximum amplitude seen by the pseudo-resistors and
hence, improve the operation range and linearity.

Fig. 7 shows the PGA implementation. Since PGA is less
sensitive to noise than LNA, the PGAs main OTA (OTAmaN2)
uses only a PMOS input pair for the maximum output range.
The gain is adjustable between 4.6 and 31.3 dB by changing
Cy for both the ULP and HP chains. Cy, sets 500-Hz BW
and 4-kHz BW for the ULP and HP chains, respectively.

Typical audio systems activated by a VAD could experience
front end clipping (FEC), which may result in losing the first
portion of each audio segment in passing from noise to voice
activity due to the transition time between modes [23]. This
effect is exacerbated especially in low power systems with
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pseudo-resistors since their extremely high resistance makes
the settling time exceedingly long. In this design, we minimize
the ULP-HP transition time by temporarily turning on fast set-
tling switches [see Fig. 5(a)] during the transition. Fig. 8 shows
the measured results. The common-mode voltage settling time
is reduced from 6 s to 100 ms, proving the effectiveness of
this method.

IV. DIGITAL BACK-END IMPLEMENTATION
A. Overall Architecture

Fig. 9 shows the digital back-end architecture. In the ULP
mode, while the binary DCT mixer sequence generator pro-
duces a square wave for the mixer at the AFE, the IF mixer
and extractor receive the ADC output to down-convert an IF
signal into dc and to extract signal power as features for NN
classification. Once a set of features is collected at the feature
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buffer during a frame, it is transferred to the NN processor
as an input via a bus shared among digital blocks. A linear
feedback shift register (LFSR) replaces the binary DCT mixer
sequence generator in acoustic signature detection mode,
as explained in detail in Section V. In HP mode, the first-in
first-out (FIFO) buffer performs the windowing of the ADC
samples for both compressions [1] and FFT. The NN processor
in HP mode computes the FFT and classification. The always-
on ULP modules are implemented with thick oxide I/O devices
to suppress leakage, while power-gated HP modules including
the NN processor are designed with standard devices. Due to
the mixer-based architecture, digital processing after the ADC
in ULP mode runs at 1 kHz rather than the 8-kHz Nyquist
rate, yielding 41% reduction in digital feature extraction power
consumption. While the binary DCT mixer sequence generator
runs at 8 kHz, it only consumes 4 nW.

B. Binary DCT Mixer Sequence Generator

In ULP mode, the binary DCT mixer sequence generator
shown in Fig. 10 controls the feature frequency band selection
by creating a DCT basis waveform to be correlated with
the incoming signal. The circuit accumulates a programmable
phase, which is expressed as follows:

AN ="k O0<k<N-—1 (1)
N

where N is the DCT size and k is the index of selected
scanning frequency bands (i.e., Fy), either as is or doubled
by shifting to generate a DCT basis function by the following
equation:

cos (f) =cos(AO(2n+1)), n=0,1,....N—1 (2)

where n is the accumulation step. By simply using 2 MSBs of
the accumulated phase instead of the exact cosine calculation,
the binarized DCT basis waveform can be obtained by the
following equation:

B(f(k,n)) = B (cos (%k(zn + 1)))

1 x>0
B(x)=1" 3
() [_1, o 3)
The DCT size N determines the resolution of the frequency
bins and frame length, and the number of selected feature
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frequencies, m, is specified by the number of different accu-
mulation phase values (i.e., the number of different k£ values).
The k values are arbitrarily programmable to set particular
scanning frequencies and determined during the NN training
process. This design supports N = 32,64,...,1024, and
m = 16, 20, 32, 48.

C. IF Mixer and Extractor

Fig. 11 shows the IF mixer and extractor that perform
quadrature mixing of the IF signal from the ADC and calcu-
lates the power as a scanned frequency feature. The extracted
feature can be expressed as follows:

log((|X[k1])?),
1 N/8—1

JVN/8 =

feature =
1 8n+7

3 Z B(f (k,i))x[i] o Wkn
i=8n
)

where x is the input signal, n is the ADC sample index,
and kip is the index of the IF frequency. Note that the
computation inside the parentheses in (4) is done in the AFE
by the mixer and the low-pass filter of the PGA. The 4-bit
quantized cosine and sine functions are generated by the
phase accumulator and lookup table. The phase value can be
programmed by the index kp to set the proper IF frequency,
avoiding interference such as 60-Hz noise or other possible
ambient acoustic noise. This circuit also computes the average
input power per frame to be used for automatic gain control.
Last, the ADC output is accumulated for a fixed amount of
time with a separate data path that is only turned on during the
acoustic signature detection mode, as explained in Section V.

X[k]

D. Neural Network Processor

The ULP NN processor shown in Fig. 12(a) employs a
custom-built instruction set including matrix-vector multipli-
cation, FFT, conditional branch, element-wise vector opera-
tion, non-linear activation, and min/max/averaging to support
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arbitrary network models and various pre/post-processing.
The processor has 16 kB of on-chip SRAM storage (see
Fig. 9) shared for model parameters (4 bit per weight)
and instructions. By leveraging the custom-designed high-
Vin SRAM cells, the power-gated sleep retention power of
the processor is only 440 pW. However, the active state
leakage power is >800 nW because the processor core and
SRAM peripherals consist of standard-Vj, devices to meet
the performance requirement of the HP mode, and this active
leakage power is much higher than the power consumed by
ULP feature extraction. Hence, if the processor runs at a slow
clock frequency of 1 kHz with the rest of the ULP digital
processing modules to minimize dynamic power, then system
power consumption would be dominated by NN processor
leakage. To suppress this active leakage power, the concept of
computational sprinting is adopted, minimizing the active time
of the NN processor. Since ULP feature extraction operates
sequentially, there is a long interval between classifications of
a frame. The NN processor sprints at 700 kHz once the sequen-
tial feature extraction is complete and then is power-gated for
the remainder of the next feature extraction. When 128-pt
DCT, 32-feature, and a 32-32-16-2 NN model configuration
are used, a duty cycle of 0.8% (sprint/sleep ratio) is achieved
with 512 ms of frame interval, resulting in a 12x power
reduction in the NN processor compared with running it at
10 kHz without sprinting, as shown in Fig. 12(b). On the other
hand, in HP mode, a 128-80-20-2 NN model configuration is
used. The mixer-based sequential frequency scanning feature
extraction is replaced by a parallel FFT based approach that
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extracts the full 128 features by performing the 256-pt FFT
on a 32 ms of the frame. The HP mode operation reduces the
latency of feature extraction by a factor of 16x at the cost of
2.47-uW power consumption (measured; for AFE and digital
FFT feature extraction) compared to the ULP mixer-based
sequential frequency scanning approach. The NN processor
stays active running at 700 kHz without duty cycling or
clock gating for the HP mode to maintain the 124 x increased
throughput of 371 kmacs/s, compared with 3 kmacs/s in the
ULP mode. Unlike the ULP mode, the active leakage does not
dominate the overall power consumption in HP mode.

V. ACOUSTIC SIGNATURE WAKEUP DETECTION

The system also features inaudible acoustic signature detec-
tion as an alternate wakeup mechanism. This feature enables
user-command silent remote wakeup of the sensor node with-
out disturbing other sensors or people around them, as shown
in Fig. 13(a). The mixer-based architecture is reused to realize
the signature detection, as depicted in Fig. 13(b). An incoming
signal is mixed with a local pseudorandom sequence through
the mixer in the ULP AFE, and then the (digitally) accumu-
lated value for a full sequence is compared with a threshold
to determine the existence of a signature with the circuit
shown in Fig. 11, as explained in Section IV-C. In this mode,
a programmable LFSR running at 1 kHz replaces the binary
DCT mixer sequence generator, producing a maximal length
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Fig. 14. Die micrograph and system integration with MEMS microphone.

sequence (MLS) to be mixed with the input signal. The length
of MLS (NmLs) is determined as 25798¢ — 1, where the stage
is the number of LFSR stages. The LFSR tabs are arbitrarily
programmed to allow a dedicated MLS for each sensor node,
and to configure bit-stages of LFSR, exploiting the tradeoff
between the minimum required SNR and detection latency.
The proposed sequence correlation with simple mixing
requires exact phase alignment between the sequence from the
transmitter and receiver. However, this phase alignment cannot
be guaranteed because each sensor operates on unsynchronized
independent clock sources. Running a full correlation at every
sample to test all possible phases is computationally expensive.
To mitigate this issue, we propose a time-drift synchronization
scheme to realize correlation with simple mixing at low power.
As shown in Fig. 13(c), the transmitter and receiver use
intentionally mismatched sequence lengths of Nyrs + xMLs
and Nps, respectively. Due to the length mismatch by xmrs,
relative phases of two sequences drift over time and periodi-
cally align with each other at the beginning of the sequence,
and the accumulated mixed-signal produces periodic peaks to
trigger wakeup. The period of the peaks, or the worst detection
latency, is determined by Nyps(Nmrs + *MLs) JLESR-

VI. MEASUREMENT RESULTS

The chip was fabricated in 180-nm CMOS and integrated
with a MEMS microphone, as shown in Fig. 14. The ULP and
HP chain amplifiers consumed 31 and 370 nW, respectively.
The ULP chain amplifiers have 16 and 62 xVrms measured
input-referred noises with the maximum and minimum gain
settings, respectively, as shown in Fig. 15(a). The maximum
PGA output range that satisfies 8-bit accuracy [<0.4% total
harmonic distortion (THD)] is 1.45 Vpp. The HP chain
amplifiers have 8.7-x Vrms input-referred noise across all PGA
gain settings [see Fig. 15(b)]. Fig. 16 shows the measured
mixer-based frequency scanning operation and input referred
noise spectrum for the 64-pt DCT case. Two different applied
tones, 1 and 2 kHz, were mixed down to 250 Hz in the IF,
and power was extracted by DSP at two mixing frequencies
each: 1) 0.75 and 1.25 kHz for 1-kHz input tone and 2)
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Fig. 16.  Power spectral density referred to input (PSD RTI) for LNA,
PGA, and DSP. Two different applied tones (1 and 2 kHz) are mixed down
to 250 Hz in IF and extracted by DSP at two mixing frequencies each
(0.75 and 1.25 kHz for 1 kHz and 1.75 and 2.25 kHz for 2-kHz tone).

1.75 and 2.25 kHz for 2-kHz input tone. Fig. 17 shows the
measured ULP and HP mode power breakdown. The total ULP
power was measured as 142 nW, and every block power was
very balanced, which indicates a well-optimized design. The
measured HP power was 18 uW dominated by the digital
circuits.

For VAD performance evaluation, 40 min of speech seg-
ments were concatenated from the LibriSpeech data set and
mixed with babble noise from the NOISEX-92 data set for
training. For testing, 10 min of concatenated speech and noise
segments were used. Exclusive data sets were used for NN
training and evaluation to guarantee no over-fitting occurred.

We first performed electrical testing by inputting signal
feeds to the LNA via an electrical connection. Fig. 18(a)
shows the measured receiver operating characteristic (ROC)
curve with varying SNRs in the ULP mode. The detection

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 11, NOVEMBER 2019

IF Mixer + Extr. 4.3%

B-DCT Gen
2.5%

Serial Bus 11.1%
Compression 7.8%

DRV ADC 0.5%
1.7% DRV 1.2%
PGA 0.5% NN Core
LNA 1.1% 54.9%

SRAM
26.8%

ULP Total Power: 142nW HP Total Power: 18uW

Fig. 17.  Measured power distribution of ULP mode (left) and HP mode
(right).
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Fig. 18. ROC curves for ULP VAD mode with (a) varying SNRs in the

electrical test (electrical connection to LNA) and (b) SPLs in the acoustic test
(using speaker/integrated microphone in the sound chamber).
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Fig. 19. Acoustic testing setup. Proposed chip was integrated into the system-
on-board with a MEMS microphone and 3-D-printed lid and tested in a sound
chamber.

threshold is set by the point on the ROC curve that maximizes
the rectangular area formed by its coordinates. The system
achieves 91.5%/90% speech/non-speech hit rates at 10-dB
SNR with babble noise in the ULP mode when programmed
with an NN of size 32-32-16-2 neurons with two hidden-
layers, exhibiting ~7.5% better hit rate with 7x less power
consumption than prior state-of-the-art works.

Unlike prior-art, we also performed an acoustic VAD test
with the setup shown in Fig. 19. The proposed chip was
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latency.

integrated with a MEMS microphone in the daughterboard,
which includes a sound hole, and is then covered by a
3-D-printed custom lid to provide an acoustic cavity for the
microphone and protect electronics at the same time. Then,
the daughterboard was connected to the motherboard and
placed within the sound chamber to achieve very low ambient
noise, around 35-dBA sound pressure level (SPL). For acoustic
testing, we concatenated speech segments without mixing
any background contextual noise to measure the effect of
circuit noise only. The measurement results show >83%/85%
speech/non-speech hit rates with a signal level down to 50-
dBA SPL, as shown in Fig. 18(b). The measured AFE equiva-
lent input noise (EIN) is 45- and 44-dB SPL (no weighting) for
ULP (500-Hz BW) and HP (4-kHz BW) chains, respectively.

The measurement of acoustic signature wakeup detection
was also performed. As shown in Fig. 20(a), the system wakes
up under exposure to as little as —10-dB SNR of white-noise-
like sound when MLS signature of 6-stages, NmrLs = 63,
and xyrs = 1 is used, consuming 66 nW. The detection
threshold of the decision metric is set to 10 dB to measure
minimum SNR. These results prove that the system can be
awoken by a signature buried in ambient noise that is inaudible
to humans near the receiver. Moreover, Fig. 20(b) shows
that the increased stages of LFSR allow more relaxed SNR
requirement at the cost of increased detection latency. Note
that every added stage achieves around 3 dB of SNR gain, but
pays ~4x increased latency.

Fig. 21 shows measured logic analyzer output of overall
system operation. The acoustic system stayed in the ULP
mode when there was no voice. The system clock ran at
1 kHz, and NN output data was observed every 512 ms.
Once a voice activity was detected, the proposed acoustic chip
sent an interrupt request to an external microcontroller via
an inter-chip serial interface [24]. Then, the microcontroller
sequentially waked up HP AFE chain and HP digital back-end
via the serial interface. The 100-ms delay was given for AFE
signal settlement before the digital back-end operation. The
system clock was switched to 8 kHz, and frame length of
HP NN was 16 ms (measured in 128-pt FFT and 64 features
case). The acoustic system also compressed audio with a frame
length of 24 ms in the HP mode. The HP detection threshold
was set to achieve a high non-speech hit rate and accurate

[
Non-Speech

Detected S
MBUS_D ”

MBUS_CK ||
nNout |

HP AFE
Turn ON
L 3

HP Digital
Turn ON
e

Neural Network Output

Fig. 21. Measured waveform of the acoustic system that switches between
ULP and HP modes.

TABLE I
COMPARISON OF FEATURE EXTRACTOR

Feature Extractor This Work (5] (7] [4]
Technology (nm) 180 180 180 90
Feature Extraction Type Mixed-signal Analogto Digital  Analog
events
Channel Number 16-48 16 4-16 16
Frequency Range (Hz) 75-4k 100-5k 0.2-470 75-5k
Power (nW) 60 380 10 6000
Normalized Power (nW) * 5 71 34 1186
Dynamic Range (dB) 47 40 N/A 40
o LNA, Mixer, LNA, BPF, LNA, BPF,
Building Blocks LPF, DSP  FWR, IAF FWR, LPF

*Normalized power is calculated according to the equation in [5], normalized
to 4kHz.

false alarm removal (97%/25% non-speech/speech hit rates,
measured with a 128-80-20-2 NN model and 256-pt FFT).
When there was no voice for long enough time, the acoustic
system returned to the ULP mode.
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TABLE 1I
COMPARISON OF VOICE ACTIVITY DETECTOR (VAD)

Voice Activity Detector This Work [5] [3] [4] (2]
Technology (nm) 180 180 65 90 32
. Analog/passive mic. w/ Analog mic. w/ gain Assumed digitized Analog mic. w/ gain  Assumed digitized
Acoustic Input gain stage stage stage
Classifier Neural network Neural network Neural network Decision tree Energy-based
Classifier Topology
Programmability Yes No Yes No No
. LibriSpeech + AURORA4 +
Latency (ms) 512 10 10 <100 10
Power (uW) 0.142 1 223 6 300
91.5%/90% ° @ babble 84%/85% @ restaurant 90%/90% ° @ unspecified 89%/85% @ babble 97% accuracy @

Accuracy SP/Non-SP hit rate
(electrical test)

10dB SNR 10dB SNR

Acoustic Testing Performed Yes No

context 7dB SNR 10dB SNR unspecified context
unspecified SNR
No No No

* All datasets are similar in speech quality.

®Measured at ULP mode with 128pt-DCT, 32 feature channels, and 250Hz IF.

¢Converted from EER in [3]

VII. CONCLUSION

This article demonstrated the design of a sub-u'W voice and
non-voice acoustic activity detection chip. By using mixer-
based sequential frequency scanning operation, the feature
extraction power is reduced by 4x. Table I compares the
proposed feature extractor with prior works. Although [8]
shows the lowest power consumption, the signal bandwidth
is limited to under 500 Hz. This article achieves the lowest
normalized power consumption, calculated in the same manner
as in [5], which reflects the power normalized to the number of
channels and signal bandwidth. Moreover, this article achieves
the best front end dynamic range, thanks to the proposed
amplifier design.

Table II shows the comparison of this article with prior
state-of-the-art VAD systems. While this design consumes the
lowest power, it is worthwhile to also consider the latency
or throughput. For example, [5] has better energy efficiency
in terms of classification/W/s than this article. However, it is
not always possible to scale the power consumption of feature
extraction to a lower power level with relaxed latency since
it is an always-on block. In addition, there are still useful
applications (e.g., compressed speech recording after VAD)
that can tolerate this latency, given the normal speech rate
are 120-160 words per minute. Moreover, the digital backend
design of this article offers greater flexibility to use various
model topologies compared to [5], making this design a
better approach for applications that are extremely power-
constrained yet require mapping to various target events, such
as miniaturized battery-operated IoT sensor nodes.
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