
SeedEx: A Genome Sequencing Accelerator for
Optimal Alignments in Subminimal Space

Daichi Fujiki Shunhao Wu Nathan Ozog Kush Goliya
David Blaauw Satish Narayanasamy Reetuparna Das

University of Michigan
{dfujiki, shunhao, ozog, kgoliya, blaauw, nsatish, reetudas}@umich.edu

Abstract—Innovations in genome sequencing techniques are
enabling remarkably fast and low cost production of raw genome
data. As Moore’s law tapers off, bottlenecks in genome sequenc-
ing are shifting to computational resources for mapping reads to
reference DNA. This paper presents SeedEx, a read-alignment
accelerator focused on the seed-extension step. SeedEx is based
on the observation that only a small fraction of reads require
large edit distance for alignment, hence an area efficient narrow-
band seed-extension accelerator can suffice in practice. However,
due to the highly error-sensitive nature of genomic workloads,
guaranteeing optimality of alignment result is of cardinal impor-
tance. Towards this end, we propose a speculation-and-test based
framework by using strict but powerful optimality checking
mechanisms. We demonstrate SeedEx by an implementation
on a cloud FPGA. SeedEx achieves 6.0× iso-area throughput
speedup when compared to a banded Smith-Waterman baseline,
and achieving 43.9 M seed extentions/s on AWS f1.2xlarge
instance. Integration with BWA-MEM2 improves the execution
time by 2.3×.

Index Terms—genome sequencing, accelerator, FPGA

I. INTRODUCTION

Next generation health care is enabled by genomics and

precision medicine. The recent remarkable growth in com-

putational horsepower and sequencing equipment unlocks the

potential to transform personalized medicine. For example,

understanding mutations in the cancer cell of a particular

patient makes it possible to devise individualized treatment

plans [1], [2]. Also, large-scale genome analyses of diverse

populations have furnished clues to understanding the causes

of various diseases ranging from cancer [3], Alzheimer’s [4],

to rare genetic disorders [5]. It also facilitates assessing risk

factors and developing better cures.

The human genome consists of a long sequence of DNA

base pairs (bps) and has 3.08 Giga bps of nucleotides (A, G, T,

and C). DNA specimen is first fragmented into billions of short

DNA sequences (called reads) by a sequencing instrument.

After this primary analysis procedure, secondary analysis

analyzes the reads to align them to the reference genome. This

task is complicated as an individual’s genome may not exactly

match the reference genome, and the end goal is to determine

the variants in the new genome. Furthermore, the sequencing

machine can introduce errors into the reads as well. To address

this problem, the sequencing machine produces several reads

(30× - 50×) to cover every position in the genome, requiring

more computation.

Currently, whole genome secondary analysis takes tens to

hundreds of CPU hours [6]. While there are several compu-

tational steps in sequencing raw genome data, we focus on

accelerating read alignment, a dominant step in the secondary

analysis. Read alignment determines the position of a read

in the genome. Due to variants and sequencing errors, a read

(referred to as query Q) may not perfectly match a substring in

the reference genome R. Sequence aligners solve this problem

in two steps: seeding and seed-extension. Seeding finds perfect

matches in the reference genome for small substrings (seeds)

in a read. The seed positions are then extended to determine the

best position via an approximate string matching algorithm.

While solutions to approximate string matching for seed

extension have been widely studied, the most commonly used

algorithm, particularly in genomics, is a dynamic program-

ming algorithm called Smith-Waterman [7]. It computes the

edit distance between two strings by filling a grid of size N2,

where N is the string length. A hardware rendition of Smith-

Waterman can use a banded implementation, where only cells

within a band of size w around the principal diagonal of

the Smith-Waterman matrix are computed with w Processing

Elements (PE’s) achieving best throughput. A large w is

required to capture maximum possible edits between the query

and reference [8] and guarantee that the optimal alignment is

found [6].

The area consumption of an accelerator with w PEs is high

for a w which achieves optimal alignment. Area efficiency is

especially critical for FPGA-based acceleration, where market

volume does not justify ASIC development cost [9]. While

there have been several optimizations [10], [11], including

hardware accelerators [12]–[16], they either require PEs as

large as the string length for O(N) latency, or give up

optimality guarantee. The optimality guarantee is important

for two reasons. First, accurately capturing variants between

genomes is the ultimate goal of genome sequencing. The

differences in human genomes are minuscule, about 0.1%.

Thus even small errors in alignment can lead to expensive

clinical mistakes in critical disease diagnosis. Second, ensur-

ing bit equivalence to standard aligners. This is important

because several research and clinical applications rely on well-

known, clinically validated, behavior of alignment tools on a

sufficiently large number of biological samples. Even small,

seemingly innocuous differences in output could require costly

937

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00080

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



re-validation of pipelines (e.g., FDA approvals) and becomes

a barrier to practical usability. Recently introduced BWA-

MEM2 [17] adheres to this policy and guarantees to produce

a bit-equivalent result as BWA-MEM.

In this paper, we propose SeedEx, a hardware architecture

which embodies a speculation-and-test based approach for

seed extension. Our detailed workload analysis using real

human genomes indicates that the majority of reads require

a narrow band. Thus a small number of PEs can trace the

optimal alignment for the majority of the inputs. However,

since it is impossible to know the minimum required PEs prior

to execution, accelerators need to implement a large set of

PEs. This causes low utilization, leading to significantly lower

throughput per unit area. SeedEx addresses this problem by

allowing reads to be speculatively executed on a hardware with

a narrow band accelerator. At the same time, SeedEx is able to

grant optimality by introducing strict, but powerful, optimality

checking mechanisms.

The proposed accelerator architecture consists of several

SeedEx accelerator tiles. Each SeedEx accelerator tile con-

sists of a hierarchy of banded Smith-Waterman systolic array

machines. The first level of the hierarchy consists of narrow-

band affine gap scoring machines, which require complex

calculations to support the affine gap. The second level consists

of light-weight edit machines, which do not have weighted

penalty and can be implemented with low-complexity delta-

encoding. The edit machine helps to improve optimality check

for input with asymmetric string lengths of query and reference

strings. SeedEx tests the optimality by first comparing the

score from a narrow-band affine-gap machine to upper bound

scores. If these checks fail, the query and reference are sent

to an edit machine, followed by a comparison of narrow-band

scores and optimistic edit scores. The small number of reads

which fail all SeedEx tests are sent back from the accelerator

to host CPU for rerun.

We implement SeedEx architecture on a cloud-based FPGA

and provide complete integration with the host CPU. We verify

SeedEx with FPGA and ensure bit equivalence of output with

Broad Institute’s BWA-MEM software [6] for read alignment.

Note that SeedEx offers a modular design and generic interface

which can be integrated into different aligners other than

BWA-MEM.

In summary, this paper makes the following contributions:

• We conduct a detailed analysis of required band size for

the Smith-Waterman algorithm with human genomic data

and observe that only a small fraction of inputs require

a large band. We leverage this to improve area efficiency

and design a narrow-band accelerator requiring fewer

PEs.

• We present SeedEx architecture, a hierarchical architec-

ture consisting of narrow-band affine-gap machines and

optimistic edit machines.

• SeedEx incorporates a speculation-and-test based mech-

anism that guarantees optimality1. The testing mecha-

nisms incur 5.53% area overhead over a narrow band

machine while allowing 98% of the inputs to be processed

on the accelerator. The remaining 2% are rerun on the

host.

• We implement SeedEx architecture for a cloud

FPGA. SeedEx achieves 6.0× iso-area throughput

speedup compared to banded Smith-Waterman baseline.

SeedEx achieves 43.9 M seed extensions/s on AWS

f1.2xlarge instance.

• SeedEx integrated with a seeding accelerator achieves

speedups of 3.75× over BWA-MEM and 2.28× over

BWA-MEM 2 on an AWS FPGA instance.

II. PRELIMINARY ANALYSIS

A. Background

Read alignment is one of the time-consuming steps in

genome sequencing. This process is responsible for deter-

mining the best candidate position of a read in the reference

genome. Read aligners solve this problem in two steps: seeding

and seed-extension. Seeding finds perfect matches in the

reference genome for small sub-strings (seeds) in a read.

The seed-extension step then extends these seed positions to

determine the best position by using an approximate string

matching algorithm based on a dynamic programming (DP)

algorithm [18], [19].

The most widely used DP algorithms particularly designed

for genomic seed extension are Smith-Waterman [7] and

Needleman-Wunsch [20]. These algorithms compute a simi-

larity score between two strings by filling a matrix of size N2,

where N is the string length. The similarity score is generated

using an affine gap function [21], [22], which is based on edit

distance but weighs different edit types separately. We define

an affine gap scoring saf = {m,x, go, ge}, where m, x, go,

and ge denote the match reward, the mismatch penalty, the gap

opening penalty, and the gap extension penalty, respectively.

Based on saf , the affine gap function calculates a score Hi,j

for a DP cell (i, j) as

Hi,j = max{Hi−1,j−1 + Si,j , Ei,j , Fi,j}, (1)

Ei+1,j = max{Hi,j − go, Ei,j} − ge, (2)

Fi,j+1 = max{Hi,j − go, Fi,j} − ge. (3)

Here Si,j = m if reference at position i matches query at j,

else x. The reference position for a read that yields the highest

score is chosen as that read’s mapping position.

The final output also contains a trace of edits needed to align

the read to the reference string at the chosen reference position.

This final step is referred to as traceback, which constructs

the trace with the optimal alignment by tracing back pointers

starting from the highest-scoring cell. Supporting traceback in

an accelerator can be expensive and complex [8], [23]. We

observe that a trace is reported only for the highest-scoring

1Optimality is guaranteed with respect to reference string input to Smith-
Waterman matrix, targeting global and semi-global alignments.

938

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



search space

Semi-GlobalLocal Global
seed

Fig. 1. Local, semi-global, and global alignment. x- and y-axis correspond
to query and reference string, and the solid line shows an alignment result
(trace).

position [6], thus it can be done once per read on the host

rather than for every seed-extension in a read on the accelerator

(≈10 extensions per read).

Smith-Waterman is used for local alignment as in Figure 1

(left). In local alignment, gaps at both of the ends of the

read are not penalized, and the result trace is given based

on the maximum score obtained by aligning a substring of the

read. On the other hand, Needleman-Wunsch penalizes gaps at

the ends and produces an end-to-end alignment, as shown in

Figure 1 (right). This is called global alignment. Furthermore,

there exists an approach called semi-global alignment, where

the algorithm penalizes only gaps at one end and does not

penalize the other end, as shown in Figure 1 (middle). This

is the key seed extension kernel in the mainstream aligners,

including BWA-MEM and BWA-MEM2. SeedEx targets the

semi-global and global alignment.

Several approaches have been explored to limit the cells

in the N2 DP table filled by the alignment algorithms,

including fixed/adaptive banding [23]–[27] and search based

pruning [28]–[31]. For example, prior works use classic best-

first search algorithms, such as the A∗ search algorithm [30],

[31]. With an admissible heuristic that estimates the cost of the

optimal path to the end, A∗ is guaranteed to return the optimal

path with minimal exploration space where the optimality can

be inferred by the heuristic. However, the cost to implement

A∗ search is prohibitively high in both hardware and software

due to the complexity of priority queues and the difficulty in

parallelization.

Banded algorithms calculate scores in cells on w band

around the main diagonal running from upper-left to lower-

right. These banding based approaches offer efficiency be-

cause the computational complexity is reduced from O(N2)
to O(Nw), however, they have difficulty in guaranteeing

optimality of the generated alignment for a small w.

B. Analysis of Banded Algorithms

Banded algorithms enhance the efficiency of both software

and hardware due to reduced computation complexity. State-

of-the-art alignment tools such as BWA-MEM [6], [17] adjust

the band dynamically in software for each seed extension. In

addition, the maximum band size is estimated before running

an extension. It is calculated by taking the largest of the

maximum possible insertions and deletions of a given query.

However, the estimated band is proportional to the query

��

���

���

���

���

����

����� �������� �������� ������	� �
	�

��
���
�� ������ �	�	�� �	�	�� ������ ������

���� ������ ���	� ����� ����� �����

�
�
�
�
�
�
�
	

	
��
���� �
��

Fig. 2. Band distribution of BWA-MEM [6], [17].

�

���

���

���

���

�

���

� �� �� �� �� ���

�
�
�
�
�
�
�
	


�
�


�
�
�


�


�
�
�
�
�
�
�

�
�
�



	
��
����

Fig. 3. Band vs. seed extension execution time.

length and is very conservative, not to miss the optimal scores.

We define this maximum band as full-band.

Figure 2 shows the distribution of band both estimated and

used by BWA-MEM. The band size is represented as w. We

observe that a band size of w > 40 is estimated for more

than 38% of the extensions. However, more than 98% of the

extensions need w ≤ 10, and a large band is required for

just remaining 2% of the extensions. This motivates the use

of a narrow-band accelerator, which can safely execute seed-

extensions only if there is a mechanism to check for optimality.

In Figure 3, we plot band size vs. execution time for

the banded Smith-Waterman (BSW) kernel in an unmodified

version of BWA-MEM2. A smaller band reduces inner-loop

iterations of the software, and its effect can be observed

in the execution time. Due to the kernel’s early termination

optimizations, execution time saturates as the band grows. As

a result, the conservative band does not degrade performance

significantly for software.

On the other hand, hardware accelerators can enjoy direct

benefits from a narrow band, which can reduce the required

number of PEs. We design a systolic array based BSW

accelerator and plot its area tradeoff with the band in Figure 4.

While a narrow-band accelerator is promising, we cannot

reap considerable benefits because of the discrepancy between

(a) apriori conservative estimations of band size (Figure 2 -

Estimated), and (b) the posterior reality band size (Figure 2

- Used). Our work proposes a way out of this dilemma,

by granting narrow-band processing units (PUs) the ability

939

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



����

����

����

����

����

����

����

� �� �� 	� 
� ���

�
�
�
��
�
�
	
�


�
�
�
�


�
�
�
�
�
�
�
�
�
�
�

��
������

Fig. 4. Band vs. hardware resources of accelerator.

Fig. 5. Optimality check matrix and thresholds.

to guarantee optimality using a speculation-and-test based

approach.

III. SEEDEX OPTIMALITY CHECKS

SeedEx follows a speculation-and-test based approach to

guarantee the optimality of a narrow band. The proposed

method manifests the necessary conditions for the score gen-

erated within the narrow band to be optimal. In other words,

the method confirms the non-existence of the optimal score

outside the region in the band. It is important to note that

the proposed method does not alter the dynamic programming

algorithm or its hardware/software implementation. Rather,

logic is added to test whether the score generated is optimal

or not. We introduce three checks, a thresholding mechanism,

an E-score check, and an edit-distance check.

A. Thresholding

The thresholding mechanism is used to calculate the the-

oretical highest score (upper-bound score) outside the band

and compare it against the score obtained within the band.

If the score obtained within the band is strictly higher than

the theoretical highest score outside, the optimality of the

narrow band score is guaranteed. Otherwise, there could be a

path outside the band leading to a better score, and additional

checks are required. We will prove the following theorem by

providing a way to calculate the threshold scores. The theorem

is true for both global and semi-global alignments.

Theorem 1. There exist theoretical upper-bound scores
(threshold scores) such that any alignment with a score greater
than upper-bound scores is guaranteed to be optimal even if
generated by a narrow-band algorithm.

To calculate the theoretical upper-bound scores, we build a

score matrix assuming best alignment (i.e., all matches) and

determine the maximum possible score for each cell. As shown

in Figure 5, we use two thresholds, due to the asymmetry

between query length and target length. The first threshold,

S1, is used to ensure no better score can be obtained above the

narrow band, while the second threshold, S2, is for below the

narrow band. Note that the theoretical highest score at the red

circle is the same as S1. Generally, S2 is a stricter threshold

than S1, because there are more matches when calculating

S2, leading to a higher score. In the example of Figure 5, the

narrow band is shown with the dashed lines.

The score thresholds can be derived as a function of a

scoring method used by the sequence alignment algorithm,

query length N , and a band parameter w. For semi-global

alignment, the scoring thresholds are calculated as follows:

S1 = h0 − [g0 + wge] + [N − w]m, (4)

S2 = h0 − [g0 + wge] +Nm, (5)

where m is match reward, go is gap opening penalty, ge is gap

extension penalty, and h0 is initial score from a seed (optional).

Essentially, S1 is calculated by adding the seed score h0,

subtracting the penalty for a gap in the Query g0 + wge, and

adding the score assuming the rest of the characters match

[N −w]m. It is similar for calculating S2; the only difference

is the number of characters assumed matching is N instead

of N − w. The formulation above can be easily extended for

global alignment by replacing go with 2go and ge with 2ge.

There are three cases regarding the relation between the

best score within the band, scorenb, and the thresholds. (a)

If scorenb fails S1 (scorenb ≤ S1), it is extremely small.

We simply rerun the extension on software with a full-band.

(b) If scorenb passes S2 (scorenb > S2), the optimality is

guaranteed. (c) If scorenb is in between S1 and S2 (S1 <
scorenb ≤ S2), the optimality is not guaranteed, but additional

checks can be applied to ensure optimality and avoid a rerun.

B. Scoreoutside
Before explaining the additional optimality checks, it is

essential to establish where the optimal score might be ob-

tained. When scorenb is in between S1 and S2, the best score

outside the narrow band, scoreoutside, could be better than

scorenb, and the highest between the two is the true optimal

score. Assume scoreoutside is the higher one, then it must be

obtained in the shaded region in the DP matrix in Figure 5.

Lemma 2. If S1 < scorenb ≤ S2 , and if scoreoutside >
scorenb, then scoreoutside must be obtained in the shaded
region in Figure 5.

Proof. It can be proven with a contradiction approach. Assume

scoreoutside is obtained in the non-shaded region outside the

940

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



band, then scoreoutside ≤ S1, since S1 is the theoretical high-

est score in the non-shaded region outside the band. It is known

that S1 < scorenb ≤ S2, so scoreoutside < scorenb, which

contradicts the assumption that scoreoutside is better than

scorenb. Therefore, if scoreoutside is higher than scorenb, it

must be obtained in the shaded region.

The goal of the additional checks is to examine whether

the best score outside the narrow band, scoreoutside is higher

than scorenb. Given scoreoutside can only be obtained in the

shaded region, it is obvious that the path leading to the score

can either come from the top of the shaded region (path � in

Figure 5), or from the left (path � in Figure 5).

C. E-score Check

The E-score check is designed to eliminate the possibility

that there is a path entering the shaded region in Figure 5

from the top, resulting in a higher score outside the band

(path �). E-score is referring to the E channel in the Dynamic

Programming (DP) algorithm (Equation 2). For a given cell in

the DP matrix, the E-score represents the best score coming

from the cell above.

The steps for the E-score check are as following: for each

cell on the top boundary of the shaded region, obtain the E-

score from the narrow band, and assume all characters match

for the rest of the query and add the matching score. Then, find

the max among all the cells’ score on the top boundary; this

score, scoreMax E , would be an optimistic estimate of the

highest score obtained through a path coming from the top

boundary into the shaded region. The score can be formulated

as:

scoreMax E = max
i∈[1,n]

{E-scorei + (n− i+ 1)m}, (6)

where n is the number of cells on the top boundary of the

shaded region, E-scorei is the E-score of the ith cell on the

top boundary of the shaded region starting from the top left,

m is the match reward, and n − i + 1 represents the number

of assumed matches for the rest of the query.

Finally, compare the optimistic scoreMax E against the best

score within the band, scorenb. If scoreMax E < scorenb,

no path coming from the top boundary of the shaded region

will result in a better score than scorenb, and the E-score

check passes. Otherwise, the E-score check fails, and a rerun

is needed.

D. Edit-Distance Check

After E-score check passes, there is still possibility that a

path coming from the left boundary of the shaded region can

result in a better score than scorenb (path � in Figure 5),

which is where the Edit-distance check comes into play. It is

to perform an extra seed extension on the shaded region using

S1, which is the same as the theoretical highest score at the

circle, as the initial score. While the same affine gap scoring
scheme can be used for calculation, we use an optimistic
scoring scheme such as edit-distance because it significantly
lowers hardware complexity (Section IV-B).

Fig. 6. SeedEx workflow.

The extra extension is essential to estimate the best score in

the shaded region if we were to run the initial seed extension

with a full-band. By using the theoretical upper bound S1
as the initial score, and using a lower gap penalty of edit-

distance scoring, the extension score, scoreed, would be an

optimistic estimate of the highest score obtained through a

path coming from the left boundary into the shaded region. If

scorenb > scoreed, meaning the narrow band score is better

than the optimistic edit-distance score, then no path coming

from the left boundary of the shaded region can result in a

higher score, and the Edit-distance check passes. Otherwise,

the check fails, and a rerun is needed.

E. Checks Workflow

If the best narrow-band score passes the stricter threshold

S2, or if it is between S1 and S2 and passes both the E-score

check and the Edit-distance check, its optimality is guaranteed.

There cannot be a higher score obtained with a larger band. If

the checks fail, the seed extension is rerun on the host CPU

with the full-band estimated by BWA-MEM. Figure 6 is a

summary of the workflow of the checks.

IV. SEEDEX ARCHITECTURE

In this section, we illustrate our architecture and hardware-

specific optimizations of SeedEx. Figure 7 shows the top-

level architecture of the SeedEx accelerator, which consists of

an input query fetching interface and several SeedEx Cores.

The input queries from memory interface are buffered and

parsed, then loaded to a SeedEx core. Each SeedEx core

consists of input parsing control logic, a few Banded Smith-

Waterman (BSW) cores, and an Edit Machine core. Input

sequences are chunked and sequentially fed from Input RAM

to BSW Core by Arbiter and State Manager, which are capable

of bookkeeping multiple input streams. BSW core performs

banded Smith-Waterman and generates narrow-band score

941

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. SeedEx architecture.

Fig. 8. BSW Core architecture.

scorenb and E-check score scoreMax E . If the narrow-band

score passes the first threshold check but fails the second one

(i.e. in between S1 and S2), and passes the E-score check,

the query is sent to the edit machine core. The edit machine

core generates the optimistic edit score scoreed. Recall that the

SeedEx algorithm is a speculation based algorithm; it assumes

a small band is sufficient for input problems and validates the

outcomes by performing score validation checks, as shown in

Figure 6. The remainder of this section will cover the main

components of SeedEx Core, i.e., BSW core and Edit Machine

core.

A. BSW Core

The BSW Core Engine is a systolic array implementation

of the BSW DP algorithm. Figure 8 shows the block diagram

of a BSW Core. An input genome string pair in a 3-bit

format is loaded to the buffer and sequentially fed into a

Query/Reference shift register (SR) one character pair at a

time. When a PE observes valid inputs at its corresponding

SR entries, it calculates cell score H , next vertical score input

E, next horizontal score input F , as shown in Figure 8. While

data in the SRs is only moving, one can virtually relate this

to the PE groups marching along the main diagonal of the

matrix every cycle. The scores for the next iteration are stored

in the score registers. The initial scores are propagated to

the score registers through PE’s score E channel and score

F channel using a special input symbol. This progressive

initialization avoids long wires that are otherwise needed to

provide connectivity across the large PE vectors.

The updated score is reported to score accumulators. Local

score (lscore) accumulator records PE-row-wise maximum

scores each cycle with its index in the matrix, and uses a shift

register to reduce it to a single local score in parallel with the

accumulation so as to minimize wiring. Global score (gscore)

accumulator records scores when a PE crosses the right edge

of the matrix.

While BWA-MEM fills the DP matrix row-by-row, it can

stop score calculation for a row before reaching the band

boundary. This early termination optimization is triggered

when more than two consecutive cells in the previous row

have zero H and E scores and the row-end is reached

without observing a positive score afterward. Implementing

this optimization is not straightforward in the systolic array.

Because it processes multiple rows at a time, observing 2 zero

scored cells within a row does not guarantee no positive score

will show up from the rows above, of which computation is

in progress. To generate bit-equivalent output with regard to

BWA-MEM, we speculatively terminate any rows with more

than two consecutive zero scores, and raise an exception when

a positive score flows in from the cells above. Since such cases

are extremely rare, extensions with this exception flag set are

rerun on the CPU.

B. Edit Machine

Edit machine is a key source of efficiency which provides

a super light-weight additional score check functionality to

boost the passing rate of SeedEx check from 72% to 98%. As

we discussed in Section III-D, the edit machine score check

is done to guarantee the non-existence of a better score in the

lower trapezoid region (Figure 5) not computed by the narrow

band. While the original affine gap scoring scheme can be used

for the lower trapezoid region, we choose to implement edit

machine because of lower hardware complexity. Edit distance

(sed = {m:1, x:-1, go:0, ge:-1}) (a.k.a Levenshtein

distance) will always be greater than BWA-MEM’s affine gap

score saf = {m:1, x:-4, go:-6, ge:-1}.
However, the potential benefit of the use of a naive edit

distance machine is merely the reduction of register file area

for E and F scores needed for affine gap calculation. Now, we

introduce several optimizations to drastically reduce the area

for edit distance calculation.

Delta Encoding: Datapath width is a principal determinant

of the area of the edit machine. The naive implementation of

an edit core needs to use an 8-bit data bus for calculating

and storing data, as with the affine gap PU. This is ruled

by the data size of the initial score and the dynamic range

of score calculation. We adopt a coding technique in Lipon

942

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



0 0 0

Fig. 9. Modulo circles [32] for delta max calculation.

4
3 5
3 4
2

Initial score
Augmentation path43

44
45Aug unit

Fig. 10. Score decoding along
augmentation path.

x

y

CM
P

2:1
2:1

CM
P

2:1

dmax

ɷ

dmax

dmax

dmax

x

y

z

dmax3

Fig. 11. 3 input delta max unit.

et al. [32], [33], and design 3-bit delta encoding PEs. While

Lipton’s scheme only supports global edit score, we revise

it to support local score and scoring schemes for a 3-input

Smith-Waterman PE.

Delta encoding is based on an insight that the scores of a cell

in a DP table is typically bounded by a fixed dynamic range

defined by the DP algorithm, which enables us to use residue

arithmetic to calculate min/max. For example, assuming h(i,j)

is the score for cell (i, j) in edit distance calculation, h(i+1,j+i)

will be at least h(i,j) − 2 (insertion + deletion) and at most

h(i,j)+1 (match). Now, we think about two candidates, X1 and

X2, where larger of them is assigned to h(i+1,j+i). Based on

the maximum difference δ = max |X1−X2| = 3, we define a

modulo circle [32] of which circumference is Δ ≥ 2δ+1. Fig-

ure 9 (left, middle) shows two possible positional relationships

of two residue values (x1, x2) = (X1, X2) mod Δ (wlog,

we assume x1 ≤ x2) in the modulo circle. Because of the

bounding constraints of X ruled by δ, whichever x precedes

on the small arc of the Δ modulo circle in the clockwise

rotation indicates the larger in the magnitude relationship of

X1 and X2. Thus, assuming x1 ≤ x2, if the small arc does

not cross 0, X2 is larger, otherwise X1 is larger.

We design a 3-input delta max (dmax) unit using a 2-input

dmax unit of Δ = 8 as a building block (Figure 11). 3-input

delta encoding redefines δ = max |X1−X2, X2−X3, X3−X1|
(Figure 9(right)).

The delta encoded scores are decoded by an augmentation

unit, which reads scores along the augmentation path

(Figure 10) starting from the initial score. It takes the residue

value of full data-width input, compares it against the encoded

value, and decodes it based on the positions in the modulo

circle. An augmentation unit is connected to a PE, and the

trajectory of PE with the augmentation unit in the matrix

defines the augmentation path. Importantly, the augmentation

path imposes a limitation of delta encoding. That is, any

PE without an augmentation unit cannot translate a delta

score into the actual score. Since we need to guarantee

any scores in the trapezoid region are smaller than the

narrow band score, reading out the edge scores on the

path as in Figure 10 is not sufficient. However, combining

every PE with an augmentation unit is expensive and spoils

all the benefits of the reduced datapath. To combat this

problem, we use a relaxed edit distance scoring sr ed =

{m:1, x:-1, go:0, ge(ins):0, ge(del):-1}.
By allowing zero penalty insertion, local scores are propagated

in the horizontal direction and eventually read out by the

single augmentation unit on the augmentation path. sr ed is

still admissible and does not interfere with the delta encoding

constraints.

Half-Width PE Array: In contrast to the BSW Core PU,

Edit PU is not required to sweep a matrix of rectangular shape;

rather, it sweeps half of it as shown in Figure 10. This allows

us to design a half-width PE array, effectively reducing the PE

area to 1/2.

V. SYSTEM DESIGN

In this section, we present the details of integration with a

cloud-based FPGA. Subsequently, we illustrate the software

architecture and the execution flow.

A. SeedEx Cloud FPGA Architecture

For the deployment of SeedEx infrastructure, we use the

AWS EC2 F1 instance [34]. AWS enables the loading of

custom logic, onto remote physical hardware, via an FPGA

image. Figure 7 illustrates our top-level architecture integrated

with AWS shell.

The custom logic (CL) architecture is instantiated in con-

junction with AWS’s shell interface. This interface consists

of four AXI4 DDR4 memory channels, each with 16GiB.

A PCI-e x16 link enables CL to Host communication. The

SeedEx architecture was designed such that each memory

channel can work independently. Host communication goes

to a master state controller, which manages each memory

channel’s SeedEx cores. This state controller determines which

regions of memory have been assigned for SeedEx input and

output data, along with monitoring batch status.

Each SeedEx cluster on a single memory channel is com-

prised of four SeedEx clients. The clients-per-cluster ratio is

chosen to strike a balance between memory bandwidth and

area utilization. We employ prefetching of input queries to

overlap input access latency (40 cycles on AWS AXI 4) with

compute latency (≈100 cycles). Prefetched elements for an

entire memory channel are stored in a block ram (BRAM)

input buffer at the memory line granularity of 512-bits. After

computation, results are coalesced into an output memory line

at a five to one ratio before being written back to memory in

a bandwidth efficient manner.

943

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 12. SeedEx integration with BWA-MEM [6].

B. BWA-MEM Integration
SeedEx FPGA is integrated into the BWA-MEM [6]

pipeline. BWA-MEM has three software pipeline stages: se-

quence read, sequence process, and SAM output stage. The

sequence process stage performs the core algorithms, seeding

and seed extension, with multi-threading enabled. We isolate

the seed extension kernel and restructure it using the FPGA

interface. The software workflow is described below and

illustrated in Figure 12.
Reads provided by the previous pipeline stage are dis-

tributed to, and processed by, seeding threads in the original

code block. Seeding threads perform seeding and chaining, and

we optionally use the seeding accelerator [35] to accelerate the

seeding step. The processed chains are batched and queued for

FPGA threads. We employ the producer-consumer model to

facilitate load-balancing in FPGA by adjusting the number of

FPGA threads.
FPGA threads package the input sequences with metadata

and send them to FPGA DRAM over the XDMA channels.

4 XDMA channels are shared by both the FPGA threads and

the seeding threads. Multiple threads can concurrently DMA

to the FPGA DRAM. After the batch transfer completes, an

FPGA thread acquires a lock to control the FPGA state. Once

the lock is acquired, it sends the batch_start command

through the OCL channel to the FPGA’s state control register.

Then, the FPGA thread continuously monitors the register by

the fpga_peek interface. Upon receiving the batch_done
signal, which is established after the writeback completion of

the last result entry, it releases the lock for awaiting FPGA

threads and retrieves the results over XDMA. When a rerun

is required, it is done by the FPGA thread at this juncture.
For a given seed, BWA-MEM performs a left extension

(from the left end of the seed) and/or a right extension (from

the right end), depending on the seed position in the read.

If a right extension is required, after the left extension, the

initial score must be updated with the left extension score. This

is performed in the middle of parsing left extension results.

Multiple FPGA threads interleave to conceal FPGA execution

latency.
BWA-MEM dynamically determines whether to perform

seed extension for a seed in a chain, based on the preceding

extension results for that chain. This decision making is chal-

TABLE I
BASELINE SYSTEM CONFIGURATIONS.

f1.2xlarge Intel Xeon E5-2686 v4
(AWS EC2 instance) 2.3 GHz; 8/18 vCPUs

L1 I&D cache 8/18 x 32KiB Instruction; 8/18 x 32KiB Data
L2 cache 8/18 x 256KiB
L3 cache 8/18 x 2.5MiB
Memory 122 GiB DRAM

Xilinx Ultrascale+ VU9P
FPGA 64 GiB DDR4; PCIe x16

2.5 M logic elements; 6,800 DSPs

lenging under the batching model and the out-of-order result

production of SeedEx. A similar challenge exists in BWA-

MEM2 [17], which has a SIMD parallelized seed extension

kernel. We take a similar approach to BWA-MEM2; the FPGA

processes all seeds in a chain and filters out needless results

during the post process rearrangement stage.

After a batch is processed, the result is queued for SAM

output. We do not accelerate traceback. This is because, for

a seed, only the extension giving the best score needs to be

traced back. Thus, tracing back for all extensions is not ideal,

especially in a situation with resource limitation.

While our software and hardware implement some cus-

tomized optimizations specifically designed for BWA-MEM,

this is just an example embodiment of SeedEx. The underlying

architecture and methods are broadly applicable to different

aligners and other applications, as we discuss shortly in

Section VII.

VI. METHODOLOGY

Reference Genome and Input Reads: We use the lat-

est major release of the standard human genome assembly

(GRCh38/hg38) from the UCSC genome browser [36] for

the reference human genome. Index files are generated us-

ing BWA-MEM [6]. We store a copy of the 2-bit encoded

reference genome on FPGA DRAM to efficiently fetch the

encoded reference, bypassing the host machine memory band-

width constraints. For the input reads, we use real human

genome reads with 50× coverage from the Illumina platinum

genomes [37] dataset. The dataset consists of the NA12878

944

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



�������

�������

�������

	������


������

�������

�������

� �� 
� �� �� ���

�
�
�
�
�
�
�
�
	
�


�
�
�
�
�
�




�


��������


�����

������

Fig. 13. SeedEx validation results.

human reference (single-end ERR194147 1.fastq) consisting

of 787,265,109 reads of 101 base pair (bp) length.

System Configuration: SeedEx custom logic is built for and

registered as an Amazon FPGA Image (AFI), and loaded to an

AWS F1 instance. We use f1.2xlarge as a baseline system

configuration. The f1.2xlarge instance has a 16 nm Xilinx

Ultrascale+ VU9P FPGA with 64 GiB DDR4 memory and

dedicated PCIe x16 connection. The FPGA is mounted on a

system with 8 virtual CPUs (Intel Xeon E5-2686 v4) operating

at 2.30 GHz and 122 GiB DDR4 main memory.

SeedEx software interface is integrated with the latest

BWA-MEM (release v0.7.17) [6] and BWA-MEM2 (release

v2.0pre2) [17] and compared against stock CPU execution. We

also compare SeedEx with a GPU aligner (CUSHAW2) [38]

on NVIDIA’s TITAN Xp. Similar to BWA-MEM’s SMEM

approach [6], CUSHAW2-GPU identifies maximal-length

matches and extends these to form larger gapped alignments.

We also compare an ASCI version of SeedEx with GenAx [8]

and ERT [35]. We use the default scoring scheme in BWA-

MEM for all the aligners.

To study SeedEx’s raw alignment throughput, independently

of the seeding and software throughput, we compare it against

major software and hardware implementations of the seed

extension kernel. We use the SeqAn library [39] as the CPU

baseline, SW# [40] as the GPU baseline, and Sillax [8] as the

hardware baseline. In the following section, we will show a

comparison of ASIC implementations.

Synthesis: We synthesize and implement SeedEx using Vivado

2019 on AWS FPGA Development AMI. SeedEx is synthe-

sized with 8 ns clock, while the seeding accelerator uses 4 ns

clock. We use an AXI-4 clock bridge to connect the logic

designs in two different clock domains. ASIC implementations

are synthesized using the Synopsys Design Compiler (DC) in

a commercial TSMC 28 nm process.

VII. RESULTS

In this section, we present the seed-extension kernel eval-

uation of the SeedEx accelerator, followed by application-

level evaluation. We compare SeedEx to a full-band Smith-

Waterman accelerator (w = 101), and GenAx [8].

��

���

���

���

���

����

� �� �� �� �� ���

�
�
�
�
�
�
�
�
	
�
�


�
�
�




�
�
�
��
�
�
�

	
��
����

������������

������������
�

����
�����

������

Fig. 14. Passing rate of SeedEx check algorithm.

A. SeedEx Evaluation

Score validation: We validate the SAM output of all

787,265,109 reads from the SeedEx algorithm exactly matches

with the one from the native run of BWA-MEM and BWA-

MEM2. As a sensitivity study, we measure the expected

number of result SAM entries that differ in the baseline output

with default setting (band w = 100) and in the output with

a particular band size setting. For this study, we sample 10

million random reads and scale the results to the size of the

whole genome, for the sake of time. The results are shown in

Figure 13. Essentially, this will depict the inaccuracy caused

by the BSW heuristic, namely implementing a PE array with

a smaller band.

With a small band, the number of different entries is high,

being over 5.0 × 106. As the band increases, the number of

different entries decreases, eventually reaching 0 when the

band size is full. On the other hand, we set the band size for the

SeedEx algorithm from 5 to 100, while the optimality checks

remain unchanged. The output from the SeedEx algorithm is

consistent with the default baseline output regardless of the

change in the band size setting.

Passing rates: Figure 14 shows the passing rate for the

optimality checks in the SeedEx algorithm. The passing rate

for only using thresholding increases as the band increases,

but it requires a band size of 70 to reach a passing rate of

95%, and a band size of 81 to reach near-100%. With the

addition of the edit-distance check, however, the passing rate

can be boosted by 18% on average; for some band setting, the

increase of passing rate can be over 30%.

We choose band size of 41 as our configuration, as contin-

uing to increase the band does not significantly benefit the

overall passing rate. With a band of 41, the thresholding-

only passing rate is 71.76%, and the overall passing rate is

98.19%. Moreover, we notice the passing rate for only using

thresholding is slightly over 2
3 , meaning roughly one out of

three extensions on average will fail the threshold check and

need to run the edit-distance machine. Therefore, we set the

ratio of BSW core and Edit machine to 3:1.

Area: Figure 15 shows resource utilization breakdown of

a SeedEx FPGA with four SeedEx cores, each with three

narrow-band BSW cores and an edit core. Here we can

945

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



������

�����

����� ����� �������	

	
��������
	

��	 	���	�

���	��

Fig. 15. Resource (LUT) breakdown of SeedEx FPGA.

TABLE II
SEEDING + SEEDEX FPGA RESOURCE UTILIZATION.

Component Configuration LUT (%) BRAM (%) URAM (%)
Seeding 1 x 6 21.04 10.10 11.81

SeedEx: Controller 1 x 1 0.03 0.01 0.00
SeedEx: I/O Buffers - 0.49 0.64 0.36

SeedEx: SeedEx Core 1 x 3 12.47 1.14 0.15
SeedEx: Total - 12.99 1.79 0.51

AWS Interface - 19.74 12.63 12.20

Total - 53.77 24.52 24.52

observe that a majority of our resources are spent on compute.

Prefetching logic and buffering is simplistic and result in little

area requirement.

Figure 16 (a) shows the resource utilization of a full-band

core (3 BSW cores of w = 101) and a SeedEx core. SeedEx

core has smaller resource utilization because the BSW core

scales proportionally to the band size, as previously shown in

Figure 4. The LUT utilization is improved by 2.3×. Although

SeedEx has the overhead of edit machines, which accounts for

5.53% of total resources, area reduction due to the small band

size more than amortizes the overhead.

Figure 16 (b) compares the resource utilization of BSW

core and Edit cores with different optimizations applied.

All machines use the same band size of 41. Reduced edit

scoring data paths result in 1.82× smaller LUT utilization

compared to the baseline BSW core. Delta encoding enables

3-bit arithmetic in PEs and leads to 3.11× reduction. Finally,

half-width configuration for the trapezoid-shaped DP matrix

results in 6.06× area reduction.

Throughput: FPGA with only SeedEx performs at 43.9M

extensions per second (Figure 16 (c)). This configuration con-

sists of 36 narrow-band BSW cores organized in a hierarchy of

three clusters, and four SeedEx cores per cluster. The full-band

accelerator is comprised of 9 full-band BSW cores. Trying to

utilize more area beyond these led to unroutability. Figure 16

shows that SeedEx provides a 6.0× iso-area throughput speed-

up. As discussed in Section V, our design achieves nearly

optimal throughput. Because of perfect prefetching and ap-

propriate buffering, memory access time is completely hidden.

This allows the SeedEx cores to work at near-100% utilization.

As a result, throughput scales linearly with the number of

clusters.

Note that the latency of seed-extension in SeedEx core is

1.9× lower than the full-band core. This is because buffer

initialization of array shift registers and result accumulation

time scales proportionally to the band size. Thus, iso-area

throughput is improved by 4.4× by the latency and BSW core

area, and the rest is attributed to reduced routing complexity.

While the reduced resource utilization of SeedEx is a key

����

����

����

����

����

����

����

�
�
�
�
�
�
�
�
�
�
	


�
�



���

���

�

��

��

��

��

��

�
��
�
��
�
�
�
�

����������

������ ���

�

�

�

�

�

��

�
��
��
�
�
��
�
�
	

�
�

���

���

��		
�

Fig. 16. Area comparison (a) Full band core vs. SeedEx core, (b) BSW core
and edit cores. (c) Throughput comparison.

�

���

���

���

���

�

� � ������ ������ ������	
�

������

������	
�

������

�
����� �
������ �
����� �
������ �
����� �
������

�
�
�
�
�
�
�
�

������
�����������	
���
�	�������

���������
����������
��������

����	������	
��������
����

Fig. 17. Normalized end-to-end time breakdown of applications.

contributor to the performance, it has to be noted that SeedEx

would need to perform a rerun of some reads. In our setup,

about 2% of extensions require a rerun (Figure 13), and we

perform it on CPU. We choose the software rerun because it

adds negligible performance overhead (Section VII-B), and

can be overlapped with FPGA processing across batches.

Alternatively, one can use a single full-band machine to

perform it, which would add 6% area overhead.

B. Application Evaluation

Table II shows the resource utilization breakdown of a

single FPGA image with both the seeding accelerator and

SeedEx. We sweep design parameters to match the seeding

throughput, and the seed extension throughput, to pick the

best configuration that is placable and routable.

Figure 17 compares the overall end-to-end execution time

breakdown and throughput of our FPGA accelerated system,

hooked up with stock BWA-MEM and BWA-MEM2. In the

baseline, seeding (SMEM generation + seed malloc + chain-

ing) and seed extension take a significant fraction (> 85%)

of execution time. BWA-MEM2 successfully accelerates the

core kernels by a) improving seeding data-structure b) pre-

allocating a large contiguous memory region to reduce seed

malloc time and facilitate memory prefetching, c) using SIMD

parallelization, d) improving cache reuse, and e) implementing

code optimizations.

We first note that a software-only implementation of SeedEx

(w=5 and full-band reruns on failed cases) results in 14%

946

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



speedup for the BSW kernel and 2.8% application speedup

in BWA-MEM2 motivating need for a hardware SeedEx

accelerator on FPGA. SeedEx accelerator replaces a part of

the preprocessing procedure and the seed extension function.

By solely using SeedEx for acceleration, it provides 29.6%

speedup over BWA-MEM and 33.5% speedup over BWA-

MEM2. In BWA-MEM, although SeedEx reduces the execu-

tion time of the extension kernel, and makes it invisible in

the chart, software seeding becomes a bottleneck. We explore

the best thread allocation method, which allocates more than

88% of thread resources to seeding. The remaining threads

take turns driving the FPGA and performing downstream

processing. The same bottleneck exists in BWA-MEM2. For

this reason, we need to accelerate the seeding step to achieve

better end-to-end performance.

Combined seeding [35] and seed extension on FPGA leads

to Table II. In this design, one SeedEx cluster is paired with

our seeding design. Because seeding is DRAM bandwidth

limited and requires all four memory channels, this cluster

is placed on the memory channel with the least seeding

bandwidth requirement. With high FPGA congestion in this

combined design, two clock domains were utilized to alleviate

place and route (P&R) complexity. A clock of 4ns was used

for the DRAM-AXI4 interconnect and seeding, and 8ns clock

was used for seed extension. AXI-4 interconnection networks,

requiring large data buses, place limits on FPGA P&R ca-

pabilities. Sweeping our design parameters to maximize area

utilization, with successful P&R, limits our design to around

50-60% LUT utilization on AWS F1’s VU9P FPGA.

Figure 17 also shows the overall speedups with both

seeding [35] and seed extension accelerators integrated. We

observe 3.75× speedup over BWA-MEM and 2.28× speedup

over BWA-MEM2. Further, we do not observe a bottleneck in

FPGA memory access, nor in PICe communication.

The seeding accelerator [35] improves SMEM genera-

tion and part of the chaining procedure. Both Seeding and

SeedEx provide 1.5 M reads/s throughput one FPGA instance.

While this throughput is significantly larger than the software

throughput, overall throughput is bounded by non-accelerated

portions. These bottlenecks can be solved by two possible

approaches. First, the host can dedicate more threads to the

non-accelerated portions. We find that existing F1 instances

have severely under-provisioned CPU. The f1.2xlarge
instance used for our implementation has only 8 vCPUs, thus

the host processing is not being able to keep up with SeedEx’s

high throughput, with underutilized PCIe bandwidth. The

discrepancy of software throughput and accelerator throughput

can be balanced by a server configuration with more threads,

while keeping the same FPGA resources. Likewise, a compar-

ison to an FPGA-less AWS configuration with more cores can

potentially undermine SeedEx. If we compare c5d.9xlarge
(36 vCPUs) with f1.2xlarge with 32 vCPUs and SeedEx,

however, the FPGA acceleration provides a 1.9× speedup.

Note that the vCPUs account for an insignificant cost of

the AWS F1 FPGA platforms (price per vCPU $94, FPGA

$5500). Therefore, about 2× end-to-end speedup holds true

TABLE III
AREA AND POWER OF ASIC SEEDEX.

Configuration Area (mm2) Power (mW)

I/O buffer 4KiB 0.08 139.5

RAM 2.25KiB x 4 0.31 548.2

BSW cores 12 0.43 288

Edit cores 4 0.04 59.2

Rerun core 1 0.084 35.5

SeedEx Total 0.98 1.10W

ERT x8 27.78 8.71W

Total 28.76 9.81W

0.01
0.1

1
10

100
1000

10000
100000

1000000

Se
ed

Ex
Si

lla
X

CP
U

G
PU

Ke
rn

el
 T

hr
ou

gh
pu

t 
(K

 e
xt

s/
s/

m
m

2 )

50
100
150
200
250
300
350
400

BW
A-

M
EM

2
CU

S,
AW

2͙
G

en
Ax

ER
T+

Si
lla

x
ER

T+
Se

ed
Ex

Ap
p 

Th
ro

ug
hp

ut
  

(K
re

ad
s/

s/
m

m
2 )

0
100
200
300
400
500
600
700
800
900

BW
A-

M
EM

2
CU

S,
AW

2͙
G

en
Ax

ER
T+

Si
lla

x
ER

T+
Se

ed
Ex

En
er

gy
 e

ff
ic

ie
nc

y 
(K

re
ad

s/
s/

J)

(a) (b) (c)

Fig. 18. ASIC SeedEx performance. (a) Extension kernel throughput, (b)
Application throughput, (c) Energy efficiency.

for a CPU+FPGA system with 8 vCPUs, and also 32 vCPUs.

Second, SeedEx can be implemented as a part of an end-to-

end hardware aligner where all the steps of alignment are done

on the FPGA. In our implementation, we only map seeding

and seed extension to the FPGA. The remaining workload

components become the Amdahl’s bottleneck. Of course, end-

to-end hardware aligner sacrifices flexibility for performance.

C. ASIC Implementation

An ASIC version of a SeedEx design with 12 BSW cores

+ 4 edit machine cores + 1 full-band rerun core has an area

of 0.98 mm2, power of 1.84 W , and clock period of 0.49 ns.

Figure 18 (a) shows the area-normalized seed extension kernel

throughput of SeedEx, Sillax, CPU (SeqAn), and GPU (SW#).

We observe GPU-based solutions face high synchronization

overheads for short reads leading to low performance. Sillax

suffers from quadratic scaling of PEs (number of PEs is

O(K2), where K = 32 and band w = 2K + 1), while

SeedEx’s linear scaling and reduced band size provide 20×
better performance. The area and power of an ERT-integrated

SeedEx ASIC design (scaled for 1.2GHz frequency of ERT)

is shown in Table III. Figure 18 (b) and (c) compare area

normalized performance and energy efficiency of CPU, GPU,

GenAx, ERT + Sillax, and ERT + SeedEx. The default setup of

ERT spares 16.08mm2 (36.5%) of area and 18.48W (62.9%)

of power for Sillax. SeedEx reduces area by 16× and power by

10×. This results in 1.56× better overall iso-area performance

(b) and 2.45× better energy efficiency (c). When compared

GenAx, SeedEx improves iso-area performance by 14.6× and

energy efficiency by 2.11×.

947

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



D. Discussion

Long Reads: SeedEx has broad applicability by virtue of

accelerating read alignment, which is an important precursor

step for several downstream studies (tertiary analyses) in

next-generation sequencing, such as variant detection (DNA-

seq), gene expression profiling (RNA-seq), and protein-DNA

interactions mapping (ChIP-Seq).

While this work focused on short-reads, the scalable design

of SeedEx can improve secondary analysis for long read

technologies (≥ 1Kbp). Unlike the “pure seed-and-extend”

strategy of short read aligners (BLAST/BWA-MEM) which

could increase w (acceptable edit distance threshold) for long

reads, a number of existing long read aligners including

BLASR [41] and minimap2 [42] take the “seed-and-chain-

then-fill” strategy, allowing small values for w without accu-

racy loss. For example, minimap2 uses a Needleman-Wunsch

based algorithm to perform global alignments between seeds,

to filter out internal seeds that can lead to long insertions

or deletions. We observe this step takes 16% to 33% of the

execution time. SeedEx can be directly applied to this kernel,

performing optimal global alignment with a small area.

Other Applications: The proposed SeedEx scheme is broadly

applicable to dynamic programming algorithms of which DP

calculation has locality in a single dimension (e.g., position

in a sequence, time series, etc.). Following is the example

applications that can benefit from the SeedEx check approach.

Dynamic Time Warping (DTW) measures similarities be-

tween two temporal sequences that may vary in speed. This

algorithm has been applied to temporal sequences of video,

audio, and graphics data and has been used in speech recog-

nition and pattern matching [43], [44]. While DTW can

calculate an optimal match between two given sequences, due

to the nature of time-local similarities of two sequences being

compared, DTW often uses a fixed time window [t, t + w]
varying t [45]. This is conceptually similar to the banded

version of the Needleman-Wunsch algorithm. Our proposed

scheme is helpful to guarantee optimality even with small time

windows that can contribute to reducing hardware resources

or processing time.

Longest Common Subsequence (LCS) problem can also be

solved with a similar dynamic programming algorithm. It finds

the longest common subsequence, and its algorithm is similar

to the Smith-Waterman.

VIII. RELATED WORK

In this work, we use Enumerated Radix Trees (ERT) [35]

for accelerating seeding. ERT utilizes a radix tree structure to

improve data locality and data usage for the SMEM generation

algorithm, while generating the same seeds as BWA-MEM [6].

Similar to ERT, BWA-MEM2 [17] also trades off memory ca-

pacity for memory bandwidth, but ERT has superior bandwidth

efficiency with the tree structure.

Edico Genome’s FPGA-based DRAGEN [16] achieves

2.3 M reads/s on an f1.4xlarge instance with two FPGAs, but

it is not binary compatible with BWA-MEM. It utilizes hash-

based indexing for seeding. This produces a large number of

hits and seeds that need to be verified by seed extension and

often need to be coupled with filtration techniques.
Darwin [23] is a recent work that demonstrates impressive

throughput for long read alignment. Darwin also uses a hash-

based lookup for a small number of base pairs and uses a

binning mechanism to choose valid seeds from a large number

of query hits.
Several FPGA-based hardware accelerators [13]–[16] have

been proposed for the Smith-Waterman algorithm. The ma-

jority use a systolic array of O(N) processing elements

(PEs). There also exist works that implement a banded

Smith-Watermanm algorithm [23]–[25] which have w PEs

to compute the band. While our core systolic PE design is

minimalistic and has similar components to the prior works,

our architecture supports several function knobs to enable

BWA-MEM specific optimizations, progressive score initial-

ization and reduction to avoid global wiring, and end-to-end

protocol to talk to the software with highly optimized dataflow

using prefetching and buffering, in addition to the optimality

guaranteed alignment.
GenAx [8] proposes an automata-based Smith-Waterman

accelerator. While many prior automata-based works [46]–[50]

implement Levenshtein Automata (LA), which is known to be

functionality equivalent to Smith-Waterman, they have severe

restrictions such as a) only Levenshtein (edit) distance can be

used for the scoring scheme, and b) LA is string dependent

and every input change requires a prohibitive reprogramming

cost. GenAx addresses these issues by introducing string

independent local LA (Silla), enabling it to support unique

features of sequencing algorithms such as affine gap scoring

and clipping. Silla requires O(K2) states and has functions

equivalent to banded Smith-Waterman.
SeedEx is orthogonal to other implementations of seed

extension kernels on hardware. SeedEx offers significant per-

formance improvements by reducing area, compared to full-

band machines, and provides the optimality guarantee with

little area overhead, compared to narrow-band machines.

IX. CONCLUSION

As Moore’s Law tapers off, hardware acceleration for

genomics applications has become essential. Cloud services

are starting to make FPGA instances accessible to a broader

market, leading to their adoption by most sequencing services.

This work presents a novel architecture that uses a speculation-

and-test approach for optimal seed extensions with narrow-

band accelerators. Our implementation of SeedEx on a cloud-

based FPGA achieves 6.0× iso-area throughput improvement.

SeedEx integrated with a seeding accelerator improves the ex-

ecution time by 2.3× over a state-of-art BWA-MEM2 software

baseline.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their suggestions

which helped improve this paper. This work was supported in

part by the NSF under the CAREER-1652294 award and the

Applications Driving Architectures (ADA) Research Center, a

JUMP Center co-sponsored by SRC and DARPA.

948

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] M. A. Hamburg and F. S. Collins, “The path to personalized medicine,”
N Engl J Med, vol. 2010, no. 363, pp. 301–304, 2010.

[2] “Impact of cancer genomics on precision medicine
for the treatment of cancer.” [Online]. Available:
https://cancergenome.nih.gov/cancergenomics/impact

[3] E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J.
Humphray, C. D. Greenman, I. Varela, M.-L. Lin, G. R. Ordóñez, G. R.
Bignell et al., “A comprehensive catalogue of somatic mutations from a
human cancer genome,” Nature, vol. 463, no. 7278, pp. 191–196, 2010.

[4] A. Lacour, A. Espinosa, E. Louwersheimer, S. Heilmann, I. Hernández,
S. Wolfsgruber, V. Fernández, H. Wagner, M. Rosende-Roca,
A. Mauleón et al., “Genome-wide significant risk factors for alzheimer’s
disease: role in progression to dementia due to alzheimer’s disease
among subjects with mild cognitive impairment,” Molecular psychiatry,
vol. 22, no. 1, pp. 153–160, 2017.

[5] Y. Cho, C.-H. Lee, E.-G. Jeong, M.-H. Kim, J. H. Hong, Y. Ko, B. Lee,
G. Yun, B. J. Kim, J. Jung et al., “Prevalence of rare genetic variations
and their implications in ngs-data interpretation,” Scientific Reports,
vol. 7, no. 1, p. 9810, 2017.

[6] H. Li, “Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem,” arXiv preprint arXiv:1303.3997, 2013.

[7] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[8] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “Genax: A genome sequencing accelerator,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 69–82.

[9] E. Sperling, “How much will that chip cost?” Semiconductor Engineer-
ing, 2014. [Online]. Available: https://semiengineering.com/how-much-
will-that-chip-cost/

[10] M. Farrar, “Striped smith–waterman speeds database searches six times
over other simd implementations,” Bioinformatics, vol. 23, no. 2, pp.
156–161, 2006.

[11] G. Myers, “A fast bit-vector algorithm for approximate string matching
based on dynamic programming,” Journal of the ACM (JACM), vol. 46,
no. 3, pp. 395–415, 1999.

[12] C. W. Yu, K. Kwong, K.-H. Lee, and P. H. W. Leong, “A smith-waterman
systolic cell,” in International Conference on Field Programmable Logic
and Applications. Springer, 2003, pp. 375–384.

[13] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfigurable accel-
erator for smith–waterman algorithm,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 54, no. 12, pp. 1077–1081, 2007.

[14] W. Tang, W. Wang, B. Duan, C. Zhang, G. Tan, P. Zhang, and N. Sun,
“Accelerating millions of short reads mapping on a heterogeneous
architecture with fpga accelerator,” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on. IEEE, 2012, pp. 184–187.

[15] Y.-T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in Field-Programmable Custom
Computing Machines (FCCM), 2015 IEEE 23rd Annual International
Symposium on. IEEE, 2015, pp. 199–202.

[16] R. McMillen and M. Ruehle, “Bioinformatics systems, apparatuses,
and methods executed on an integrated circuit processing platform,”
https://www.google.com/patents/US9014989, Apr. 21 2015, uS Patent
9,014,989.

[17] M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient architecture-
aware acceleration of bwa-mem for multicore systems,” in 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2019, pp. 314–324.

[18] M. Šošić and M. Šikić, “Edlib: a c/c++ library for fast, exact sequence
alignment using edit distance,” Bioinformatics, vol. 33, no. 9, pp. 1394–
1395, 2017.

[19] M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. Patterson, S. Shenker,
I. Stoica, R. M. Karp, and T. Sittler, “Faster and more accurate sequence
alignment with snap,” arXiv preprint arXiv:1111.5572, 2011.

[20] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[21] E. W. Myers and W. Miller, “Optimal alignments in linear space,”
Bioinformatics, vol. 4, no. 1, pp. 11–17, 1988.

[22] O. Gotoh, “Optimal sequence alignment allowing for long gaps,” Bul-
letin of mathematical biology, vol. 52, no. 3, pp. 359–373, 1990.

[23] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics
co-processor provides up to 15,000x acceleration on long read
assembly,” SIGPLAN Not., vol. 53, no. 2, p. 199–213, Mar. 2018.
[Online]. Available: https://doi.org/10.1145/3296957.3173193

[24] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamber-
lain, “A banded smith-waterman fpga accelerator for mercury blastp,”
in 2007 International Conference on Field Programmable Logic and
Applications, Aug 2007, pp. 765–769.

[25] P. Chen, C. Wang, X. Li, and X. Zhou, “Hardware acceleration for
the banded smith-waterman algorithm with the cycled systolic array,”
in 2013 International Conference on Field-Programmable Technology
(FPT), 2013, pp. 480–481.

[26] H. Suzuki and M. Kasahara, “Acceleration of nu-
cleotide semi-global alignment with adaptive banded dy-
namic programming,” bioRxiv, 2017. [Online]. Available:
https://www.biorxiv.org/content/early/2017/09/07/130633

[27] Y. Liao, Y. Li, N. Chen, and Y. Lu, “Adaptively banded smith-waterman
algorithm for long reads and its hardware accelerator,” in 2018 IEEE
29th International Conference on Application-specific Systems, Archi-
tectures and Processors (ASAP), 2018, pp. 1–9.

[28] D. S. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Commun. ACM, vol. 18, no. 6, pp. 341–343,
Jun. 1975.

[29] A. Davidson, “A fast pruning algorithm for optimal sequence alignment,”
in Proceedings 2nd Annual IEEE International Symposium on Bioinfor-
matics and Bioengineering (BIBE 2001). IEEE, 2001, pp. 49–56.

[30] R. E. Korf and W. Zhang, “Divide-and-conquer frontier search applied
to optimal sequence alignment,” in AAAI/IAAI, 2000, pp. 910–916.

[31] T. Yoshizumi, T. Miura, and T. Ishida, “A* with partial expansion for
large branching factor problems.” in AAAI/IAAI, 2000, pp. 923–929.

[32] R. J. Lipton and D. P. Lopresti, Using Residue Arithmetic to Simplify
VLSI Processor Arrays for Dynamic Programming. Princeton Univer-
sity, Department of Computer Science, 1986.

[33] R. J. Lipton and D. Lopresti, “A systolic array for rapid string
comparison,” in Proceedings of the 1985 Chapel Hill Conference on
Very Large Scale Integration, 1985, pp. 363–376. [Online]. Available:
ftp://ftp.cs.princeton.edu/reports/1986/026.pdf

[34] Amazon Web Services. (2020) Amazon ec2 f1 instances. [Online].
Available: https://aws.amazon.com/ec2/instance-types/f1/

[35] A. Subramaniyan, J. Wadden, K. Goliya, N. Ozog,
X. Wu, S. Narayanasamy, D. Blaauw, and R. Das,
“Accelerating maximal-exact-match seeding with enumer-
ated radix trees,” bioRxiv, 2020. [Online]. Available:
https://www.biorxiv.org/content/early/2020/03/25/2020.03.23.003897

[36] “Uscs genome browser.” https://genome.ucsc.edu/.

[37] M. A. Eberle, E. Fritzilas, P. Krusche, M. Källberg, B. L. Moore, M. A.
Bekritsky, Z. Iqbal, H.-Y. Chuang, S. J. Humphray, A. L. Halpern et al.,
“A reference data set of 5.4 million phased human variants validated
by genetic inheritance from sequencing a three-generation 17-member
pedigree,” Genome research, vol. 27, no. 1, pp. 157–164, 2017.

[38] Y. Liu and B. Schmidt, “Cushaw2-gpu: empowering faster gapped short-
read alignment using gpu computing,” IEEE Design & Test, vol. 31,
no. 1, pp. 31–39, 2014.

[39] A. Döring, D. Weese, T. Rausch, and K. Reinert, “Seqan an efficient,
generic c++ library for sequence analysis,” BMC bioinformatics, vol. 9,
no. 1, p. 11, 2008.

[40] M. Korpar and M. Šikić, “Sw#–gpu-enabled exact alignments on
genome scale,” Bioinformatics, vol. 29, no. 19, pp. 2494–2495, 2013.

[41] M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing
reads using basic local alignment with successive refinement (blasr):
application and theory,” BMC bioinformatics, vol. 13, no. 1, p. 238,
2012.

[42] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[43] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[44] R. J. Kate, “Using dynamic time warping distances as features for
improved time series classification,” Data Mining and Knowledge Dis-
covery, vol. 30, no. 2, pp. 283–312, 2016.

949

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 



[45] Weste, Burr, and Ackland, “Dynamic time warp pattern matching using
an integrated multiprocessing array,” IEEE Transactions on Computers,
vol. C-32, no. 8, pp. 731–744, 1983.

[46] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3088–3098, 2014.

[47] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw,
D. Sylvester, and R. Das, “Cache automaton,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 259–272.

[48] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“Hare: Hardware accelerator for regular expressions,” in Microarchitec-

ture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on. IEEE, 2016, pp. 1–12.

[49] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support
for unstructured data processing: The unified automata processor,” in
Microarchitecture (MICRO), 2015 48th Annual IEEE/ACM International
Symposium on. IEEE, 2015, pp. 533–545.

[50] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “Udp:
A programmable accelerator for extract-transform-load workloads
and more,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-50 ’17.
New York, NY, USA: ACM, 2017, pp. 55–68. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123983

950

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 03,2021 at 20:07:03 UTC from IEEE Xplore.  Restrictions apply. 


