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ABSTRACT
With the end of Dennard scaling and Moore’s law, it is becoming in-

creasingly difficult to build hardware for emerging applications that

meet power and performance targets, while remaining flexible and

programmable for end users. This is particularly true for domains

that have frequently changing algorithms and applications involv-

ing mixed sparse/dense data structures, such as those in machine

learning and graph analytics. To overcome this, we present a flexible

accelerator called Transmuter, in a novel effort to bridge the gap be-
tween General-Purpose Processors (GPPs) and Application-Specific

Integrated Circuits (ASICs). Transmuter adapts to changing kernel
characteristics, such as data reuse and control divergence, through

the ability to reconfigure the on-chipmemory type, resource sharing
and dataflow at run-time within a short latency. This is facilitated

by a fabric of light-weight cores connected to a network of recon-

figurable caches and crossbars. Transmuter addresses a rapidly

growing set of algorithms exhibiting dynamic data movement pat-

terns, irregularity, and sparsity, while delivering GPU-like efficien-

cies for traditional dense applications. Finally, in order to support

programmability and ease-of-adoption, we prototype a software

stack composed of low-level runtime routines, and a high-level

language library called TransPy, that cater to expert programmers

and end-users, respectively.

Our evaluations with Transmuter demonstrate average through-

put (energy-efficiency) improvements of 5.0× (18.4×) and 4.2× (4.0×)
over a high-end CPU and GPU, respectively, across a diverse set of

kernels predominant in graph analytics, scientific computing and

machine learning. Transmuter achieves energy-efficiency gains av-

eraging 3.4× and 2.0× over prior FPGA and CGRA implementations

of the same kernels, while remaining on average within 9.3× of

state-of-the-art ASICs.

CCS CONCEPTS
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1 INTRODUCTION
The past decade has seen a surge in emerging applications that

are composed of multiple kernels
1
with varying data movement

and reuse patterns, in domains such as machine learning (ML),

and graph, image and signal processing. A growing number of

such applications operate on compressed and irregular data struc-
tures [22, 51, 73], or on a combination of regular and irregular

data [18, 21, 118]. While conventional CPU-GPU systems gen-

erally suffice for desktop computing [28], arenas such as high-

performance computing (HPC) clusters and datacenters that de-

mand higher performance for such applications require more spe-

cialized hardware; such systems are typically comprised of CPUs

paired with GPUs and other domain-specific application-specific

integrated circuit (ASIC) based accelerators [40, 50, 75], or field pro-

grammable gate arrays (FPGAs) [85, 96, 113]. coarse-grained recon-

figurable architectures (CGRAs) have also been proposed as promis-

ing alternatives for achieving near-ASIC performance [82, 106].

These platforms have been historically bounded by three conflict-

ing constraints: programmability, algorithm-specificity, and perfor-
mance/efficiency [72], as is illustrated in Fig. 1. Owing to these

trade-offs, there is currently no single architecture that is the most

efficient across a diverse set of workloads [89].

Thus, the rising complexity of modern applications and need for

efficient computing necessitate a solution that incorporates:

• Flexibility. Ability to cater to multiple applications, as well as

emerging applications with changing algorithms, that operate

on both regular and irregular data structures.

1
This work refers to kernels as the building blocks of larger applications.



Platform Program-
mability Flexibility Reconfig. 

Time
ASIC Low/None Low N.A.

CGRA Low-
Medium Medium ~1 μs -

~100 ns

FPGA Medium Medium-
High

~1 ms -
~1 μs

GPU High High N.A.
CPU High High N.A.

Trans-
former High High ~10 ns

Energy-Efficiency Gain over CPU

Memory-
Bound
Kernels
0.002-0.5
FLOPS/B

Compute-
Bound
Kernels
1.25-171
FLOPS/B

Figure 1: Left: Transmuter compared to contemporary platforms in
terms of programmability, hardware flexibility and reconfiguration
overhead. Right. Energy-efficiency comparisons for kernels span-
ning a wide range of arithmetic intensities (FLOPS/B). Note that for
ASICs and CGRAs, no single piece of hardware supports all kernels.
Transmuter achieves 2.0× better average efficiency over state-of-the-
art CGRAs, while retaining the programmability of GPPs.

• Reconfigurability. Enabling near-ASIC efficiencies by morph-

ing the hardware to specific kernel characteristics, for applica-

tions that are composed of multiple cascaded kernels.

• Programmability. Facilitating better adoption of non-GPP hard-
ware by providing high-level software abstractions that are fa-

miliar to end-users and domain experts, and that mask the details

of the underlying reconfigurable hardware.

To this end, we propose Transmuter, a reconfigurable accelera-
tor that adapts to the nature of the kernel through a flexible fabric

of light-weight cores, and reconfigurable memory and intercon-

nect. Worker cores are grouped into tiles that are each orchestrated

by a control core. All cores support a standard ISA, thus allowing

the hardware to be fully kernel-agnostic. Transmuter overcomes

inefficiencies in vector processors such as GPUs for irregular ap-

plications [87] by employing a multiple-instruction, multiple data

(MIMD) / single-program, multiple data (SPMD) paradigm. On-

chip buffers and scratchpad memories (SPMs) are used for low-cost

scheduling, synchronization and fast core-to-core data transfers.

The cores interface to a high-bandwidth memory (HBM) through a

two-level hierarchy of reconfigurable caches and crossbars.

Our approach fundamentally differs from existing solutions that

employ gate-level reconfigurability (FPGAs) and core/pipeline-level

reconfigurability (most CGRAs) — we reconfigure the on-chipmem-
ory type, resource sharing, and dataflow, at a coarser granularity than
contemporary CGRAs, while employing general-purpose cores as

the compute units. Moreover, Transmuter’s reconfigurable hard-
ware enables run-time reconfiguration within 10s of nanoseconds,

faster than existing CGRA and FPGA solutions (Section 2.1).

We further integrate a prototype software stack to abstract the re-

configurable Transmuter hardware and support ease-of-adoption.

The stack exposes two layers: (i) a C++ intrinsics layer that compiles

directly for the hardware using a commercial off-the-shelf (COTS)

compiler, and (ii) a drop-in replacement for existing high-level

language (HLL) libraries in Python, called TransPy, that exposes
optimized Transmuter kernel implementations to an end-user. Li-

braries are written by experts using the C++ intrinsics to access

reconfigurable hardware elements. These libraries are then pack-

aged and linked to existing HLL libraries, e.g. NumPy, SciPy, etc.
In summary, this paper makes the following contributions:

• Proposes a general-purpose, reconfigurable accelerator de-
sign composed of a sea of parallel cores interweaved with a

flexible cache-crossbar hierarchy that supports fast run-time re-

configuration of the memory type, resource sharing and dataflow.

• Demonstrates the flexibility of Transmuter by mapping and

analyzing six fundamental compute- and memory-bound kernels,

that appear in multiple HPC and datacenter applications, onto

three distinct Transmuter configurations.

• Illustrates the significance of fast reconfiguration by eval-

uating Transmuter on ten end-to-end applications (one in detail)

spanning the domains of ML and graph/signal/image processing,

that involve reconfiguration at kernel boundaries.

• Proposes a prototyped compiler runtime and an HLL li-
brary called TransPy that expose the Transmuter hardware

to end-users through drop-in replacements for existing HLL li-

braries. The stack also comprises of C++ intrinsics, which foster

expert programmers to efficiently co-design new algorithms.

• Evaluates the Transmuter hardware against existing plat-
formswith two proposed variants, namely TransX1 and TransX8,
that are each comparable in area to a high-end CPU and GPU.

In summary, Transmuter demonstrates average energy-efficiency

gains of 18.4×, 4.0×, 3.4× and 2.0×, over a CPU, GPU, FPGAs and
CGRAs respectively, and remains within 3.0×-32.1× of state-of-the-

art ASICs. Fig. 1 (right) presents a summary of these comparisons.

2 BACKGROUND AND MOTIVATION
In this section, we provide a background on conventional comput-

ing platforms, and motivate the need for a reconfigurable design.

2.1 Contemporary Computing Platforms
ASICs have been the subject of extensive research in the dark silicon

era due to their superior performance and efficiency [100]. However,

ASICs compromise on generality by stripping away extraneous

hardware, such as control logic, thus limiting their functionality to

specific algorithms. An obvious solution is to design systems with

multiple ASICs, but that leads to high under-utilization for applica-

tions with cascaded kernels. Moreover, fast-moving domains, such

as ML, involve algorithms that evolve faster than the turnaround

time to fabricate and test new ASICs, despite efforts on accelerating

the design flow [20], thus subjecting them to near-term obsoles-

cence [16, 43]. Finally, ASICs are generally non-programmable,

barring a few that use sophisticated software frameworks [1].

FPGAs have been successful for fast prototyping and deployment

by eliminating non-recurring costs through programmable blocks

and routing fabric. Moreover, high-level synthesis tools have re-

duced the low-level programmability challenges associated with de-

ploying efficient FPGA-based designs [7, 61, 62]. Despite that, power

and cost overheads prohibit FPGAs from adaptation in scenarios

that demand the acceleration of a diverse set of kernels [15, 94, 95].

Besides, reconfiguration overheads of FPGAs are in the ms-µs range,

even for partial reconfiguration [111, 115, 116], thus impeding fast

run-time reconfiguration across kernel boundaries. CGRAs over-

come some of the energy and performance inefficiencies of FPGAs

by reconfiguring at a coarser granularity. However, CGRA reconfig-

uration usually happens at compile-time, and the few that support

run-time reconfiguration only support compute datapath recon-

figuration [68], with overheads ranging from a few µs to 100s of



Kernel 
Characteristic

Arithmetic Intensity High Med. High Med. Low Low
Data Reuse High Med. Med. Low Low Low
Ctrl. Divergence Low Low Low Med. High High

* probability 
calculation phase

Workload Class

DANMF Graph 
Embedding

LSTM-RNN Language 
Modeling

Marian Machine 
Translation

Max-Cut Graph 
Processing

Mel Freq. Cepstral 
Coeff.

Audio 
Processing

Naïve Bayes SGD * Sentiment 
Analysis

Role Prediction Unsupervised 
Learning

Semantic 
Segmentation

Image 
Processing

Sinkhorn Distance 
**

Optimal 
Transport

Video 
Segmentation

Video 
Processing

40%

20%

60%

80%

** SpMM is with 
first matrix dense

GeMM GeMV Conv FFT SpMM SpMVOthers

Figure 2: Fraction of execution time of kernels in applications
spanning the domains of ML, signal processing, and graph analyt-
ics [14, 18, 21, 22, 51, 67, 73, 74, 78, 118] on a heterogeneous CPU-
GPU platform. Some key characteristics, namely arithmetic inten-
sity, data reuse and divergence, of each kernel are also listed.

ns [30, 33, 71]. Furthermore, many CGRAs require customized soft-

ware stacks but have inadequate tool support, since they typically

involve domain-specific languages (DSLs) and custom ISAs [114].

Finally, while CPUs and GPUs carry significant energy and area

overheads compared to lean ASIC designs, they are the de facto
choice for programmers as they provide high flexibility and ab-

stracted programming semantics [12]. Although GPUs are efficient

across many regular HPC applications, i.e. those exhibiting low

control divergence, improving their effectiveness on irregular work-

loads remains a topic of research today [13, 84].

2.2 Taming the Diversity across Kernels
Many real-world workloads consist of multiple kernels that ex-

hibit differing data access patterns and computational (arithmetic)

intensities. In Fig. 2, we show the percentage execution times of

key kernels that compose a set of ten workloads in the domains

of ML, graph analytics, and signal/image/video processing. These

workloads are derived from an ongoing multi-university program

to study software-defined hardware.

The underlying kernels exhibit a wide range of arithmetic inten-

sities, from
1

1000
ths to 100s of floating-point operations per byte,

i.e. FLOPS/B (Fig. 1). We briefly introduce the kernels here. Gen-

eral (dense) matrix-matrix multiplication (GeMM) and matrix-vector

multiplication (GeMV) are regular kernels in ML, data analytics and

graphics [27, 32]. Convolution is a critical component in image

processing [3] and convolutional neural networks [59]. Fast Fourier

Transform (FFT) is widely used in speech and image processing for

signal transformation [6, 79]. Sparse matrix-matrix multiplication

(SpMM) is an important irregular kernel in graph analytics (part of

GraphBLAS [54]), scientific computation [9, 24, 117], and problems

involving big data with sparse connections [45, 93]. Another com-

mon sparse operation is sparse matrix-vector multiplication (SpMV),
which is predominant in graph algorithms such as PageRank and

Breadth-First Search [77], as well as ML-driven text analytics [5].

Takeaways. Fig. 2 illustrates that real-world applications exhibit
diverse characteristics not only across domains, but also within

an application. Thus, taming both the inter- and intra-application

diversity efficiently in a single piece of hardware calls for an ar-

chitecture capable of tailoring itself to the characteristics of each

composing kernel.

2.3 Hardware Support for Disparate Patterns
Intuition dictates that the diverse characteristics of kernels would

demand an equivalent diversity in hardware. We study the implica-

tions of some key hardware choices here.

2.3.1 On-Chip Memory Type: Cache vs. Scratchpad. Cache and

scratchpad memory (SPM) are two well-known and extensively

researched types of on-chip memory [8, 58, 110]. To explore their

trade-offs, we performed experiments on a single-core system that

employs these memories. We observed that:

• Workloads that exhibit low arithmetic intensity (i.e. are memory-

intensive) but high spatial locality (contiguous memory accesses)

perform better on a cache-based system.

• Workloads that are compute-intensive and have high traffic to

disjoint memory locations favor an SPM if those addresses are

known a priori. In this case, an SPM outperforms a cache because

the software-managed SPM replacement policy supersedes any

standard cache replacement policy.

Thus, caching is useful for kernels that exhibit high spatial locality

and low-to-moderate FLOPS/byte, whereas SPMs are more efficient

when the data is prone to thrashing, but is predictable and has

sufficient reuse.

2.3.2 On-Chip Resource Sharing: Private vs. Shared. The perfor-

mance of shared versus private on-chip resources is dependent on

the working set sizes and overlaps across cores, i.e. inter-core data
reuse. From our experiments we noted:

• When there is significant overlap between the threads’ working

sets, sharing leads to speedups exceeding 10× over privatization.

This is owed to memory access coalescing and deduplication of

data in the shared mode.

• When cores work on disjoint data, there is insignificant difference

in performance with sharing over no-sharing, if the union of the

threads’ working sets fit on-chip.

• Regular kernels may exhibit strided accesses that can be haz-

ardous for a shared multi-banked cache, due to conflicting ac-

cesses at the same bank. In this case, a private configuration

delivers better performance.

2.3.3 Dataflow: Demand-Driven vs. Spatial. In this work, we refer

to demand-driven dataflow as the dataflow used by GPPs, wherein

cores use on-demand loads/stores to read/write data and communi-

cate via shared memory. In contrast, spatial dataflow architectures

(e.g. systolic arrays) are data-parallel designs consisting of multi-

ple processing elements (PEs) with direct PE-to-PE channels. Each

PE receives data from its neighbor(s), performs an operation, and

passes the result to its next neighbor(s) [60]. If pipelined correctly,

this form of data orchestration harnesses the largest degree of par-

allelism. However, it is harder to map and write efficient software

for certain applications on spatial architectures [49].

Takeaways.The on-chipmemory type, resource sharing and dataflow
are three key hardware design choices that are each amenable to a

different workload characteristic. This motivates the intuition that



Figure 3: High-level Transmuter architecture showing the config-
urations evaluated in this work, namely a) Trans-SC (L1: shared
cache, L2: shared cache), b) Trans-PS (L1: private SPM, L2: private
cache), and c, d) Trans-SA (L1: systolic array, L2: private cache).

Table 1: Reconfigurable features at each level in Transmuter. In the
“hybrid” memory mode, banks are split between caches and SPMs.

Dataflow On-Chip Memory Resource Sharing # Modes

Demand-driven Cache / SPM / Hybrid Private / Shared 6

Spatial FIFO + SPM 1D / 2D Systolic Sharing 2

an architecture that reconfigures between these designs can accel-

erate diverse workloads that exhibit a spectrum of characteristics.

3 HIGH-LEVEL ARCHITECTURE
The takeaways from the previous section are the fundamental

design principles behind our proposed architecture, Transmuter.
Transmuter is a tiled architecture composed of a massively parallel

fabric of simple cores. It has a two-level hierarchy of crossbars

and on-chip memories that allows for fast reconfiguration of the

on-chip memory type (cache/scratchpad/FIFO), resource sharing
(shared/private) and dataflow (demand-driven/spatial). The various

modes of operation are listed in Tab. 1. The two levels of memory

hierarchy, i.e. L1 and L2, supports 8 modes each. Furthermore, each

Transmuter tile can be configured independently, however these

tile-heterogeneous configurations are not evaluated in this work.

In this work, we identify three distinct Transmuter configura-
tions to be well-suited for the evaluated kernels based on characteri-

zation studies on existing platforms (Sec. 2.2). These configurations

are shown in Fig. 3 and discussed here.

• Shared Cache (Trans-SC). Trans-SC uses shared caches in the

L1 and L2. The crossbars connect the cores to the L1 memory

banks and the tiles to the L2 banks, respectively. This resembles

a manycore system, but with a larger compute-to-cache ratio,

and is efficient for regular accesses with high inter-core reuse.

• Private Scratchpad (Trans-PS). Trans-PS reconfigures the L1
cache banks into SPMs, while retaining the L2 as cache. The

crossbars reconfigure to privatize the L1 (L2) SPMs to their corre-

sponding cores (tiles). This configuration is suited for workloads

with high intra-core but low inter-core reuse of data that is prone

to cache-thrashing. The private L2 banks enable caching of sec-

ondary data, such as spill/fill variables.

• Systolic Array (Trans-SA). Trans-SA employs systolic connec-

tions between the cores within each tile, and is suited for highly

data parallel applications where the work is relatively balanced

between the cores. Transmuter supports both 1D and 2D systolic

configurations. Note that the L2 is configured as a cache for the

same reason as with Trans-PS.

We omit an exhaustive evaluation of all possible Transmuter
configurations, given the space constraints of the paper. In the

rest of the paper, we use the notation of 𝑁𝑇×𝑁𝐺 Transmuter to

describe a system with 𝑁𝑇 tiles and 𝑁𝐺 worker cores per tile.

4 HARDWARE DESIGN
A full Transmuter system is shown in Fig. 4-a. A Transmuter chip

consists of one or more Transmuter (TM) clusters interfaced to

high-bandwidth memory (HBM) stack(s) in a 2.5D configuration,

similar to modern GPUs [66]. A small host processor sits within

the chip to enable low-latency reconfiguration. It is interfaced to a

separate DRAM module and data transfer is orchestrated through

DMA controllers (not shown) [31]. The host is responsible for exe-

cuting serial/latency-critical kernels, while parallelizable kernels

are dispatched to Transmuter.

4.1 General-Purpose Processing Element and
local control processor

A general-purpose processing element (GPE) is a small processor

with floating-point (FP) and load/store (LS) units that uses a stan-

dard ISA. Its small footprint enables Transmuter to incorporate

many such GPEs within standard reticle sizes. The large number

of GPEs coupled with miss status holding registers (MSHRs) in

the cache hierarchy allows Transmuter to exploit memory-level

parallelism (MLP) across the sea of cores. The GPEs operate in a

MIMD/SPMD fashion, and thus have private instruction (I-) caches.

GPEs are grouped into tiles and are coordinated by a small control

processor, the local control processor (LCP). Each LCP has private D-

and ICaches that connect to theHBM interface. The LCP is primarily

responsible for distributing work across GPEs, using either static
(e.g. greedy) or dynamic scheduling (e.g. skipping GPEs with full

queues), thus trading-off code complexity for work-balance.

4.2 Work and Status Queues
The LCP distributes work to the GPEs through private FIFO work

queues. A GPE similarly publishes its status via private status

queues that interface to the LCP (Fig. 4-c). The queues block when

there are structural hazards, i.e. if a queue is empty and a consumer

attempts a POP, the consumer is idled until a producer PUSHes to the
queue, thus preventing wasted energy due to busy-waiting. This

strategy is also used for systolic accesses, discussed next.

4.3 Reconfigurable Data Cache
Transmuter has two layers of multi-bankedmemories, called recon-

figurable data caches, i.e. R-DCaches (Fig. 4 – b, c). Each R-DCache

bank is a standard cache module with enhancements to support

the following modes of operation:

• CACHE. Each bank is accessed as a non-blocking, write-back,

write-no-allocate cache with a least-recently used replacement



Figure 4: a) High-level overview of a host-Transmuter system. b) Transmuter architecture showing 4 tiles and 4 L2 R-DCache banks, alongwith
L2 R-XBars, the synchronization SPM and interface to off-chipmemory. Some L2R-XBar input connections are omitted for clarity. c) View of a
single tile, showing 4 GPEs and the work/status queues interface. Arbiters, instruction paths and ICaches are not shown. d) Microarchitecture
of an R-XBar, with the circled numbers indicating the mode of operation: 1○: ARBITRATE, 2○: TRANSPARENT, 3○: ROTATE.

policy. The banks are interleaved at a set-granularity, and a cache-

line physically resides in one bank. Additionally, this mode uses a

simple stride prefetcher to boost performance for regular kernels.

• SPM. The tag array, set-index logic, prefetcher and MSHRs are

powered off and the bank is accessed as a scratchpad.

• FIFO+SPM. A partition of the bank is configured as SPM, while

the remainder are accessed as FIFO queues (Fig. 5 – left), using a

set of head/tail pointers. The queue depth can be reconfigured

using memory-mapped registers. The low-level abstractions for

accessing the FIFOs are shown in Fig. 5 (right). This mode is used

to implement spatial dataflow in Trans-SA (Fig. 3).

4.4 Reconfigurable Crossbar
A multicasting 𝑁src × 𝑁dst

crossbar creates one-to-one or one-to-

many connections between 𝑁src source and 𝑁
dst

destination ports.

Transmuter employs swizzle-switch network (SSN)-based cross-

bars that support multicasting [48, 99]. These and other work [2]

have shown that crossbars designs can scale better, up to radix-64,

compared to other on-chip networks. We augment the crossbar

design with a crosspoint control unit (XCU) that enables recon-

figuration by programming the crosspoints. A block diagram of a

reconfigurable crossbar (R-XBar) is shown in Fig. 4-d. The R-XBars

support the following modes of operation:

• ARBITRATE. Any source port can access any destination port,

and contended accesses to the same port get serialized. Arbi-

tration is done in a single cycle using a least-recently granted

policy [99], while the serialization latency varies between 0 and

(𝑁src − 1) cycles. This mode is used in Trans-SC.

• TRANSPARENT.A requester can only access its corresponding

resource, i.e. the crosspoints within the crossbar are set to 0

or 1 (Fig. 4-d). Thus, the R-XBar is transparent and incurs no
arbitration or serialization delay in this mode. Trans-PS (in L1

and L2) and Trans-SA (in L2) employ TRANSPARENT R-XBars.

• ROTATE. The R-XBar cycles through a set of one-to-one port

connections programmed into the crosspoints. This mode also

Figure 5: a) Logical view of an R-DCache bank in FIFO+SPM mode,
showing 4 FIFO partitions, one for each direction in 2D. b) Loads
and stores to special addresses corresponding to each direction are
mapped to POP and PUSH calls, respectively, into the FIFOs.

has no crossbar arbitration cost. Fig. 6 illustrates how port multi-

plexing is used to emulate spatial dataflow in a 1D systolic array

configuration (Trans-SA).

There are two L1 R-XBars within a tile (Fig. 4-c). The upper

R-XBar enables GPEs to access the L1 R-DCache, and the lower

R-XBar amplifies on-chip bandwidth between the L1 and L2.

4.5 Synchronization
Transmuter implements synchronization and enforces happens-

before ordering using two approaches. The first is implicit, in the

form of work/status/R-DCache queue accesses that block when the

queue is empty or full. Second, it also supports explicit synchro-
nization through a global synchronization SPM for programs that

require mutexes, condition variables, barriers, and semaphores. For

instance, say that GPEs 0 and 1 are to execute a critical section (CS)

in a program. With explicit synchronization, the programmer can

instantiate a mutex in the synchronization SPM and protect the CS

with it. The same can also be achieved through implicit synchroniza-

tion, with the following sequence of events: 1○ both GPEs ← LCP,

2○ LCP→ GPE0, 3○ GPE0 executes the CS, 4○ GPE0→ LCP, 5○
LCP→ GPE1, 6○ GPE1 executes the CS, 7○ GPE1→ LCP, where

← denotes POP-from and→ is a PUSH-to the work or status queue.



Figure 6: a) Physical and b) logical views of 1D systolic array con-
nections within a Transmuter tile. Spatial dataflow is achieved by
the R-XBar rotating between the two port-connection patterns.

Compared to traditional hardware coherence, these techniques

reduce power through lower on-chip traffic [53, 87]. The synchro-

nization SPM is interfaced to the LCPs and GPEs through a low-

throughput two-level arbiter tree, as accesses to this SPM were not

bottleneck for any of the evaluated workloads.

4.6 Miscellaneous Reconfiguration Support
The GPE LS unit is augmented with logic to route packets to

the work/status queue, synchronization SPM, and the L1 or L2

R-DCache, based on a set of base/bound registers. Reconfiguration

changes the active base/bound registers, without external memory

traffic. LCPs include similar logic but do not have access to the L1

or L2. Lastly, the system enables power-gating individual blocks,

i.e. cores, R-XBars, R-DCaches, based on reconfiguration messages.

This is used to boost energy-efficiency for memory-bound kernels.

4.7 Reconfiguration Overhead
Transmuter can self-reconfigure at run-time (initiated by an LCP)

if the target configuration is known a priori. Reconfiguration can

also be initiated by the host using a command packet with relevant

metadata. The programming interface used to initiate this is dis-

cussed in Sec. 6. Each step of the hardware reconfiguration happens

in parallel and is outlined below.

• GPE.Upon receiving the reconfiguration command, GPEs switch

the base/bound registers that their LS units are connected to

(Sec. 4.6) in a single cycle.

• R-XBar. ARBITRATE↔ TRANSPARENT reconfiguration en-

tails a 1-cycle latency, as it only switches MUXes in the R-XBar

(Fig. 4-d). The ROTATE mode uses set/unset patterns, which re-

quires a serial transfer of bit vectors from on-chip registers (e.g.
a 64×64 design incurs a 6-cycle latency

2
).

• R-DCache. Switching from CACHE to SPM mode involves a

1-cycle toggle of the scratchpad controller. The FIFO+SPM mode

involves programming the head and tail pointer for each logical

FIFO queue, which are transferred from control registers (4 cycles

for 4 FIFO partitions).

Thus, the net reconfiguration time, accounting for buffering de-

lays, amounts to ~10 cycles, which is faster than FPGAs and many

CGRAs (Sec. 2.1). For host-initiated reconfiguration, overheads as-

sociated with host-to-Transmuter communication leads to a net

reconfiguration time of few 10s of cycles.We limit our discussions to

self-reconfiguration in this work. Since Transmuter does not imple-

ment hardware coherence, switching between certain Transmuter
configurations entails cache flushes from L1 to L2, from L2 to HBM,

2
Latency (in cycles) = ceil(𝑁rotate_patterns × 𝑁dst

× log
2
(𝑁src) / xfer_width)

or both. The levels that use the SPM or FIFO+SPM mode do not

need flushing. Furthermore, our write-no-allocate caches circum-

vent flushing for streaming workloads that write output data only

once. Even when cache flushes are inevitable, the overhead is small

(<1% of execution time) for the evaluated kernels in Sec. 8.

5 KERNEL MAPPING
Transmuter is built using COTS cores that lend the architecture to

be kernel-agnostic. Here, we present our mappings of the funda-

mental kernels in Sec. 2 on the selected Transmuter configurations.
Code snippets for three of our implementations are listed in Appen-

dix C. Additional kernels in the domain of linear algebra have been

mapped and evaluated on a preliminary version of Transmuter for
different resource sharing configurations [101].

We note that while executingmemory-bound kernels, Transmuter
powers-down resources within a tile to conserve energy.

5.1 Dense Matrix Multiplication and
Convolution

GeMM. GeMM is a regular kernel that produces 𝑂 (𝑁 3) FLOPS for

𝑂 (𝑁 2) fetches and exhibits very high reuse [38]. It also presents

contiguous accesses, thus showing amenability to a shared memory

based architecture. Our implementation of GeMM on Trans-SC uses

a common blocking optimization [69]. We similarly implement

GeMM on Trans-PS but with the blocked partial results stored in the

private L1 SPMs. Naturally, Trans-PS misses the opportunity for

data sharing. For Trans-SA, the GPEs execute GeMM in a systolic

fashion with the rows of 𝐴 streamed through the L2 cache, and the

columns of 𝐵 loaded from the L1 SPM.

GeMV. GeMV is a memory-bound kernel that involves lower FLOPS/B

— 𝑂 (𝑁 2) FLOPS for 𝑂 (𝑁 2) fetches — than GeMM, but still involves
contiguous memory accesses [29]. The Trans-SC and Trans-PS im-

plementations are similar to those for GeMM, but blocking is not

implemented due to lower data reuse. On Trans-SA, the vector is

streamed into each GPE through the L2 cache, while the matrix

elements are fetched from the L1 SPM. Each GPE performs a MAC,

and passes the partial sum and input matrix values to its neighbors.

We avoid network deadlock in our GeMM and GeMV Trans-SA imple-

mentations by reconfiguring the FIFO depth of the L1 R-DCache

(Sec. 4.3) to allow for sufficient buffering.

Conv. Conv in 2D produces (2 · 𝐹 2 · 𝑁 2 · 𝐼𝐶 ·𝑂𝐶)/𝑆 FLOPS, for an

𝐹×𝐹 filter convolving with stride 𝑆 over an 𝑁×𝑁 image, with 𝐼𝐶

input and𝑂𝐶 output channels. The filter is reused while computing

one output channel, and across multiple images. Input reuse is

limited to𝑂 (𝐹 ·𝑂𝐶), for 𝑆<𝐹 . On Trans-SC, we assign each GPE to

compute the output of multiple rows, to maximize the filter reuse

across GPEs. For Trans-PS and Trans-SA, we statically partition

each image into 𝐵×𝐵×𝐼𝐶 sub-blocks, such that the input block and

filter fit in the private L1 SPM. Each block is then mapped to a GPE

for Trans-PS, and to a set of 𝐹 adjacent GPEs of a 1D systolic array

for Trans-SA using a row stationary approach similar to [17].

5.2 Fast Fourier Transform
FFT. FFT in 1D computes an 𝑁 -point discrete Fourier transform in

log(𝑁 ) sequential stages. Each stage consists of 𝑁 /2 butterfly oper-

ations. FFT applications often operate on streaming input samples,



and thus are amenable to spatial dataflow architectures [25, 46]. Our

Trans-SA mapping is similar to pipelined systolic ASICs; each stage

is assigned to a single GPE, and each GPE immediately pushes its

outputs to its neighbor. The butterflies in each stage are computed

greedily. To reduce storage and increase parallelism, Trans-SA uses

run-time twiddle coefficient generation when the transform size is

too large for on-chip memory, e.g. >256 for 2×8, with the trade-off

of making the problem compute-bound. On Trans-SC, the butterfly

operations are distributed evenly among GPEs to compute a stage in

parallel. LCPs assign inputs and collect outputs fromGPEs. All cores

synchronize after each stage. For Trans-PS, the same scheduling is

used and partial results are stored in the L1 SPM.

5.3 Sparse Matrix Multiplication
SpMM. SpMM is amemory-bound kernel with low FLOPS that decrease

with increasing sparsity, e.g. ∼2𝑁 3𝑟2
𝑀
, for uniform-random 𝑁×𝑁

matrices with density 𝑟𝑀 . Furthermore, sparse storage formats

lead to indirection and thus irregular memory accesses [65, 87].

We implement SpMM in Trans-SC using a prior outer product

approach [87]. In the multiply phase of the algorithm, the GPEs

multiply a column of 𝐴 with the corresponding row of 𝐵, such that

the row elements are reused in the L1 cache. In the merge phase, a
GPE merges all the partial products corresponding to one row of

𝐶 . Each GPE maintains a private list of sorted partial results and

fills it with data fetched from off-chip. Trans-PS operates similarly,

but with the sorting list placed in private L1 SPM, given that SPMs

are a better fit for operations on disjoint memory chunks. Lastly,

SpMM in Trans-SA is implemented following a recent work that

uses sparse packing [41]. Both the columns of 𝐴 and rows of 𝐵 are

packed in memory. The computation is equally split across the tiles.

SpMV. SpMV, similar to SpMM, is bandwidth-bound and produces

low FLOPS (∼ 2𝑁 2𝑟𝑀𝑟𝑣 for a uniformly random 𝑁×𝑁 matrix with

density 𝑟𝑀 , and vector with density 𝑟𝑣 ). We exploit the low memory

traffic in the outer product algorithm for sparse vectors, mapping

it to Trans-SC and Trans-PS. The GPEs and LCPs collaborate to

merge the partial product columns in a tree fashion, with LCP 0
writing out the final elements to the HBM. SpMV on 1D Trans-SA

is implemented using inner product on a packed sparse matrix

as described in [41]. The packing algorithm packs 64 rows as a

slice, and assigns one slice to each 1×4 sub-tile within a tile. Each

GPE loads the input vector elements into SPM, fetches the matrix

element and performs MAC operations, with the partial results

being streamed to its neighbor within the sub-tile.

Finally, for both SpMM and SpMV, we use dynamic scheduling for

work distribution to the GPEs (Sec. 4.1), in order to exploit the

amenability of sparse workloads to SPMD architectures [87].

6 PROTOTYPE SOFTWARE STACK
We implement a software stack for Transmuter in order to support

good programmability and ease-of-adoption of our solution. The

software stack has several components: a high-level Python API,

and lower-level C++ APIs for the host, LCPs and GPEs. An outline

of the software stack and a working Transmuter code example are

shown in Fig. 7.

The highest level API, called TransPy, is a drop-in replacement

for the well-known high-performance Python library NumPy, i.e.

Transmuter Hardware

C++ Intrinsics
Host API

TransPy Libraries
NumPy SciPy

LCP GPE GPE…
Host

LCP API GPE API

…

Application
Code

Host Code

1: import transpy.numpy as np
2: //Init input x and filter f
3: x=np.arange(...)
4: f=np.arange(...)
5: y=np.correlate(f, x, mode="full")
6: [...]

Ap
p 
Co
de

1: [...]
2: //Iterate over size of array x
3: for(int i=0; i<x_N; ++i) {
4: float x = T_WORKQ_POP();
5: float psum = 0;
6: #if (GPE_ID != (N_TILES-1))
7: psum = T_SA_POP(Dir::East);
8: #endif
9:   psum += x * f; //MAC operation
10: #if (GPE_ID != 0)
11: T_SA_PUSH(Dir::West, psum);
12: #else
13:   y[i] = psum;
14: #endif
15: }
16: [...]

GP
E 
Co
de

1: //Init input x & filter f
2: float x[x_N]={...};
3: float f[f_N]={...};
4: [...]
5: for(int i=0; i<f_N; ++i) {
6: //Stream x to all GPEs
7: T_WORKQ_PUSH_BCAST(x[i]);
8: }
9: [...]

LC
P 
Co
de

GPE CodeGPE CodeLCP Code

Transmuter Software Stack

GPE CodeGPE CodeGPE Code
… …

Figure 7: Transmuter software stack. Application code is written us-
ing Python and invokes library code for the host, LCPs and GPEs.
The implementations arewritten by experts using our C++ intrinsics
library. Also shown is an example of a correlation kernel on Trans-
SA (host library code not shown). The end-user writes standard
NumPy code and changes only the import package to transpy.numpy
(App:L1). Upon encountering the library call (App:L5), the host per-
forms data transfers and starts execution on Transmuter. The LCP
broadcasts the vector x to all GPEs (LCP:L7). Each GPE pops the
value (GPE:L4), performs a MAC using its filter value (f) and east
neighbor’s partial sum (GPE:L7), and sends its partial sumwestward
(GPE:L11). The last GPE stores the result intoHBM.Thehost returns
control to the application after copying back the result vector y.

the TransPy API exactly mirrors that of NumPy. In the code exam-

ple in Fig. 7, note that only one change is needed to convert the

NumPy program to TransPy. The np.correlate function is trapped

in TransPy, dispatched to the Transmuter host layer, and a pre-

compiled kernel library is invoked. We use pybind11 [47] as the

abstraction layer between Python and C++. TransPy also contains

drop-in replacements for SciPy, PyTorch, NetworkX, and other

libraries used in scientific computing, ML, graph analytics, etc.
TransPy invokes kernels that are implemented by library writers

and expert programmers, with the aid of the C++ intrinsics layer.

A Transmuter SPMD kernel implementation consists of three pro-

grams, one each for the host, LCP and GPE. The host code is written

in the style of OpenCL [104], handling data transfers to and from

Transmuter, launching computation, initializing reconfigurable

parameters (e.g. R-DCache FIFO depth), and triggering reconfig-

uration if needed. On the Transmuter-side, notable API methods

include those associated with the queue interface, for accessing

SPMs and FIFOs, triggering cache flushes, and reconfiguration. Syn-

chronization is handled using intrinsics that wrap around POSIX

threads functions [80]. These calls allow for synchronization at

different granularities, such as globally, within tiles, and across

LCPs. A set of these C++ intrinsics is listed in Appendix A, and the

code example in Fig. 7 reflects the use of some of these calls.

Thus, the Transmuter software stack is designed to enable effi-

cient use of the Transmuter hardware by end-users, without the
burden of reconfiguration and other architectural considerations.

At the same time, the C++ layer allows for expert programmers to

write their own implementations, such as sophisticated heteroge-

neous implementations that partition the work between the host

CPU and Transmuter. As an alternative to writing hand-tuned



Table 2: Microarchitectural parameters of Transmuter gem5model.

Module Microarchitectural Parameters

GPE/LCP

1-issue, 4-stage, in-order (MinorCPU) core @ 1.0 GHz, tournament

branch predictor, FUs: 2 integer (3 cycles), 1 integer multiply (3 cycles),

1 integer divide (9 cycles, non-pipelined), 1 FP (3 cycles), 1 LS (1 cycle)

Work/Status

Queue

4 B, 4-entry FIFO buffer between each GPE and LCP within a tile,

blocks loads if empty and stores if full

R-DCache

(per bank)

CACHE: 4 kB, 4-way set-associative, 1-ported, non-coherent cache

with 8 MSHRs and 64 B block size, stride prefetcher of degree 2, word-

granular (L1) / cacheline-granular (L2)

SPM: 4 kB, 1-ported, physically-addressed, word-granular

FIFO+SPM: 4 kB, 1-ported, physically-addressed, 32-bit head and tail

pointer registers

R-XBar

𝑁src × 𝑁dst
non-coherent crossbar with 1-cycle response

ARBITRATE: 1-cycle arbitration latency, 0 to (𝑁src-1) serialization
latency depending upon number of conflicts

TRANSPARENT: no arbitration, direct access

ROTATE: switch port config. at programmable intervals

Width: 32 address + 32 (L1) / 128 (L2) data bits

GPE/LCP

ICache

4 kB, 4-way set-associative, 1-ported, non-coherent cache with

8 MSHRs and 64 B block size

Sync. SPM 4 kB, 1-ported, physically-addressed scratchpad

Main

Memory

1HBM2 stack: 16 64-bit pseudo-channels, each@ 8000MB/s, 80-150 ns

average access latency

Table 3: Specifications of baseline platforms and libraries evaluated.
Platform Specifications Library Name and Version

CPU

Intel i7-6700K, 4 cores/8 threads at 4.0-

4.2 GHz, 16 GB DDR3 memory @ 34.1

GB/s, AVX2, SSE4.2, 122 mm
2
(14 nm)

MKL 2018.3.222 (GeMM/GeMV/SpMM/SpMV),
DNNL 1.1.0 (Conv), FFTW 3.0 (FFT)

GPU

NVIDIA Tesla V100, 5120 CUDA cores

at 1.25 GHz, 16 GB HBM2 memory at

900 GB/s, 815 mm
2
(12 nm)

cuBLAS v10 (GeMM/GeMV), cuDNN v7.6.5

(Conv), cuFFT v10.0 (FFT), CUSP v0.5.1

(SpMM), cuSPARSE v8.0 (SpMV)

kernels for Transmuter, we are actively working on prototyping a

compiler to automatically generate optimized C++-level library code
for Transmuter based on the Lift data-parallel language [103], the

details of which are left for a future work.

7 EXPERIMENTAL METHODOLOGY
This section describes the methodology used to derive performance,

power and area estimates for Transmuter. Tab. 2 shows the parame-

ters used for modeling Transmuter. We compare Transmuter with
a high-end Intel Core i7 CPU and NVIDIA Tesla V100 GPU run-

ning optimized commercial libraries. The baseline specifications

and libraries are listed in Tab. 3. For fair comparisons, we evaluate

two different Transmuter designs, namely TransX1 and TransX8,
that are each comparable in area to the CPU and GPU, respectively.

TransX1 has a single 64×64 Transmuter cluster and TransX8 em-

ploys 8 such clusters. Both designs have one HBM2 stack/cluster to

provide sufficient bandwidth and saturate all GPEs in the cluster.

7.1 Performance Models
We used the gem5 simulator [10, 11] to model the Transmuter hard-
ware. We modeled the timing for GPEs and LCPs after an in-order

Arm Cortex-M4F, and cache and crossbar latencies based on a prior

chip prototype that uses SSN crossbars [88, 90]. Data transfer/set-

up times are excluded for all platforms. Throughput is reported in

FLOPS/s and only accounts for useful (algorithmic) FLOPS.

The resource requirement for simulations using this detailed

gem5 model is only tractable for Transmuter systems up to 8×16.
For larger systems, we substitute the gem5 cores with trace replay

engines while retaining the gem5 model for the rest of the system.

Offline traces are generated on a native machine and streamed

through these engines. This allows us to simulate systems up to

one 64×64 cluster. On average, across the evaluated kernels, the

trace-driven model is pessimistic to 4.5% of the execution-driven

model. For a multi-cluster system, we use analytical models from

gem5-derived bandwidth and throughput scaling data (Sec. 8.2).

We implemented each kernel in C++ and hand-optimized it for

each Transmuter configuration using the intrinsics discussed in

Sec. 6. Compilation was done using an Arm GNU compiler with

the -O2 flag. All experiments used single-precision FP arithmetic.

7.2 Power and Area Models
We designed RTL models for Transmuter hardware blocks and syn-
thesized them. The GPEs and LCPs are modeled as Arm Cortex-M4F

cores. For the R-XBar, we use the SSN design proposed in [99], aug-

mented with an XCU. The R-DCaches are cache modules enhanced

with SPM and FIFO control logic.

The crossbar and core power models are based on RTL synthesis

reports and the Arm Cortex-M4F specification document. The R-

XBar power model is calibrated against the data reported in [99].

For the caches and synchronization SPM, we used CACTI 7.0 [81] to

estimate the dynamic energy and leakage power.We further verified

our power estimate for SpMM on Transmuter against a prior SpMM
ASIC prototype [88], and obtained a pessimistic deviation of 17%

after accounting for the architectural differences. Finally, the area

model uses estimates from synthesized Transmuter blocks.

We note that this work considers only the chip power on all

platforms, for fair comparisons. We used standard profiling tools

for the CPU and GPU, namely nvprof and RAPL. For the GPU, we
estimated the HBM power based on per-access energy [86] and

measured memory bandwidth, and subtracted it out. The power is

scaled for iso-technology comparisons using quadratic scaling.

8 EVALUATION
We evaluate the Trans-SC, Trans-PS and Trans-SA configurations

on the kernels in Sec. 5. We then compare the best-performing

Transmuter to the CPU and GPU, and deep-dive into the evaluation

of an application that exercises rapid reconfiguration. Lastly, we

show comparisons with prior platforms and power/area analysis.

8.1 Performance with Different Configurations
Fig. 8 presents relative comparisons between Trans-SC, Trans-PS

and Trans-SA in terms of performance. This analysis was done on

a small 2×8 system to stress the hardware. The results show that

the best performing Transmuter configuration is kernel-dependent,
and in certain cases also input-dependent. Fig. 9 shows the cycle

breakdowns and the work imbalance across GPEs.

For GeMM, Trans-SC achieves high L1 hit rates (>99%), as efficient

blocking leads to good data reuse. Trans-PS suffers from capacity

misses due to lack of sharing, noted from the large fraction of L2

misses. Further, Trans-SC performs consistently better than Trans-

SA, as it does not incur the overhead of manually fetching data into

the L1 SPM. For GeMV, Trans-SC and Trans-PS behave the same as

GeMM. However, Trans-SA experiences thrashing (increasing with

matrix size) in the private L2. For Conv, as with GeMM/GeMV, Trans-
SC performs the best due to a regular access pattern with sufficient

filter and input reuse. Across these kernels, stride prefetching in

Trans-SC is sufficient to capture the regular access patterns.
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Figure 8: Performance of 2×8 Trans-SC, Trans-PS and Trans-SA configurations across different inputs for the kernels in Sec. 5. All matrix
operations are performed on square matrices without loss of generality. Conv uses 3×3 filters, 2 input/output channels, and a batch size of 2.

Trans- SC* SC* SC* SA* PS* SA*
GeMM GeMV Conv FFT SpMM SpMV

Figure 9: Cycle breakdown for the kernels in Sec. 5. * (red) indicates
the best-performing configuration. “Other” comprises of stalls due
to synchronization and bank conflicts. ▼: work imbalance across
GPEs (𝜎/𝜇 of # FLOPS). Inputs are: 1k (GeMM), 8k (GeMV), 2k (Conv),
16k (FFT), 4096, 0.64% (SpMM), 4k, 2.6%, dense vector (SpMV).

For FFT, Trans-SA achieves significantly higher throughput be-

cause it benefits from the streaming inputs and exploits better data

reuse, evidenced by ∼10× less memory bandwidth usage compared

to Trans-SC/Trans-PS. Inter-GPE synchronization and coherence

handling at the end of each stage limit the performance for Trans-

SC/Trans-PS. In addition, the control flow in the non-systolic code is

branchy and contributes to expensive ICache misses. Trans-SA per-

forms better for sizes <512 compared to other sizes, as the twiddle

coefficients are loaded from on-chip rather than being computed.

For SpMM, the multiply phase of outer product is better suited to

Trans-SC as the second input matrix rows are shared. The merge

phase is amenable to Trans-PS since the private SPMs overcome the

high thrashing that Trans-SC experiences while merging multiple

disjoint lists. Trans-SA dominates for densities >∼11%, however it
performs poorly in comparison to outer product for highly-sparse

matrices. Although ~50% of the time is spent on compute operations

(Fig. 9), most of these are wasted on fetched data that are discarded

after failed index matches. For SpMV, performance depends on the

input matrix size, dimensions, as well as the vector density. No-

tably, Trans-SA benefits through the spatial dataflow for SpMV but

not for SpMM, because the SpMV implementation treats the vector

as dense, and thus can stream-in the vector elements efficiently

into the GPE arrays. At sufficiently high vector sparsities, outer

product on Trans-SC/Trans-PS outperforms Trans-SA by avoiding

fetches of zero-elements. For higher densities, they suffer from the

overhead of performing mergesort that involves frequent GPE-LCP

synchronization, and serialization at LCP 0.
Takeaways. Demand-driven dataflow with shared caching outper-

forms other configurations for GeMM, GeMV and Conv due to suffi-

cient data sharing and reuse. Streaming kernels such as FFT and

SpMV (with dense vectors) are amenable to spatial dataflow. SpMM
and high-sparsity SpMV show amenability to private scratchpad or

shared cache depending on the input size and sparsity, with the

systolic mode outperforming only for very high densities.
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Figure 10: Effect of scaling tiles and GPEs per tile on performance
and memory bandwidth for GeMM (Trans-SC), GeMV (Trans-SC)
and SpMM (Trans-PS). Inputs are: 1k (GeMM), 8k (GeMV), 4096,
0.64% (SpMM).

8.2 Throughput and Bandwidth Analysis
We investigate here the impact of scaling the number of tiles (𝑁𝑇 )

and GPEs per tile (𝑁𝐺 ) for an 𝑁𝑇×𝑁𝐺 Transmuter. Fig. 10 illus-

trates the scaling of Transmuter for GeMM, GeMV and SpMM. GeMM
shows near-linear performance scaling with the GPE-count. The

bandwidth utilization, however, does not follow the same trend as it

is dependent on the data access pattern at the shared L2 R-DCache

that influences the L2 hit-rate. GeMV exhibits increased bank con-

flicts in the L1 shared cache upon scaling up 𝑁𝐺 , e.g. from 32×32 to
32×64. Thus, the performance scaling shows diminishing returns

with increasing 𝑁𝐺 , but scales well with increasing 𝑁𝑇 . SpMM per-
formance scales well until the bandwidth utilization is close to peak,

at which point bank conflicts at the HBM controllers restrict further

gains. SpMV follows the trend of GeMV, while FFT and Conv, show
near-linear scaling with increasing system size (not shown).

We also discuss some takeaways from our cache bandwidth

analysis for the best-performing Transmuter configuration. GeMM
exhibits a high L1 utilization (20.4%) but low L2 utilization (2.7%),

as most of the accesses are filtered by the L1. In contrast, SpMM and

SpMV in Trans-PS and Trans-SA modes, respectively, have higher

L2 utilizations of 68.5-90.5%. The linear algebra kernels show a

relatively balanced utilization across the banks, with the coefficient

of variation ranging from 0-10.1%. In contrast, both FFT and Conv
have a skewed utilization, due to the layout of twiddle coefficients

in the SPM banks for FFT, and the small filter size for Conv.

8.3 Design Space Exploration
We performed a design space exploration with the mapped kernels

to select R-DCache sizes for Transmuter. Sizes of 4 kB per bank

for both L1 and L2 show the best energy-efficiency for all kernels

except SpMV. SpMV in Trans-SA benefits from a larger L2 private

cache that lowers the number of evictions from fetching discrete

packed matrix rows (recall that in Trans-SA, all GPEs in a tile access

the same L2 bank). Other kernels achieve slim speedups with larger

cache capacities. The dense kernels already exhibit good hit rates



N×N Inputs

chk
Rng()

f0

f1

fN-1

…

a1,2

f0

f1

fN-1
c0 c1

…D R

1×R Coeff. Array

…
N×N Outputs
…

# of Bins (D) [= # Divergent Threads]

Reconfigure
Trans-PS ⇨ Trans-SC

Figure 11: Left: A synthetic parallel application that launches
threads to process 𝑁×𝑁 matrices. Each thread (i) reads the input
value and bins it into one of 𝐷 bins, (ii) applies 𝑅 instances of func-
tion 𝑓𝑑 unique to bin 𝑑 and writes the result. Each element of a coef-
ficent array feeds into 𝑓𝑑 . Thus the input is reused 𝑅 times and the
degree of divergence scales with 𝐷 . Right: Speedup of Transmuter
with a uniform-randommatrix (#GPEs = #GPU threads = 64). Trans-
muter reconfigures from Trans-PS to Trans-SC beyond 𝑅 = 4.

due to blocking and prefetching in Trans-SC. SpMM is bottlenecked

by cold misses due to low reuse. FFT has a 3.0× speedup with

64 kB L1/L2, compared to 4 kB L1/L2, as the number of coefficients

stored on-chip scales with L1 size. But, this is outweighed by a 6.4×
increase in power. Other parameters such as work and status queue

depths were chosen to be sufficiently large such that the GPEs are

never idled waiting on the LCP.

8.4 Performance with Varying Control
Divergence and Data Reuse

In Section 2.2, we characterized some fundamental kernels based

on their control divergence, data reuse and arithmetic intensity. We

now build an intuition around the architectural advantages of

Transmuter over a GPU for applications with notable contrast

in these characteristics. We implement a parallel microbenchmark

on Transmuter and the GPU that allows independent tuning of

the divergence and reuse. Fig. 11 (left) illustrates this application.

The reuse (𝑅) is controlled by the size of the coefficient array, while

divergence (𝐷) scales with the number of bins, since threads pro-

cessing each input element apply functions unique to a bin.

While this is a synthetic application, it is representative of real-

world algorithms that perform image compression using quantiza-

tion. We execute this microbenchmark with a batch of 1,000 32×32
images on a 4×16 Transmuter design, and compare it with the GPU

running 64 threads (2 warps, inputs in shared memory) to ensure

fairness. Fig. 11 (right) presents two key observations:

• The speedup of Transmuter roughly doubles as the number

of divergent paths double. This is because threads executing

different basic blocks get serialized in the SIMT model (as they

are in the same warp), whereas they can execute parallel in SPMD.

• Transmuter has the inherent flexibility to reconfigure based on

the input size. In this example, Trans-PS is the best-performing

until 𝑅 = 4. Beyond that, switching to Trans-SC enables better

performance – up to 7.4× over Trans-PS – as the benefit of shar-

ing the coefficient array elements across the GPEs in Trans-SC

outweighs its higher cache access latency.

Takeaways. The SPMD paradigm in Transmuter naturally lends

itself well to kernels exhibiting large control divergence, and its

ability to reconfigure dynamically allows it to perform well for very

low- and high-reuse, and by extension mixed-reuse, workloads.
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Figure 12: Throughput (left) and energy-efficiency (right) improve-
ments of Transmuter over the CPU and GPU. Data is averaged
across the inputs: 256-1k (GeMM), 2k-8k (GeMV), 512-2k (Conv), 4k-
16k (FFT), 1k-4k, 0.64% (SpMM), and 2k-4k, 2.6% (𝑟𝑀 ), 10.2%-100%
(𝑟𝑣 ) (SpMV). Geometricmean improvements for the compute-bound
and memory-bound kernels are shown separately.

8.5 Comparison with the CPU and GPU
We now compare the best-performing Transmuter configuration
with the CPU and GPU running optimized commercial libraries

(Tab. 3). The throughput and energy-efficiency gains of Transmuter
for each kernel in Sec. 5 are presented in Fig. 12. We compare

TransX1 to the CPU and TransX8 to the GPU, as discussed in Sec. 7.

Compute-Bound Kernels (GeMM, Conv, FFT). TransX1 harnesses
high data-level parallelism, and thus achieves performance improve-

ments of 1.2-2.5× over the CPU, despite clocking at 1

4
th the speed of

the deeply-pipelined CPU cores. The true benefit of Transmuter’s
simple cores and efficient crossbars appear in the form of energy-

efficiency gains, ranging from 3.6-16.3×, which is owed largely to

the high power consumption of the bulky out-of-order CPU cores.

Over the GPU, TransX8 gets performance gains of 1.3-2.6× and

efficiency improvements of 0.8-4.4× with an efficient implementa-

tion on Trans-SC for GeMM and Conv. The ∼20% energy-efficiency

loss for GeMM is explained by the amenability of GeMM to a SIMT

paradigm; although the performance is similar between SIMT and

SPMD, SPMD incurs slightly larger energy costs associated with

higher control overhead over SIMT. On FFT, Transmuter sustains
consistent performance scaling using the spatial dataflow of Trans-

SA, with each tile operating on an independent input stream, thus

leading to minimum conflicts. The gap between throughput gain

(4.0×) and energy-efficiency gain (1.3×) over the GPU is explained

by the cuFFT algorithm that is more efficient for batched FFTs.

Memory-Bound Kernels (GeMV, SpMM, SpMV). TransX1 on GeMV
achieves 2.4× better throughput over the CPU, with the CPU be-

coming severely DRAM-bound (>98% bandwidth utilization) for

input dimensions beyond 1,024. The 14.2× energy-efficiency gain

of TransX1 stems from tuning down the number of active GPEs to

curtail bandwidth-starvation, thus saving power.

On SpMM and SpMV, the performance of Transmuter is highly

sensitive to the densities and sizes of the inputs, with improve-

ments ranging from 4.4-110.8× over the CPU and 5.9-37.7× over

the GPU. With SpMM, execution in Trans-PS enables overcomes

the CPU’s limitation of an inflexible cache hierarchy, as well as

harnesses high MLP across the sea of GPEs. While Transmuter is
memory-bottlenecked for SpMM, SpMV is bounded by the schedul-

ing granularity of packing algorithm deployed on Trans-SA. De-

spite that, for SpMV, TransX1 outperforms both the CPU as well

as the GPU that has 7.2× greater available bandwidth. In case of

the GPU, while there are sufficient threads to saturate the SMs, the

thread divergence in the SIMT model is the bottleneck. The GPU



Table 4: Estimated speedups for the end-to-end workloads in Fig. 2.
Speedup DANMF LSTM Marian MaxCut MFCC

TransX1 vs. CPU 4.1× 1.1× 2.2× 6.2× 1.7×
TransX8 vs. GPU 3.5× 3.8× 2.1× 7.2× 1.6×

NBSGD RolePred SemSeg Sinkhorn VidSeg
TransX1 vs. CPU 3.5× 2.7× 2.4× 3.1× 2.2×
TransX8 vs. GPU 2.8× 2.3× 2.5× 3.0× 2.8×

achieves just 0.6% and 0.002% of its peak performance, respectively

for SpMM and SpMV, impaired by memory and synchronization stalls.

In comparison, SPMD on Transmuter reduces synchronization, re-

sulting in 21-42% time spent on useful computation (Fig. 9). For

SpMM, the outer product implementation demonstrates ASIC-level

performance gains of 5.9-11.6× [87] over the GPU, by minimizing

off-chip traffic and exploiting the asynchronicity between GPEs. As

with GeMV, disabling bandwidth-starved resources contributes to

the energy-efficiency gains.

Effect of Iso-CPUBandwidth. TransX1 uses one HBM stack that

provides 125 GB/s peak bandwidth, about 3.6× greater than the

DDR3 bandwidth to the CPU. If given the bandwidth of the DDR3

memory, TransX1 still achieves performance gains averaging 17.4×
and 6.3× for SpMM and SpMV, respectively. For GeMV, TransX1 re-

mains within a modest 6-8% of the CPU with this low bandwidth.

8.6 End-to-End Workload Analysis
We report the estimated speedups of Transmuter over the CPU

and GPU for the end-to-end workloads (Fig. 2) in Tab. 4. File I/O and

cross-platform (e.g. CPU→GPU) data transfer times are excluded

for all platforms. Overall, Transmuter achieves speedups averaging
3.1× over the CPU and 3.2× over the GPU.

Next, we elucidate how rapid reconfiguration enables efficient ex-

ecution of workloads that involve mixed sparse-dense computation

in an inner loop. We make a case study on a representative mixed-

data application, namely Sinkhorn, that performs iterative com-

putation to determine the similarity between documents [63, 97].

Sinkhorn computation typically involves large, sparse matrices

in conjunction with dense matrices. We implement the algorithm

described in [18]; see Appendix B. The inner loop has twomajor ker-

nels: a GeMM operation masked by a sparse weight matrix (M-GeMM),
and a dense matrix - sparse matrix multiplication (DMSpM).

The mapping on Transmuter is shown in Fig. 13. M-GeMM uses a

variation of blocked-GeMM, wherein only rows/columns of the dense

matrices that generate an element with indices corresponding to

non-zeros in the weight matrix are fetched and multiplied. DMSpM
uses a simplified outer product algorithm similar to SpMM (Sec. 5.3)

that splits the kernel into DMSpM-Multiply and DMSpM-Merge.

We show the analysis of Sinkhorn on different Transmuter sizes
in Fig. 14. As observed, M-GeMM and DMSpM-Multiply exhibit the best

performance in Trans-SC configuration, due to good data reuse

across GPEs. In contrast, DMSpM-Merge has optimal performance

on Trans-PS, exhibiting a 84.9-98.3% speedup (not shown in figure)

over Trans-SC. Therefore, the optimal Sinkhorn mapping involves

two reconfigurations per iteration: Trans-SC→ Trans-PS before the

start of DMSpM-Merge, and Trans-PS→ Trans-SC at the end of it,

for the next M-GeMM iteration. Recall from Sec. 4.7 that the reconfig-

uration time is ~10 cycles, and hence does not perceptibly impact

the performance or energy. Cache flushing (net 0.2% of the total

execution time) is required for M-GeMM but not DMSpM, as DMSpM uses

(2) DMSpM-Multiply (Trans-SC)

(3) DMSpM-Merge (Trans-PS)

(1) Masked-GeMM (M-GeMM) (2)+(3) Dense×Sparse MM (DMSpM)
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Figure 13: Mapping of a multi-kernel, mixed data application,
Sinkhorn, on Transmuter. Computation iterates between M-GeMM
andDMSpM, with Trans-SC↔ Trans-PS reconfiguration before and
afterDMSpM-Merge. DMSpM-Merge benefits from the private SPMs
in Trans-PS, since each GPE works on multiple disjoint lists.
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Figure 14: Per inner-loop iteration energy (left) and EDP (right) com-
paring Trans-SC, Trans-PS and Reconf. (Trans-SC↔ Trans-PS) for
Sinkhorn normalized to CPU. Input matrix dimensions and densi-
ties are — query: (8k×1), 1%, data: (8k×1k), 1%,M: (8k×8k), 99%.

a streaming algorithm. Overall, dynamic reconfiguration results

in 47.2% and 96.1% better performance and energy-delay product

(EDP), respectively, over Trans-SC-only for the 4×16 Transmuter.
A heterogeneous solution is also compared against, where M-GeMM
is done on the CPU and DMSpM on the GPU, but this implementation

is bottlenecked by CPU→ GPU data transfers. As derived from

Figure 14, the 4×16 Transmuter achieves 38.8× and 144.4× lower
EDP than the GPU and heterogeneous solutions, respectively.

8.7 Comparison with Other Platforms
Tab. 5 shows the estimated energy-efficiency improvements of

Transmuter over recent FPGA, CGRA and ASIC implementations.

The efficiencies reported in prior work are scaled quadratically for

iso-technology comparisonswith Transmuter. Overall, Transmuter
achieves average efficiency gains of 3.4× and 2.0× over FPGAs and

CGRAs, respectively, and is within 9.3× (maximum 32.1×) of state-
of-the-art ASICs for the evaluated kernels.

8.8 Power and Area
Tab. 6 details the power consumption and area footprint of a 64×64
Transmuter cluster in 14 nm. Most of power is consumed by the

network and memory, i.e. L1 R-XBars, R-DCaches and ICaches,

while the cores only consume 20.8%. This is consistent with a grow-

ing awareness that the cost of computing has become cheaper than

the cost to move data, even on-chip [42]. GPEs and L1 R-XBars, the

most frequently switched modules, consume 84.2% of the total dy-

namic power. The estimated power for a single Transmuter cluster
is 13.3 W in 14 nm with an area footprint within 1.7% of the CPU’s

area. The estimated worst-case reconfiguration overhead is 74.9 nJ.



Table 5: Energy-efficiency improvements (black) and deteriorations
(red) of Transmuter over prior FPGAs, CGRAs and ASICs.
Platform GeMM GeMV Conv FFT SpMM SpMV

FPGA 2.7× [34] 8.1× [64]
3

2.7× [119] 2.2× [34] 3.6× [35] 3.0× [23]

CGRA 2.2× [95] 3.0× [19] 1.2× [19] 1.0× [52]
4

1.9× [19] 2.9× [19]

ASIC (32.1×) [91] (10.5×) [98] (13.8×) [109] (18.1×) [92] (3.0×) [88]
(3.9×) [87]

(7.6×) [98] (17.0×) [26] (4.1×) [120]
3
Performance/bandwidth used as power is N/A.

4
Estimated for floating-point based on [108].

Table 6: Power and area of a 64×64 Transmuter cluster in 14 nm.

Module Power (mW) Area
Static Dynamic Total (mm2)

GPE Cores 361.3 2380.5 2741.7 28.9

LCP Cores 5.6 22.5 28.1 0.4

Sync. SPM 0.6 0.1 0.6 0.1

All ICaches 2566.6 373.6 2940.1 25.7

LCP DCaches 39.5 0.9 40.4 0.5

L1 R-DCaches 2527.1 204.0 2731.0 30.7

L2 R-DCaches 37.4 18.3 55.7 0.5

L1 R-XBars 1757.8 2149.3 3907.1 30.3

L2 R-XBars 36.9 14.8 51.7 0.8

MUXes/Arbiters 581.9 87.6 669.5 0.7

Memory Ctrls. 47.5 129.0 176.4 5.5

Total 8.0 W 5.4 W 13.3 W 124.1 mm2

9 RELATEDWORK
A plethora of prior work has gone into building programmable

and reconfigurable systems in attempts to bridge the flexibility-

efficiency gap. A qualitative comparison of our work over related

designs is shown in Tab. 7. Transmuter differentiates by supporting
two different dataflows, reconfiguring faster at a coarser granularity,

and supporting a COTS ISA/compiler.

Reconfigurability. A few prior work reconfigure at the sub-core

level [19, 44, 55, 76, 95] and the network-level [37, 56, 83, 107]. In

contrast, Transmuter uses native in-order cores and the reconfig-

urablity lies in the memory and interconnect. Some recent work

propose reconfiguration at a coarser granularity [4, 19, 70, 95].

PipeRench [36] builds an efficient reconfigurable fabric and uses a

custom compiler to map a large logic configuration on a small piece

of hardware. HRL [33] is an architecture for near-data processing,

which combines coarse- and fine-grained reconfigurable blocks

into a compute fabric. The Raw microprocessor [107] implements

a tiled architecture focusing on developing an efficient, distributed

interconnect. Stream Dataflow [83] and SPU [19] reconfigure at

runtime, albeit with non-trivial overheads to initialize the Data-

Flow Graph (DFG) configuration. Transmuter, on the other hand,

relies on flexible memories and interconnect that enable fast on-the-

fly reconfiguration, thus catering to the nature of the application.

Flexibility. Prior work has also delved into efficient execution

across a wide range of applications. Plasticine [95] is a reconfig-

urable accelerator for parallel patterns, consisting of a network of

Pattern Compute/Memory Units (custom SIMD FUs/single-level

SPM) that can be reconfigured at compile-time. StreamDataflow [83]

is a new computing model that efficiently executes algorithms ex-

pressible as DFGs, with inputs/outputs specified as streams. The de-

sign comprises a control core with stream scheduler and engines, in-

terfaced around a custom, pipelined FU-based CGRA. SPU [19] tar-

gets data-dependence using a stream dataflow model on a reconfig-

urable fabric composed of decomposable switches and PEs that split

networks into finer sub-networks. The flexibility of Transmuter
stems from the use of general-purpose cores and the reconfigurable

Table 7: Qualitative comparisonwith prior work [19, 39, 83, 95, 107].
Architec-

ture
PE Compute
Paradigm Dataflow Compiler

Support
Reconfig.

Granularity
On-chip
Memory

Plasticine SIMD Spatial DSL

Pipeline-level,

compile-time
SPM

Stream

Dataflow
SIMD Stream ISA extn.

Network-level,

run-time
SPM+FIFO

SPU SIMD Stream ISA extn.

Network-/

Sub-PE-level,

run-time

Compute-

enabled

SPM+FIFO

Ambric

MIMD/

SPMD

Demand-

driven
Custom

Network-level,

run-time
SPM+FIFO

RAW

MIMD/

SPMD

Demand-

driven

Modified

COTS

Network-level,

run-time
Cache

Transmuter
[this work]

MIMD/
SPMD

Demand-
driven/
Spatial

COTS

Network-/
On-chip-

memory-level,
run-time

Reconfig.
Cache/SPM/
SPM+FIFO

memory subsystem that morphs the dataflow and on-chip memory,

thus catering to both inter- and intra-workload diversity.

Programmability. There have been proposals for programmable

CGRAs that abstract the low-level hardware. Some work develop

custom programming models, such as Rigel [53] and MaPU [112].

Others extend an existing ISA to support their architecture, such as

Stitch [105] and LACore [102]. Plasticine [95] uses a custom DSL

called Spatial [57]. Ambric [39] is a commercial system composed of

asynchronous cores with a software stack that automatically maps

Java code onto the processor-array. Transmuter distinguishes itself
by using a standard ISA supported by a simple library of high-level

language intrinsics and a COTS compiler, thus alleviating the need

for ISA extensions or a DSL.

10 CONCLUSION
This work tackled the important challenge of bridging the flexibility-

efficiency gap with Transmuter. Transmuter consists of simple

processors connected to a network of reconfigurable caches and

crossbars. This fabric supports fast reconfiguration of the memory

type, resource sharing and dataflow, thus tailoring Transmuter to

the nature of the workload. We also presented a software stack com-

prised of drop-in replacements for standard Python libraries. We

demonstrated Transmuter’s performance and efficiency on a suite

of fundamental kernels, as well as mixed data-based multi-kernel

applications. Our evaluation showed average energy-efficiency im-

provements of 46.8× (9.8×) over the CPU (GPU) for memory-bound

kernels and 7.2× (1.6×) for compute-bound kernels. In compar-

ison to state-of-the-art ASICs that implement the same kernels,

Transmuter achieves average energy-efficiencies within 9.3×.
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A LOW-LEVEL PROGRAMMING INTERFACE
Table 8: Critical host- and Transmuter-side C++ intrinsics used to
write optimized kernel libraries (TID = Tile ID, GID = GPE ID). Note
that the API is depicted for a single-cluster design, for simplicity.

Host-side Intrinsic Signature Description

H_INIT() Initialize host-Transmuter interface

H_LAUNCH() Trigger Transmuter to start executing the kernel

H_FINISH() Wait (block) until Transmuter finishes executing

H_SEND_DATA(&dst,&src,size) Mem-copy from external DRAM to HBM

H_RETR_DATA(&dst,&src,size) Mem-copy from HBM to external DRAM

H_SET_†_ARG(argID,&arg,TID,[GID]) Copy an argument to an LCP or GPE

H_COMPILE_BIN(path_to_bin,flags) Dynamically compile GPE/LCP code

H_LD_BIN_†(&bin,TID,[GID]) Stream compiled GPE/LCP binary into the HBM

H_SYNC_ALL() Synchronize with all LCPs and GPEs

H_RECONF(en_flag,TID,[GID]) Dynamically enable/disable GPE/LCP

H_RECONF<level>(config) Trigger R-DCache/XBar reconfiguration

H_CLEANUP() Teardown host interface and deallocate structures

Transmuter-side Intrinsic Signature Description

T_LD_WORD(addr) Read a word from SPM; addr determines the bank

T_ST_WORD(addr,val) Write a word into SPM; addr determines the bank

T_SA_POP(direction) Pop data from systolic neighbor GPE

T_SA_PUSH(direction,val) Push data to systolic neighbor GPE

T_+Q_PUSH(val,[GID]) Push data to work/status queue

T_+Q_POP([GID]) Pop data from work/status queue

T_FREE_WORKQ_PUSH(val) Push to the work queue of a free GPE

T_WORKQ_PUSH_BCAST(val) Broadcast to all work queues in the tile

T_FLUSH<level>(bank) Flush dirty data from to the next level

T_SPM_BOT<level,config>() Get a pointer to bottom of R-DCache/Sync. SPM

T_SPM_TOP<level,config>() Get a pointer to top of R-DCache/Sync. SPM

T_SYNC_LCPS() Synchronize with all LCPs in Transmuter
T_SYNC_TILE() Synchronize with all GPEs and LCP in the tile

T_SYNC_ALL() Synchronize with all LCPs, GPEs and host

T_SLEEP() Put self into sleep to conserve power

T_RECONF<level>(self_flag,config) Self-reconfigure R-DCache/XBar / wait for host

†: LCP/GPE +: WORK/STATUS

B SINKHORN ALGORITHM
Algorithm B.1 Sinkhorn Distance (Matlab syntax)

function Sinkhorn(query, data, M, 𝛾 , 𝜖)

⊲ M: distance matrix, 𝛾 : regularization parameter, 𝜖 : tolerance

𝑜 = size(𝑀, 2) ;
𝐻 = ones(length(𝑞𝑢𝑒𝑟𝑦), 𝑜)/length(𝑞𝑢𝑒𝑟𝑦) ;
𝐾 = exp(−𝑀/𝛾 ) ; 𝐾̃ = diag(1./𝑞𝑢𝑒𝑟𝑦)𝐾 ;
𝑒𝑟𝑟 = ∞; 𝑈 = 1./𝐻 ;

while 𝑒𝑟𝑟 > 𝜖 do
𝑉 = 𝑑𝑎𝑡𝑎./(𝐾 ′𝑈 ) ; ⊲ Masked-GeMM

𝑈 = 1./(𝐾̃𝑉 ) ; ⊲ DMSpM

𝑒𝑟𝑟 = sum( (𝑈 −𝑈𝑝𝑟𝑒𝑣 )2)/sum( (𝑈 )2) ;
end while
𝐷 = 𝑈 . ∗ ( (𝐾. ∗𝑀)𝑉 ) ;

return sum(𝐷) ⊲ Sinkhorn Distance between query and data
end function

C SELECTED KERNEL IMPLEMENTATIONS
Algorithm C.1 GeMV on Transmuter in Trans-SC configuration

function GeMV_LCP(𝑠𝑡𝑎𝑟𝑡 , 𝑒𝑛𝑑 , 𝑁𝐺 )

⊲ 𝑠𝑡𝑎𝑟𝑡 : start row index, 𝑒𝑛𝑑 : end row index, 𝑁𝐺 : num. GPEs per tile

𝑔𝑖𝑑 = 0;

for 𝑟𝑜𝑤 ← 𝑠𝑡𝑎𝑟𝑡 to 𝑒𝑛𝑑 do
T_WORKQ_PUSH(𝑔𝑖𝑑, 𝑟𝑜𝑤) ;
𝑔𝑖𝑑 = (𝑔𝑖𝑑 == 𝑁𝐺 − 1) ? 0 : (𝑔𝑖𝑑 + 1) ;

end for
T_WORKQ_PUSH_BCAST(−1) ;

end function
function GeMV _GPE(𝐴, 𝐵,𝐶 , 𝑁 , 𝛼 , 𝛽) ⊲𝐶 = 𝛼 ·𝐴 ∗ 𝐵 + 𝛽 ·𝐶 , 𝑁 : matrix dim.

while (𝑟𝑜𝑤 = T_WORKQ_POP()) ! = −1 do
𝑝𝑠𝑢𝑚 = 0;

for 𝑐𝑜𝑙 ← 0 to 𝑁 − 1 do
𝑝𝑠𝑢𝑚 + = 𝐴 [𝑟𝑜𝑤 ] [𝑐𝑜𝑙 ] ∗ 𝐵 [𝑐𝑜𝑙 ];

end for
𝐶 [𝑟𝑜𝑤 ] = 𝛽 ∗𝐶 [𝑟𝑜𝑤 ] + 𝛼 ∗ 𝑝𝑠𝑢𝑚;

end while
end function

Algorithm C.2 SpMV on Transmuter in Trans-SA configuration

function SpMV_LCP( )

T_WORKQ_PUSH_BCAST(1) ;
end function
function SpMV_GPE(𝐴𝑟𝑜𝑤𝐼𝐷 ,𝐴𝑐𝑜𝑙𝐼𝐷 ,𝐴𝑣𝑎𝑙 ,𝐴𝑝𝑎𝑟𝑡 , 𝐵, 𝐵𝑝𝑎𝑟𝑡 ,𝐶 , 𝑁 , 𝑃 )

⊲𝐶 = 𝐴 ∗ 𝐵, 𝑁 : matrix/vector dim., 𝑁𝐺 : num. GPEs per tile, 𝑁𝑇 : num. tiles

T_WORKQ_POP() ;
𝑝𝑎𝑟𝑡𝑠𝑝𝑒𝑟_𝑡𝑖𝑙𝑒 = ceil(𝑁 /𝑁𝑇 ); ⊲ partitions per tile

𝑖 = 𝐴𝑝𝑎𝑟𝑡 [𝑔𝑖𝑑 ∗ 𝑁𝑇 ∗ 𝑁𝐺 + 𝑡𝑖𝑑 ]
for 𝑝𝑎𝑟𝑡 ← 𝑡𝑖𝑑 ∗ 𝑝𝑎𝑟𝑡𝑠𝑝𝑒𝑟_𝑡𝑖𝑙𝑒 to (𝑡𝑖𝑑 + 1) ∗ 𝑝𝑎𝑟𝑡𝑠𝑝𝑒𝑟_𝑡𝑖𝑙𝑒 do

𝑏𝑠𝑡𝑎𝑟𝑡 = 𝐵𝑝𝑎𝑟𝑡 [𝑝𝑎𝑟𝑡 ] [𝑔𝑖𝑑 ]; ⊲ 𝑡𝑖𝑑 : tile ID, 𝑔𝑖𝑑 : GPE ID

𝑏𝑒𝑛𝑑 = 𝐵𝑝𝑎𝑟𝑡 [𝑝𝑎𝑟𝑡 ] [𝑔𝑖𝑑 + 1];
𝑠𝑝 = 𝑠𝑝𝑠𝑡𝑎𝑟𝑡 = T_SPM_BOT<Lev::L1, Conf::systolic_array_1d>();
for 𝑗 ← 𝑏𝑠𝑡𝑎𝑟𝑡 to 𝑏𝑒𝑛𝑑 do

T_ST_WORD(𝑠𝑝++, 𝐵 [ 𝑗 ]) ;
end for
𝑠𝑝𝑠𝑢𝑚 = 𝑠𝑝 ;

for 𝑟𝑜𝑤 ← 𝑝𝑎𝑟𝑡 ∗ 𝑃 to (𝑝𝑎𝑟𝑡 + 1) ∗ 𝑃 do ⊲ 𝑃 : row partition per tile

𝑝𝑠𝑢𝑚 = 0;

while𝐴𝑟𝑜𝑤𝐼𝐷 [𝑖 ] == 𝑟𝑜𝑤 do
𝑏 = T_LD_WORD(𝑠𝑝𝑠𝑡𝑎𝑟𝑡 +𝐴𝑐𝑜𝑙𝐼𝐷 [𝑖 ]) ;
𝑝𝑠𝑢𝑚 + = 𝐴𝑣𝑎𝑙 [𝑖++] ∗ 𝑏;

end while
T_ST_WORD(𝑠𝑝++, 𝑝𝑠𝑢𝑚) ;

end for
for 𝑟𝑜𝑤 ← 0 to 𝑃 do

𝑝𝑜𝑝𝑝𝑒𝑑 = (𝑔𝑖𝑑 ! = 0) ? T_SA_POP(Dir::West) : 0;
𝑠𝑢𝑚 = 𝑝𝑜𝑝𝑝𝑒𝑑 + T_LD_WORD(𝑠𝑝𝑠𝑢𝑚 + 𝑟𝑜𝑤) ;
if 𝑔𝑖𝑑 == 𝑁𝐺 − 1 then

𝐶 [𝑝𝑎𝑟𝑡 ∗ 𝑃 + 𝑟𝑜𝑤 ] = 𝑠𝑢𝑚;

else
T_SA_PUSH(Dir::East, 𝑠𝑢𝑚) ;

end if
end for

end for
end function

Algorithm C.3 FFT on Transmuter in Trans-SA configuration

function FFT_LCP(𝑖𝑛𝑝𝑢𝑡 , 𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑁 , 𝑖𝑠_𝑖𝑛𝑝𝑢𝑡 , 𝑖𝑠_𝑜𝑢𝑡𝑝𝑢𝑡 )

⊲ 𝑁 : FFT size, log
2
(𝑁 ) : num. FFT stages

if 𝑖𝑠_𝑖𝑛𝑝𝑢𝑡 then
for 𝑖 ← 0 to 𝑁 − 1 do

T_WORKQ_PUSH(0, 𝑖𝑛𝑝𝑢𝑡 [𝑖 ]) ;
end for

end if
if 𝑖𝑠_𝑜𝑢𝑡𝑝𝑢𝑡 then

for 𝑖 ← 0 to 𝑁 − 1 do
𝑜𝑢𝑡𝑝𝑢𝑡 [𝑖 ] = T_STATUSQ_POP(log

2
(𝑁 ) − 1) ;

end for
end if

end function
function FFT_GPE(𝑖𝑛𝑝𝑢𝑡 , 𝑜𝑢𝑡𝑝𝑢𝑡 , 𝑁𝐺 , 𝑁 , 𝑆 , 𝑃 )

⊲ 𝑁𝐺 : num. GPEs per tile, 𝑆 : step size, 𝑃 : next step size

𝑖𝑑 = 𝑔𝑖𝑑 + 𝑡𝑖𝑑 ∗ 𝑁𝐺 ;

𝑠𝑝 = T_SPM_BOT<Lev::L1, Conf::systolic_array_1d>() ;
for 𝑖 ← 0 to 𝑁 /2 do

𝑖𝑛1 = (𝑖𝑑 == 0) ? T_WORKQ_POP() : T_SA_POP(Dir::West) ;
𝑖𝑛2 = (𝑖𝑑 == 0) ? T_WORKQ_POP() : T_SA_POP(Dir::West) ;
𝑜𝑢𝑡1, 𝑜𝑢𝑡2 = compute_butterfly(𝑖𝑛1, 𝑖𝑛2) ;
if 𝑖𝑑 == log

2
(𝑁 ) − 1 then

T_STATUSQ_PUSH(𝑜𝑢𝑡1) ; T_STATUSQ_PUSH(𝑜𝑢𝑡2) ;
else

T_ST_WORD(𝑠𝑝 + 𝑖, 𝑜𝑢𝑡1) ; T_ST_WORD(𝑠𝑝 + 𝑖 + 𝑆, 𝑜𝑢𝑡2) ;
if 𝑖 > 𝑃 − 1 then

T_SA_PUSH(Dir::East, T_LD_WORD(𝑠𝑝 + 𝑖 − 𝑃 )) ;
T_SA_PUSH(Dir::East, 𝑜𝑢𝑡1) ;

end if
end if

end for
for 𝑖 ← 0 to 𝑃 do

T_SA_PUSH(Dir::East, T_LD_WORD(𝑠𝑝 + 𝑆 + 𝑖)) ;
T_SA_PUSH(Dir::East, T_LD_WORD(𝑠𝑝 + 𝑆 + 𝑃 + 𝑖)) ;

end for
end function


