
False-Noise Analysis using Resolution Method

AlexeyGlebov, Sergey Gavrilov, David Blaauw*, Vladimir Zolotov**, Rajendran Panda**,
Chanhee Oh**

MicroStyle - Moscow, Russia, *University of Michigan, Ann Arbor, MI, **Motorola Inc. Austin, TX,

Abstract

High-performance digital circuits are facing increasingly severe
noise problems due to cross-coupled noise injection. Traditionally,
noise analysis tools use the conservative assumption that all neigh-
bors of a net can switch simultaneously, thereby producing the
worst-case noise on a net. However, due to the logic correlations in
the circuit, this worst-case noise may not be realizable, resulting in
a so-called false noise failure. Since the problem has been shown
to be NP-hard in general [2], exact solutions to this problem are
not possible. In this paper, we therefore propose a new heuristic to
eliminate false noise failures based on the resolution method [16].
It is shown that multi-variable logic relations can be computed
directly from a transistor level description. Based on these gener-
ated logic relations, a characteristic ROBDD for a signal net and its
neighboring nets is constructed. This ROBDD is then used to
determine the set of neighboring nets that result in the maximum
realizable noise on the net. The proposed approach was imple-
mented and tested on industrial circuits. The results demonstrate
the effectiveness of the approach to eliminate false noise failures.

1 Introduction

As process technology has advanced to deep submicron dimen-
sions, noise in digital circuits has become a major concern. Noise
can occur in a circuit through a number of different mechanisms -
the most prominent of which is cross-coupling capacitance. Cross-
coupling noise has become particularly critical as wire aspect
ratios have increased, leading to tall and narrow wires that are
closely spaced together. In noise analysis, the net on which noise is
injected is referred to as thevictim net, while the neighboring net
that injects the noise is referred to as theaggressornet. Injected
noise can be classified into two categories. If the victim net is not
switching at the time of the noise injection, a noise pulse will result
on the victim net which can propagate to a latch and change the
state of the circuit. This noise type is referred to as afunctional
noise. On the other hand, if the victim net transitions at the time of
noise injection, the delay of the victim transition is altered. This
type of noise is referred to asdelay noise.

Noise analysis tools typically make the assumption that all
aggressor nets switch at the same time and in the same direction
[1], [11]. Under this assumption, the noise injected from each
aggressor combines, creating the maximum possible composite
noise pulse on the victim net and yielding a conservative analysis.
In practice, however, the timing and logic constraints present in the
circuit may prevent all aggressors from switching in the same
direction at the worst possible alignment time. Therefore, the noise
reported by an analysis that does not account for timing and logic
correlations can severely overestimate the actual noise realizable

on a victim net and can create a so-calledfalse noise violation.
This is especially important when the number of aggressors for a
victim is high (e.g. 10 or more), as is often the case.

Industrial noise analysis approaches have exploited timing cor-
relations in circuits to reduce the pessimism of noise analysis by
identifying situations where aggressor nets cannot switch at the
same time (Figure 1(a)). To determine when a net can switch, the
so-calledswitching windowsare propagated in the circuit using
static timing analysis [1], [2], [11]. After switching windows are
identified for each aggressor, the possibility of overlap between
timing windows for a set of aggressors is determined. However,
this approach does not identify situations where a pair of aggressor
nets, that can each switch individually at a particular time point,
cannotbothswitch at that time due to logic relationships in the cir-
cuit. A simple example of such a situation is shown in Figure 1(b).
Also the timing window based approach does not identify cases
where nets cannot switch in the same direction, for instance when
they are connected by an inverter as shown in Figure 1(a). There-
fore, timing correlations will not remove all false noise failures,
although it has been shown in practice to be relatively effective [1].

In order to identify all false noise failures, both timing and logic
correlations of the circuit must be taken into account. In [2], it was
shown that in general, this problem can be represented as a search
for a worst-case 2-vector test using a Boolean Constraint Optimi-
zation formulation. In [3], a method based on compatible observ-
ability don’t care sets was proposed. In [12], a method is proposed
using a test pattern generation approach. However, all these meth-
ods have high computational complexity and cannot be applied to

Figure 1. Logic relationships between aggressors

Aggressor 1 Aggressor 3

Aggressor 1

Aggressor 2

a) timing correlations between aggressors

b) logic correlations between aggressors

Aggressor 2

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

large problem sizes. Since noise primarily occurs in chip-level
routes, it is critical to perform false noise analysis at this level in
large designs, and hence heuristic methods must be employed.

In [13], an approach for false noise analysis was developed,
based on so-called simple logic implications (SLI) [4]. An SLI
expresses a logic relationship between two signals. Logic implica-
tions have been widely used in logic synthesis [5-8] as well as in
peak current estimation [9]. In [13], pairwise SLIs are generated
from ROBDD representations of the DC-connected components
(DCCC) in the circuit. The generated pairwise implications are
propagated in the circuit through forward and backward topologi-
cal traversals. After computing SLIs, a constrained graph represen-
tation of the switching aggressors is build. It is then shown that the
aggressor subset resulting in the maximal noise can be obtained by
solving the maximum weighted independent set problem for the
constraint graph.

The main limitation of an SLI based approach is that only pair-
wise implications are considered. In a circuit, many relations
involving three or more circuit nodes exist, which can not be cap-
tured by SLIs. In this paper, we therefore present a new approach
for false noise analysis that considers logic constraints between
multiple nodes. Our approach is based on the well known resolu-
tion method [16] which has been widely used in mechanical theo-
rem proving. In contrast to the implication based approach, the
proposed method does not require extraction of logic descriptions
for transistor level circuits, but can operate directly on transistor
level circuits. This is particularly useful for circuits with large and
complex DCCCs that are difficult or impossible to represent with
their logic functions.

The proposed method use a zero-delay assumption which is
valid only during the stationary state of the circuit before and after
all transitions occur. Hence, this formulation for false noise analy-
sis is conservative only for glitch-free circuits, obtained, for
instance, through special transistor sizing methods [10]. The pro-
posed approach was implemented and results are presented for a
number of industrial test cases. It is shown that the total number of
noise failures is reduced by up to 47%, demonstrating the effec-
tiveness of the approach.

The remainder of this paper is organized as follows: Section 2
explains logic constraints and their application to false noise analy-
sis. Section 3 explains the resolution method in connection with
boolean relations. Sections 4 describes the logic constraints gener-
ation algorithm. Section 5 presents false noise analysis approach
using logic constraints. Section 6 presents results, and Section 7
presents our concluding remarks.

2 Logic constraints and false noise analysis

Any circuit has many logic correlations between its signals. For
noise analysis these correlations can be considered as logic con-
straints prohibiting circuit nets to have some combinations of sig-
nals. For false noise analysis it is especially important to find that a
group of aggressor nets are prohibited from having simultaneous
rising or falling transition if the victim net is at the given voltage
level. Aggressor nets(a1,a2,...,an) can not switch simultaneously in
the same direction if one of the two signal combinations
(a1=1,a2=1,...,an=1) or (a1=0,a2=0,..,an=0) is prohibited at the
condition that the victim net is at the given state.

2.1 Representation of logic correlations

Logic correlations between circuit signals (s1,s2,..., sn) can be
represented with a system of logic equations:

(EQ 1)

wherefi are arbitrary functions andci are0 or 1.
There are two functions convenient for expressing logic con-

straints: disjunction and conjunction. In the first case each con-
straint isa1+a2+...+an=1 and in the second casea1*a2*...*an=0
where eachai is eithersi or si. The first form is more common for
resolution method used for theorem proving [16].For noise analysis
the second form is more convenient. Each equation in the second
form prohibits the signal combination where signals without nega-
tion are equal to1 and signals with negation are equal to0. The sys-
tem of constraint equations can be rewritten as a single equation:

(EQ 2)

Here each termfi corresponds to one equation in (EQ1) and has
the following form:

(EQ 3)

where each meanssj if or sj if . For simple
gates the logic constraints equation written in this way coincides
with its characteristic equation in disjunctive form. For example
logic constraints for 2-input AND gate with logic functionx=a*b
can be written asx*a*b+x* a+x*b=0 that is exactly its characteris-
tic function. Here termx*a*b prohibits the combination(x=0,
a=1, b=1). Instead of writing a full equation in disjunctive form

we will simply specify the set of its terms. In Figure 2 we show an
example of a simple circuit and some of its logic constraints. The
constraints listed in the figure are relevant for analyzing the Low-
Rise noise, meaning noise due to aggressor rising while the victim
is low.

Comparing SLI used in [13] with our new approach we see that
SLI is a 2-variable conjunctive term. For example the SLI(a=1)-
>(b=0) corresponds to the terma*b and SLI(x=1)->(y=1) to the
term x*y. So the notation proposed here covers SLIs and general-
izes them from bi-signal constraints to multi-signal constraints.

2.2 False noise analysis algorithm

The false noise analysis algorithm based on logic constraints is

f 1 s1 s2 … sn, , ,() c1
f 2 s1 s2 … sn, , ,() c2=
…
f m s1 s2 … sn, , ,() cm=

=

f i
i 1=

m

∑ 0=

s
α1

i1 s
α2

i2 … s
αk

ik⋅ ⋅ ⋅

s
α

j α 0= α 1=

a1

a3

a4

a5

v

Figure 2. Example of circuit with logic constraints

LowRa2

Logic constraint useful for analyzingLowR noise at netv
v*a4, v*a5,
a1*a4, a2*a4, a2*a5, a3*a5
a1*a2*a4, a2*a3*a5

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

depicted in Figure 3. The input of the algorithm is a transistor level
circuit and its critical noise clusters are specified by:

1. a single victim nodev
2. a set of aggressor nodes that inject noisewi

3. a noise type

The first four noise types correspond to functional noise where
the victim net is either at a stable low state (LowRandLowF) or a
stable high state (HighRandHighF), while the aggressor nets are
rising (LowRandHighR) or falling (LowFandHighF). The second
four noise types correspond to delay noise where the victim net is
either rising (RiseRandRiseF) or falling (FallR andFallF) while
the aggressor nets are rising (RiseRand FallR) or falling (RiseF
andFallF).

The total noise is simply a sum of the contributionswi of all
aggressors. The goal of the algorithm is to derive logic correlations
between the victim and aggressor nets and using them to find the
subset of the aggressors providing the maximal sum of injected
noise subject to the logic constraints. This problem is referred to as
the maximum realizable noiseproblem and the set of aggressors
responsible for the maximal realizable noise as themaximal realiz-
able aggressor set.

Our false noise analysis algorithm has two stages: generating
logic constraints for the circuit and analyzing each noise cluster.
The logic constraints are generated by the resolution method from
transistor level circuit representation and does not require prelimi-
nary logic function extraction. For noise analysis logic constraints
of each noise cluster are represented in the form of ROBDD to
simplify the search for maximum weighted set of aggressors satis-
fied to the logic constraints.

3 Resolution method

The resolution method was originally proposed for mechanical
theorem proving[16]. The resolution method (RM) is a method of
deriving new boolean relations from existing ones. The traditional
version of RM works with boolean relations in the form:

(EQ 4)

where each termfi has the following form:

(EQ 5)

where each means a boolean variablesj if or its in-
versionsj if . Using disjunctive form of terms is convenient
for theorem proving because they correspond to assertances in the
logic system. The resolution method uses the following derivation
rule:

(EQ 6)

whereB andC are any boolean functions. In the resolution method
B and C are disjunctions of boolean variables some of which are
taken with negation. Therefore the resulting relationB+C=1 is in
the same form as the original ones. Traditionally the derivation rule
is written in the simplified form by omitting equality signs and logic
constant1:

(EQ 7)

This notation can be interpreted as derivation of true logic sen-
tenceB+C from the two true logic sentencesa+B anda+C thus
helping theorem proving through sentence derivation.

Instead of the traditional version of RM, we use its modified for-
mulation in which we work with logic constraints represented in the
form given by (EQ2) and (EQ3). Each conjunctive term represents
one prohibited combination of signals. The goal of the resolution
method is deriving new logic constraints from the existing ones.
The resolution rule is equivalently transformed into:

(EQ 8)

whereB andC are conjunctions of circuit signals or their inver-
sions. Unlike the classical resolution method that derives new true
sentences from the true ones our formulation is applied to the set of
false sentences (logic constraints or prohibited signals combina-
tions) and derives new false sentences. Both the formulations are
equivalent. Similar to the resolution rule simplification (EQ7) we
simplify our formulation of the resolution rule by omitting equality
signs and the boolean constant0:

(EQ 9)

However we need to remember that it cannot be interpreted as
derivation of a true sentence from two true premises. Instead it is
deriving a logic constraint from two other logic constraints ex-
pressed as false sentences. An application of the resolution tech-
nique to deriving logic constraints is shown in Figure 4 and Figure
5 with examples of transistor and logic level circuits respectively.

The resolution rule is more general than the laws in SLI genera-
tion algorithm [13]. It covers transitive law, union rule, intersection
rule (for both forward and lateral propagation) used there. Moreo-
ver the resolution rule can be used with logic constraints involving
any number of signals.

4 Logic constraints generation

4.1 Transistor level constraints

In SLI based noise analysis approach [13] logic function is ex-

ai{ }

t LowR LowF HighR HighF
RiseR RiseF FallR FallF

, , , ,
, , ,

{
}

∈

1. Read transistor level circuit description

2. Generate trivial logic constraints for MOS transistors

3. Derive logic constraints for DCCCs from transistor logic
constraints by resolution technique

4. Derive circuit logic constraints applying resolution tech-
nique to DCCCs logic constraints

5. For each noise cluster to be analyzed do the following

2.1. Select logic constraints relevant to noise cluster
2.2. Form logic constraint function in the form of

ROBDD representing noise cluster logic constraints
2.3. Find maximum weighted set of aggressors whose si-

multaneous switching is not prohibited by the logic
constraint function.

Figure 3. False noise analysis algorithm

f i
i 1=

m

∏ 1=

s
α1

i1 s
α2

i2 … s
αk

ik+ + +

s
α

j α 0=
α 1=

a B+ 1 a C+, 1 B C+→ 1= = =

a B+ a C+, B C+→

a B⋅ 0 a C⋅, 0 B C⋅→ 0= = =

a B⋅ a C⋅, B C⋅→

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

tracted for every DCCC output. This is easy only for small DCCCs
like simple NAND and NOR gates. For large complex DCCCs full
extraction of the logic function can be difficult or even impossible.

The resolution technique does not require full logic function ex-
traction and can work directly at the transistor level. As a first step
of the resolution technique we generate an initial set of logic con-
straints in the following way:
• For every n MOS transistor (s - source,g - gate,d - drain) two

constraints are generated:g*s*d, g*s*d.
• For every p MOS transistor two constraints are generated:

g*s*d, g*s*d.
• If a transistor terminal is connected toVddor ground, we gen-

erate a reduced set of constraints. For example, if source of p-
type transistor is connected to Vdd, we generate constraint
g*d. Similarly, if source of n-type transistor is connected to
ground we generate constraintg*d.
All the initial constraints are obvious consequence of the MOS

transistor operation in itson state. For example the constraint
g*s*d for n MOS transistor means that if its gate is at high voltage
it is impossible to keep its source at high voltage and drain at low.

After the initial constraints generation we apply the resolution
rule multiple times for deriving new constraints. First we mark all
the circuit nets that are involved in at least one noise cluster of
interest. Then we process all the unmarked nets. Suppose that for
net N we haven1 constraints whenN is high andn0 constraints
whenN is low. If we make all possible resolutions to exclude sig-
nal N, then instead ofn0+n1 old constraints we could have at most
n0n1 new ones. This number actually is much smaller because of
the following cases:
• A new constraint contains combinationaa (tautology).
• A new constraint already exists in the original set, or is covered

by an existing constraint, or covers existing constraints.
• New constraint can be merged with some existing constraint

by the resolution rule. For example,a*b*c and a*b*c are
merged intoa*b.

If the number of the new constraints is less than or equal to the
number of old ones, the new constraints are used instead of the old
ones, and netN is excluded from future analysis.

For some DCCCs or groups of DCCCs, the reduction using res-
olution is equivalent to logic function extraction. Figure 4 (a) shows
this in an example ofNAND2circuit with inputsa andb, outputx
and internal nodey. Instead of five initial constraints(a*x,b*x, a*y,
b*x*y, b*x*y) we build three new constraints(a*x,b*x, a*b*x)
wherein the internal nodey is eliminated. The new constraints ex-
press the gate’s logic function. Another example of logic con-
straints generation is given in Figure 4 (b) where the resolution
method is applied to a simple dynamic gate.

4.2 Logic level constraints

After completing constraints generation for all DCCCs we apply
the resolution rule to constraints belonging to different DCCCs for
generating logic level constraints. They differ in their selection of
the constraints to which the resolution rule is applied. It is benefi-
cial to exploit the fact that the constrains belonging to the DCCCs
connected with their inputs and outputs often have common varia-
bles. Therefore it is convenient to use the algorithm similar to SLI
propagation [13]. We derive new logic constraints by forward and
backward propagation of constraints consisting of two literals

(SLIs) through typologically ordered DCCCs and performing all
possible resolution transformations. Our propagation algorithm dif-
fers from the original SLI propagation in the following:
• Transitive law and union rule are not used because false noise

analysis does not require SLI that can be obtained in this way.
• Propagating SLIs through DCCC we use its constraints instead

of its logic function.
• Propagating SLIs(a0*a1, a0*a2,..., a0*an-1) through DCCC

with constrainta1*a2*...an, we generate new SLIa0*an by

applying the resolution rule multiple times.
• If a new constraint does not exist in the current set of con-

straints and cannot be derived from existing ones by transitive
law, it is added to the set.

• If an existing constraint is covered by a new one, then we
replace it with the new constraint.
Our propagation algorithm can generate constraints with more

than 2 signals. We refer to a constraint involvingN signals as N-
LI. In Figure 5 we demonstrate that the lateral implication [13]
(y=0)->(b=0) can be derived by the resolution technique.

5 Characteristic ROBDD and noise analysis

After logic constraints generation noise analysis is performed for
every cluster for its respective noise type. In the SLI based algo-

P1

Figure 4. DCCC logic constraints calculation by resolution

P2

N1

N2

P1

N1

N2

N3

a

b

x

c

a

b

x

a*x

b*x

y

b*y

a*y*x
a*y*x

c*x

y1

y2

c*y2

b*y1*y2
b*y1*y2

a*y1*x
a*y1*x

NAND2 logic constraints
a*x, b*x,
b*y , a*y*x -> a*b*x

(a) (b)

dynamic gate logic constraints
c*x
c*y2, b*y1*y2 -> c*b*y1
c*b*y1, a*y1*x -> c*a*b*x

a
b

y

x

Figure 5. Logic constraints derivation by resolution

s

a*s
a*s

x*s*y
x*y
s*y

a*b*x
a*x
b*x

G1, G2: a*s,x*s y-> a*x*y ; a*s, s*y -> a*y (R1)
G2, G3: a*b*x, x*y -> a*b*y ; (R2)
R1,R2: a*y ,a*b*y ->y *b*y -> b*y (R3)

G1 G2

G3

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

rithm [13], a constraint graph is formed based on generated SLIs,
and then Maximum Weighted Independent Set problem is solved.
In the proposed approach constraints involve many variables and a
constraint graph turns into a hypergraph. Therefore, instead of the
constraint graph, we construct ROBDD of the noise cluster con-
straints. We call it a noise cluster characteristic ROBDD.

Let a noise cluster contain a victim netv and aggressors nets
a1,...,an. The characteristic function of the clusterf(v, a1,..., an) is a
function that equals1 for combinations satisfying all the constraints
and equals0 otherwise.

We construct characteristic ROBDD by the following recursive
procedure. First we create a root vertex corresponding to the victim
netv, and assignv=0. Then we make all possible conclusions from
this assignment. For example, for a constraintv*b we conclude
b=1. Similarly a constraint such asv*c*d is reduced toc*d, and so
on. After all the conclusions are made, we create a low-child of the
root, i.e. the vertex corresponding to the aggressora1. Then we as-
sign a1=0 and again make all the conclusions throughout the cir-
cuit. If we meet a conflict (i.e. for some netp we obtain assignments
p=0 andp=1), then combination(v=0,a1=0) is prohibited by our
constraints, and the low-child of the vertexa1 is a terminal0-vertex.
Then we try the next assignmenta1=1, otherwise we create a low-
child of the vertexa1 corresponding to the aggressora2, and so on.
Thus we recursively build the BDD, and after subsequent reduc-
tions obtain the characteristic ROBDD. Using the characteristic
ROBDD of the noise cluster we calculate the maximum noise of the
given type by finding the maximum weighted set of the aggressors,
for which simultaneous switching of the same type is not prohibit-
ed. It is the maximum weighted set of aggressors{ai1,ai2,...,aim},
for which ROBDD has two paths from its root to the terminal 1-ver-
tex (v=V,ai1=0,ai2=0,...,aim=0) and (v=V,ai1=1,ai2=1,...,aim=1)
whereV is the victim state corresponding to the analysed noise.

In Figure 5 we demonstrate the characteristic ROBDD for the
circuit shown in Figure 2. The ROBDD describes the logic con-
straints for analyzingLowR noise injected into netv by nets
(a1,a2,a3,a4,a5). The noise injected by each aggressor is written
near the correspondent ROBDD vertices. The maximum weighted
aggressor set is(a1, a3) with total noise0.16.

6 Implementation and experimental results

The proposed false noise analysis algorithm is implemented in
an industrial noise analysis tool called Clarinet [1]. The system
was architected using a separate false noise analysis engine DiNo.
First, the noise analysis tool performs the traditional noise analysis
without using logic information. If generates a list of critical noise
clusters where the total noise injected into the victim is higher than
the tolerable noise threshold. The false noise analysis engine DiNo
reads transistor level circuit description and a list of critical noise
clusters. Then it generates logic constraints that could be useful for
at least one critical cluster. For each critical cluster DiNo builds
characteristic ROBDD and finds the maximum weighted aggressor
set and the maximum feasible noise. The analysis can be per-
formed both at the block and chip levels. At the block-level, the
tool directly operates on the transistor level description of the cir-
cuit. At the chip-level, DiNo first pre-characterizes each gate in the
library with a so-calledlogic correlation black box. These black
boxes are then used in the chip-level generation of logic con-
straints. Figure 4 illustrates this methodology.

In Table 1, columns 2,3,4 and 5 we show the number of multi-
signal constraints generated by resolution for ISCAS [15] bench-

mark and industrial circuits. The results of the proposed method
are compared with results of the SLI based approach [13]. The
number of 2-LIs generated by the SLI method is shown in column
8. It can be seen that the proposed technique is effective in generat-
ing a larger set of constraints. The results in Table 2 demonstrate
the effectiveness of the resolution based approach proposed in this
paper. Column 3 shows the number of noise failures without false
noise analysis. Column 4 shows the number of failures with false

a4

a5

a2

a1

a3

01

v
0

1

0
1

0

1

0 1

0
1

0
1

Figure 6. Characteristic ROBDD of noise cluster

w(a4)=0.2

w(a5)=0.4

w(a2)=0.15

w(a1)=0.1

w(a3)=0.06

Maximum Weighted Set of Aggressors for
LowR noise is (a1, a3) with total weight 0.16

ProhibitedAllowed

 DiNo

 false critical
noise clusters

critical noisecircuit netlist
clusters with

Figure 7. Block diagram of the false noise analysis tool.

traditional noise

true critical
noise clusters

and their
logic constraints

with corrected
noise value

aggressors noise
value

analysis

 logic
correlation
black box

 logic
correlation
black box

(transistor or
block level)

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

noise analysis as presented in this paper. The average number of
aggressors in a cluster is about 10. The experiments were per-
formed for noise threshold that is 5 times larger than the average
noise of a single aggressor. It can be seen that as much as 72% of
the original violations are identified as false violations by the pro-
posed technique. Moreover the realizable noise is as much as 94%
less than the noise reported without considering logic constraints.

7 Conclusions

In this paper, we presented a new approach for false noise anal-
ysis. We propose the use of resolution method for eliminating
aggressor nets that cannot simultaneously switch. We have shown
that the initial set of constraint terms in the resolution approach
can be generated from transistor level circuit description. It was

shown that single resolution rule can overlap some aspects of logic
extraction and simple logic implication propagation. We explained
how to generate a characteristic ROBDD for victim/aggressors
cluster and then calculate worst-case combination of aggres-
sors.The presented algorithms were implemented and tested on
industrial circuits. Presented tables demonstrate the efficiency of
proposed approach comparing with simple implication propaga-
tion method.

8 References

[1] R.Levy, et.al. “ClariNet: A noise analysis tool for deep sub-
micron design”, DAC-2000, pp.233-238.

[2] P.Chen, K.Keutzer. “Towards True Crosstalk Noise Analy-
sis”, ICCAD-99, pp.132-137.

[3] D.A.Kirkpatrick, A.L.Sangiovanni-Vincentelli. “Digital
Sensitivity: Predicting Signal Interaction using Functional
Analysis”, ICCAD-96, pp.536-541.

[4] F.M.Brown. “Boolean reasoning”, Kluwer Academic Pub-
lishers, 1990.

[5] G.Hachtel, R.Jacoby, P.Moceyunas, C.Morrison. “Perfor-
mance Enhancements in BOLD using Implications”,
ICCAD-88, pp.94-97.

[6] W.Kunz, P.R.Menon. “Multi-Level Logic Optimization by
Implication Analysis”, ICCAD-94, pp.6-13.

[7] R.I.Bahar, et.al. “Symbolic Computation of Logic Implica-
tions for Technology-Dependent Low-Power Synthesis”,
ISPLED-96.

[8] W.Long, Y.L.Wu, J.Bian. “IBAW: An Implication-Tree
Based Alternative-Wiring Logic Transformation Algo-
rithm”, ASPDAC-2000, pp.415-422.

[9] S.Bobba, I.N.Hajj. “Estimation of maximum current enve-
lope for power bus analysis and design”, Int. Symp. on
Phys. Des., 1998.

[10] A.Wroblewski, C.V.Schimpfle, J.A.Nossek. “Automated
Transistor Sizing Algorithm for Minimizing Spurious
Switching Activities in CMOS Circuits”, ISCAS-2000,
pp.291-294.

[11] Shepard K.L. “Design methodologies for noise in digital
integrated circuits”, Proc., DAC, 1998, pp. 94-99.

[12] A.Rubio, N.Itazaki, X.Xu and K.Kinoshita, “An Approach
to the Analysis and Detection of Crosstalk Faults in Digital
VLSI Circuits”, IEEE Trans. on CAD, Vol.13, No.3, 1997.

[13] A.Glebov, S.Gavrilov, D.Blaauw, S. Sirichotiyakul, C.Oh,
V.Zolotov. “False Noise Analysis using Logic Implica-
tions”, ICCAD 2001, Nov. 2001, pp. 515-521.

[14] R.E.Bryant. “Graph-Based Algorithms for Boolean Func-
tion Manipulation”, IEEE Trans. on Computers, 1986,
v.35, pp.677-691.

[15] F.Brglez, H.Fujiwara. “A Neutral List of 10 Combinational
Benchmark Circuits”, Proc. IEEE ISCAS, IEEE Press,
Pscataway, N.Y., 1985, pp.695-698.

[16] J.A.Robinson “A Machine-Oriented Logic Based on the
Resolution Principle”, Journal of the ACM, 12(1): 23-41,
1965.

circuit #2-LI #3-LI #4-LI #5-LI

c1355 873 72 49 3

 c17 13 42 12 0

c1908 1151 42 70 15

c3540 1548 174 61 20

c499 669 49 63 35

c7552 589 106 30 5

c6288 587 715 434 213

plldriver 62 122 6 0

srot8 848 1614 155 29

xbar 541 168 16 0

srot16 2229 2591 1497 0

adder32 874 133 35 0

srot32 4233 6054 2742 19

Table 1. Number of generated constrains

circuit clusters failures
DiNo

failures
%

Reduction
Avg.Noise
Reduction

c1355 107 214 160 25.234 35.891

 c17 9 18 8 55.556 68.433

c1908 112 224 178 20.536 30.359

c3540 119 238 173 27.311 42.322

c499 100 200 154 23.000 32.389

c7552 118 236 209 11.441 20.279

c6288 118 236 192 18.644 34.461

plldriver 59 18 5 72.22 94.15

srot8 401 320 174 45.63 64.49

xbar 384 72 56 22.2 86.99

srot16 975 794 461 41.94 62.08

adder32 113 108 91 15.74 23.76

srot32 2005 2005 1104 44.94 53.70

Table 2. Noise analysis results

Proceedings of the International Symposium on Quality Electronic Design (ISQED�02)
0-7695-1561-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

