False-Noise Analysis Using
Logic Implications

A. GLEBOV, S. GAVRILOV,
Motorola, Inc., Moscow, Russia
D. BLAAUW

University of Michigan, Ann Arbor
and

V. ZOLOTOV

Motorola, Inc., Austin, TX

Cross-coupled noise analysis has become a critical concern in today’s VLSI designs. Typically, noise
analysis makes the assumption that all aggressing nets can simultaneously switch in the same
direction. This creates a worst- case noise pulse on the victim net that often leads to false noise vi-
olations. In this article we present a new approach that uses logic implications to identify the
maximum set of aggressor nets that can inject noise simultaneously under the logic constraints
of the circuit. We propose an approach to efficiently generate logic implications from a transistor-
level description and propagate them in the circuit using ROBDD representations. We propose
a new method for lateral propagation of implications and also show how tristate gates and high-
impedance signal states can be handled using tristate implications. We then show that the problem
of finding the worst-case logically feasible noise can be represented as a maximum weighted in-
dependent set problem and show how to efficiently solve it. Initially, we restrict our discussion to
zero-delay implications, which are valid for glitch-free circuits, and then extend our approach to
timed implications. The proposed approaches were implemented in an industrial noise analysis
tool and results are shown for a number of industrial test cases. We demonstrate that a significant
reduction in the number of noise failures can be obtained from considering the logic implications
as proposed in this article, underscoring the need for false-noise analysis.

Categories and Subject Descriptors: B.7.1 [Integrated Circuits]: Types and Design Styles—VLSI
(very large scale integration); B.8.1 [Performance and Reliability]: Reliability, Testing and Fault
Tolerance; B.6.3 [Logic Design]: Design Aids

General Terms: Design, Reliability, Verification, Theory, Algorithm, Performance

Additional Key Words and Phrases: VLSI (very large scale integration), noise analysis, circuit logic

1. INTRODUCTION

Advances in process technology have greatly increased the coupling capaci-
tance in VLSI interconnects making it common for as much as 60 to 80% of

Authors’ addresses; A. Glebov, S. Gavrilov, V. Zolotov, Motorola, Inc., 7700 W. Parmer Lane, Building
C, MD: 78729, Austin, TX 78729; email: vladimir.zolotov@motorola.com.; D. Blaauw, University of
Michigan, Dept. of Electrical Engineering and Computer Science, 1301 Beal Ave., Ann Arbor, MI
48109-2122; email: blaauw@umich.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 1084-4309/02/0700-0474 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002, Pages 474-498.

False-Noise Analysis Using Logic Implications . 475

interconnect capacitance to be coupling capacitance to other nets. This trend
has led to an increase in the noise injected on a net due to the unantici-
pated switching of neighboring nets, creating the necessity for noise analysis
tools.! In noise analysis, the net under consideration is commonly referred to
as the victim net, and the neighboring nets that inject noise are referred to as
aggressor nets. A victim net with its associated aggressor nets is referred to
as a noise cluster. A functional noise failure is said to occur when a victim net
is in a quiescent state while its aggressor nets switch, creating a noise pulse
injected on the victim that could potentially be latched. A delay noise failure is
said to occur if the victim net transitions at the same time as the aggressor nets,
decreasing or increasing the delay of the victim net depending on the direction
of the aggressor switching, and potentially creating a timing violation.

Noise analysis tools typically make the assumption that all aggressor nets
switch at the same time and in the same direction. Under this assumption, the
noise injected from each aggressor combines, creating the maximum possible
composite noise pulse on the victim net and yielding a conservative analysis. In
practice, however, the timing and logic constraints present in the circuit may
prevent all aggressors from switching in the same direction at the worst possible
alignment time. Therefore, the noise reported by an analysis that does not
account for timing and logic correlations can severely overestimate the actual
noise realizable on a victim net and can create a so-called false noise violation.
This is especially important when the number of aggressors for a victim is high
(e.g., 10 or more), as is often the case. In such a situation the combined noise
from all aggressors will be very severe, whereas the likelihood of realizing the
simultaneous switching for all aggressors is small due to inherent logic and
timing correlations.

Industrial noise analysis approaches have exploited timing correlations in
circuits to reduce the pessimism of noise analysis by identifying situations
where two aggressor nets cannot switch at the same time. A common exam-
ple of such a situation is when two aggressor nets switch in different clock
cycles, or where one switches very early and the other very late in the same
clock cycle. To determine when a net can switch, so-called switching windows
are propagated in the circuit using static timing analysis [Shepard 1998; Levy
et al. 2000]. After switching windows are identified for each aggressor, the
possibility of overlap between timing windows for a set of aggressors is deter-
mined. It is important to note that this approach is local in nature, meaning
that the switching windows are identified separately for each aggressor net,
making this analysis very efficient. However, this also results in a weakness of
this approach, in that it does not identify situations where a pair of aggressor
nets can each switch individually at a particular time but cannot both switch
at that time due to logic relationships in the circuit. A simple example of this
situation is shown in Figure 1(a). Also, the timing window-based approach does
not identify cases where nets cannot switch in the same direction, for instance,

1Please see Zurada et al. [1989], Shepard et al. [1997], Shepard [1998], Levy et al. [2000], Xue et al.
[1994], Vittal et al. [1999], Tohr et al. [1998], Vittal and Marek-Sadowska [1997], and Zhou and
Wong [1998].

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

476 o A. Glebov et al.

I : Aggressor 1

1
—|_ Aggressor 2

(@

Aggressor 1 Aggressor 2 Aggressor 3

L L L
I 1 1

(b)

Fig. 1. (a) Logic and (b) timing relationships among aggressors.

when they are connected by an inverter as shown in Figure 1(b). Therefore, the
timing window approach may not identify all false noise failures, although it
has been shown in practice to be relatively effective [Levy et al. 2000].

In order to identify all false noise failures, both the timing and logic correla-
tions of the circuit must be taken into account. In Chen and Keutzer [1999] it
was shown that, in general, this problem can be represented as a search for a
worst-case two-vector test using a Boolean constraint optimization problem for-
mulation. In Kirkpatrick and Sangiovanni-Vincentelli [1996], a method based
on compatible observability don’t care sets was proposed. In Rubio et al. [1997],
a method was proposed using a test pattern generation approach. However,
all these methods have very high complexity and cannot be applied to large
problem sizes. Since noise primarily occurs in top-level routes, it is critical
to perform false noise analysis globally for large designs and hence, heuristic
methods must be employed.

In this article, we present a new approach for false noise analysis based on
the generation and propagation of logic implications between signal pairs. Logic
implications [Brown 1990] have been widely used in logic synthesis [Hachtel
et al.1988; Kunz and Menon 1994; Bahar et al. 1996; Long et al. 2000] as well
as in peak current estimation [Bobba and Hajj 1998], although they have not
until now been proposed for false noise analysis. The input to our analysis
is a transistor-level description of the circuit although the analysis can also
be performed at the gate level, using precharacterization of transistor-level
leaf cells. We show how pairwise logic implications can be efficiently generated
using ROBDD representations of the DC-connected components in the circuit.
The generated pairwise implications are then propagated in the circuit through
forward and backward topological traversals. We also propose a new method to
generate so-called lateral implications and methods for handling tristate gates
and high-impedance signal states using tristate implications.

Given the logic implications between the aggressor nets of a noise cluster, we
show that the problem of finding the subset of aggressor nets which induce the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 477

nl0

Fig. 2. Example of SLIs in simple circuit.

maximum noise on the victim under the constraints of these logic implications
can be represented by a constraint graph. We then show that this problem
can be solved by solving the maximum weighted independent set problem for
this constraint graph. Although this is an NP-hard problem, the number of
aggressors coupling to a victim, and hence the size of the constraint graph, is
typically small, allowing for an exact solution of the problem. Since the logic
implications only capture pairwise relationships, the overall approach remains
heuristic and very efficient, capable of analyzing large designs in a few hours.

The initial formulation presented in this article uses zero-delay implications
that are valid only during the stationary state of the circuit before and after all
transitions occur. Hence, this formulation for false noise analysis is conservative
only for glitch-free circuits, obtained, for instance, through special transistor
sizing approaches [Wroblewski et al. 2000]. In the last section of the article we
show how our analysis can be extended for timed implications that are valid
at all points during the operation of a circuit. The proposed approaches were
implemented and used in an industrial noise analysis tool called ClariNet.
Results are presented for a number of industrial test cases. It is shown that
the total number of noise failures is reduced by up to 47% using our proposed
approach.

The remainder of the article is organized as follows. Section 2 discusses the
generation and propagation of logic implications, including generation logic
implications for tristate logic. Section 3 shows how to use logic implications
in false noise avoidance. Section 4 presents extensions of the algorithm for
timed implications. Section 5 presents results, and in Section 6 we draw our
conclusions.

2. COMPUTING LOGIC IMPLICATIONS

We use the following notation for simple logic implications (SLI) between two
circuit nodes a and b.

(@a=V,)— (b=Vy), where V,, V, € {0, 1}, meaning that if node a is at logic
value V, the resulting value on node b will be V;. Figure 2 shows a small
example circuit where n3 =0 implies that node n7=1. In total, this example
circuit has 26 nontrivial SLIs, where a trivial SLI is an implication such as
(a=V,)— (a=V,). Similar to Bobba and Hajj [1998], we store the implications
for a node in one of four implication lists: Hf;, Hf, L%, L}, where implication

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

478 o A. Glebov et al.

(b=1)— (@ =0) would belong to implication list L}, at node a; that is, be LY.
In Figure 2, for example, the H7" implication list at node n7 is {n3, n4, n8, n9}
and the implication list HY is {n11}.

The SLI generation algorithm consists of two steps: SLIs are generated as
explained in Sections 2.1 and 2.2, and SLI are propagated through the circuit
using the basic operations of list union, list intersection, and contrapositive law
as explained in Section 2.3. Finally, in Section 2.4 we show how to extend our
analysis for tristate gates.

2.1 Generation of SLlIs for Simple Gates

We first consider how to generate the initial SLIs for a gate with inputs a; and
output x. We start our discussion with some general properties about SLIs from
gate input nodes to gate output nodes and vice versa.

PropertY 1: The implication (a =V,)— (x =V,)is equivalent to implication
(x=V,)—> (a=V,) due to the contrapositive law, and we consider both impli-
cations as a single implication at the input a;.

PropERTY 2: The presence of an SLI (a; =V;) — (x =V,) at input a; of a gate
means that this input is a controlling input with controlling value V;.

ProPERTY 3: Since a gate input a; can take one of two logic values, there can
be no more than two SLIs at a;. The presence of two SLIs at a gate input implies
that the gate is one of the trivial cases:

1) ifla=V,)— (x=V,)and (e =V,) — (x =V,) then x is Boolean constant;

2) if (@=V,)—»>x=V,) and (a=V,)—>x=V,) or (a=V,)—> (x=V,) and
(@=V,)— (x=V,), then either x=a or x =& and x has no dependence
on other gate inputs.

It follows that for any nontrivial multi-input logic gate each input has at most
one SLI. If a gate has multiple SLIs at its inputs, all these SLIs must have the
same value of V., as stated in the following lemma.

LEmMma 1. Consider a gate G with inputs a;, wherei=1, ..., nand output x,
implementing a Boolean function. If there are SLIs (a; = V;) — (x = V) at inputs
a; then all these SLIs must have the same value of V.

Proor. Consider SLIs (a=V,)— (x=V,), (b=Vy) > (x=V,) at inputs a
and b and consider the input combination: a =V, b =Vj,. In this case, the first
SLI implies that x =V, while at the same time the second SLI implies that
x =V, which is clearly a conflict. O

Based on Properties 1 to 3 and Lemma 1, we can now examine how the Boolean
function of a gate is defined by its input SLIs.

THEOREM 1. Let the gate G with inputs a;,i =1, ..., n and output x, imple-
ment a Boolean function. The set of nontrivial SLI (a =V,)— (x =V,) for inputs

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 479

ai, ..., ay, Where 1 <m <n, is equivalent to the definition of its Boolean function
as

Dx = Pa1V -V Py V Pa1 Ao A Dam A fF@mtty -5 @n), (1)
where
—pe=xif Vy=1lor p, =% if V, =0;
—pai=a; if Vi=1or py=a; if V; =0;
— f is a Boolean function of variables a,, 1, ..., a,.

Proor. Let p, = folay,..., a,). Applying the Shannon expansion with re-
spect to p,1, while accounting for the first SLI, gives

Px = Pa1V Pa1 A fl(a2y cees an), (2)

where function f; has the same SLIs at its inputs as fj, except the first SLI.
Now suppose that for certain £ <m,

Px=Da1V ...V DPak VD1 A ADPap A fr@ri1, ..., a0). 3)

Then, substituting Shannon expansion with respect to p, 41 for fz, and ac-
counting for

Pa1V~--VpakVpa1A~~-/\pakApa,k+1=Pak\/«~-VpakVPa,k+1 4)

we obtain:

DPx = Pa1 V...V Pa,k+1 \% ﬁal ARERRA ﬁa,k+1 A fk+1(ak+2; sy an)- (5)

Finally, setting f,, = f, we obtain (1).
Conversely, the set of SLIs of Theorem 1 can be easily derived from
Equation (1). O

Since any Boolean function of one variable has two SLIs, we can conclude
that f in (1) must have at least two variables, that is, n — m > 1. Therefore, we
have the following.

CoRrOLLARY 1. For an n-input gate G implementing a Boolean function, spec-
ifying SLIs between its inputs and output is equivalent to specifying the Boolean
function, if and only if G has exactly one SLI at every input.

It is easy to see from (1) that gates for which all inputs have an SLI to the
gate output are either an n-input AND or OR gate (with arbitrary inversions
at inputs and output). We can therefore state the following corollary.

CoRroOLLARY 2. If a circuit consists of AND, OR, and INVERTER gates, then
the logic function of the circuit is completely specified by the full set of SLIs in
the circuit.

If the circuit contains complex gates such as AOIs, OAIs, XORs, and XNORS,
then the generated SLIs in the circuit will contain incomplete information about
the circuit’s logic function. For an AO22 gate, for example, the full set of SLIs
consists only of trivial implications and, therefore, contains no information
about the logic function of the gate. However, if we decompose the AO22 gate

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

480 o A. Glebov et al.

into two AND gates and one OR gate and construct SLIs with the use of the
new internal nodes, then the SLIs of the AND/OR gates will completely define
the logic function of the AOI gate. Therefore, for effective generation of SLIs,
the circuit must be decomposed into the gates listed in Corollary 2.

2.2 Generation of SLIs for Complex Gates

To generate initial SLIs for a circuit containing complex multi-input gates, we
first represent the circuit as a network of ROBDDs [Bryant 1986], where each
ROBDD represents a single DC-connected component (DCCC) in the circuit.
We then propose the following algorithm to generate an SLI for each DCCC
directly from its ROBDD without explicitly decomposing it into AND, OR, and
INVERTER gates. We define intermediate variables f; for each vertex v; in
the ROBDD representing its Boolean function. Each intermediate variable will
have four associated SLI lists as discussed in the previous section. For the root
vertex, no intermediate variable is needed, since it corresponds to the output
node of the gate.

We visit each nonterminal vertex in the ROBDD in topological order, starting
from the bottom and working up toward the root vertex. At each vertex v;
with controlling variable c¢;, we define the Boolean function of the intermediate
variable f; in terms of the intermediate variables of its child vertices and the
controlling variable ¢; and then create the SLIs associated with this function. As
we visit vertices of the ROBDD, we may encounter one of the following possible
situations.

(1) Both sons of vertex v are terminal vertices. In this case, we do not need
to introduce an intermediate variable, since the Boolean function of v is
entirely defined by its controlling variable c. If the high-son of v is 1, v =c¢
and if the high-son of v is 0, v =c.

(2) Vertex v, controlled by variable ¢, has one child vertex x that is a terminal
vertex and one child vertex y thatis a nonterminal vertex with intermediate
variable w. Then the Boolean function of the intermediate variable f of
vertex v will be defined by one of the following four cases.

—If x is 0 and is the low-son of v then f =c A w.
—Ifx is 1 and is the low-son of v then f =¢ v w.
—If x is 0 and is the high-son of v then f =¢ A w.
—Ifx is 1 and is the high-son of v then f =c v w.

(3) Both child vertices of vertex v, controlled by variable ¢, are nonterminal
vertices. Suppose that the high-son vertex of v has intermediate variable
a and the low-son vertex of v has intermediate variable b. In this case, we
introduce two additional intermediate variables x and y, where x =c A a
and y =¢ A b Then the intermediate variable f of vertex v will be defined
by the Boolean function f =x A y.

As internal variables are defined during the traversal of the ROBDD, SLI
lists are created for each variable. Since each intermediate variable is expressed
as either a simple AND or OR function of its input variables, the complex gate
will be completely defined by generated SLIs per Corollary 2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 481

Fig. 3. Circuit with possible lateral SLI propagation.

2.3 Propagation of SLIs

After initial SLIs are generated for each gate in the circuit, we propagate SLIs
through the circuit using the basic operations of list union, list intersection, and
contrapositive law. For example, let a two-input AND gate be considered with
inputs a, b and output x. If we have an implication list Ly (L) at nodes @ and b
then the implication list L} (L}) at output is calculated as the union of lists L,
and LY (L¢ and LY). Similarly, list H}; (Hf) is calculated as the intersection of
H¢ and HY (H$ and H?). Accordingly, rules for implication propagation can be
generated for OR gates and inverters. Once an SLI is obtained at a gate output,
the reverse SLI is added by applying the contrapositive law:

if(a =v,)—> (b =uvp) then (b=0p)— (a=7,).

Therefore, we visit each gate in topological order and propagate the SLI lists
at the input of the gates to the output. Since complex gates are implicitly de-
composed into simple AND and OR gates, SLIs will propagate across complex
gates without loss of information. In order to generate all possible implications
in a circuit multiple forward propagation passes through the circuit with con-
trapositive law application may be required.

In addition to these so-called direct implication propagations, we propose so-
called lateral SLI propagations. which allows us to find indirect implications,
which are known to be particularly useful in logic optimization [Bahar et al.
1996; Long et al. 2000]. Again, let us consider the two-input AND gate with in-
puts a, b and output x. When we perform the list intersection between Hf and
H?, we exploit the gate implication (¢ =1 Ab=1) — (x = 1) to obtain the impli-
cation list at the output H¥ = H¢ N H?. However, we can also use the equivalent
gate implication (@ =1 Ax =0) — (b=0) which will result in the following im-
plication list at node b, LY = H¢ N LY and LY = H{ N L%,. We call this operation
a lateral propagation of SLIs. Note that both the lateral and direct propagation
of SLIs can be trivially extended to n-input AND and OR gates.

To illustrate the fact that lateral propagation cannot be obtained through
direct propagation, we consider the simple example in Figure 3. In this example,
we obtain two implication lists Hf ={y} and L} ={y} through application of
the contrapositive law and direct propagation across the inverter and OR gate.
Due to lateral propagation, we therefore obtain the following implication at
node b: L,li ={y}; that is, (y = 0) — (b = 0). It is clear that this SLI cannot be
obtained by means of repeated direct propagation only.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

482 o A. Glebov et al.

L.Initialize trivial SLIs;
2. Repeat the following steps until convergence

{

2.1Repeat the following steps until convergence

{

For every gate in topological order
perform forward SLI propagation
with application of contrapositive law.

}

2.2 For every gate in reverse topological order
perform lateral SLI propagation with
application of transitive and contrapositive laws.

Fig. 4. SLI propagation algorithm.

il al

L
A%
cntrl]—l:—

iZ—)G a2—|_

Fig. 5. Example circuit with tristate logic.

Therefore, the overall proposed SLI propagation algorithm consists of the
following stages. First, we perform multiple direct propagations with applica-
tion of the contrapositive law until convergence. Then, we perform multiple
passes of lateral propagation with application of the contrapositive law until
convergence. Each pass of lateral propagation is followed by one or more passes
of direct propagation. The algorithm is shown in Figure 4. The transitive propa-
gation can be applied either in forward or reverse topological order with reverse
order yielding faster convergence in practice.

2.4 Generating SLlIs for Circuits with Tristate Gates

Up to this point, we have assumed that all gates implement a Boolean function.
In practice, however, it is very common to have tristate gates, where the output
of the gate can take a high-impedance state. A simple approach is to ignore
this high impedance state in false noise analysis. However, as shown in the
example in Figure 5, some false noise failures may remain undetected under
this simplifying assumption. In the example, two tristate drivers are shown,
where one of the two drivers is always in a high-impedance state, as is common
in bus structures. In this circuit, the two aggressor nets al and a2 have no
logic correlation based on a strict Boolean analysis of the circuit. However, it
is clear that only one of the two aggressors can switch simultaneously. In this
section, we therefore show how to extend the proposed logic implications to
handle tristate gates.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 483

Fig. 6. Example of tristate gate and its MTBDD.

A tristate gate has, in addition to the logic 0 and logic 1 states, a high-
impedance state (Z -state), when both the pull-up and pull-down networks are
nonconducting. Since the inputs of a tristate gate can be in one of two states
(logic 0 or logic 1), we can describe the tristate gate with a multiterminal BDD
(MTBDD)[Meinel and Teobald 1998], using an additional terminal to represent
the Z-state. A simple example of a tristate gate and its MTBDD is shown in
Figure 6. Note that each tristate gate corresponds to a DCCC in the circuit.

The MTBDD is constructed directly from the DCCC netlist using the follow-
ing steps.

(1) Order all inputs and initialize the state of each transistor as unknown.

(2) Create a root vertex.

(3) Recursively traverse all created vertices, and for every visited vertex enable
transistors controlled by the corresponding variable with value 0 (for low-
son) and 1 (for high-son). After this, check whether the son of the current
vertexis one of the terminal vertices. If not, then create a new son vertex and
make it current. If both vertices of the current vertex exist, then transistors
controlled by corresponding variables are disabled, and its parent vertex is
made current.

(4) After the traversal is completed and all nonterminal vertices have a low-
and high-son, the MTBDD is reduced using repeated isomorphic subgraph
elimination.

In Figure 7(a), an ideal unidirectional pass transistor (UPT) and its MTBDD
representation is shown which we refer to as an elementary tristate gate. We also
show an example of a more complex tristate gate and its MTBDD representation
in Figure (b).

In order to efficiently generate SLIs for a tristate gate we propose the follow-
ing transformation, referred to as the pass-transformation. In this transforma-
tion, a tristate gate is represented with two ordinary binary gates controlling
an ideal undirectional pass-transistor, as shown in Figure 8. Signals ¢ and b are
calculated such that the output x is the same as the output of the tristate gate,
meaning that the transformation does not alter the behavior of the tristate gate
in any way. Signal a represents the logic value of the tristate gate when it is not
in a high-impedance state and signal b represents those input states when the
gate is in a high-impedance state. We define the pass-transformation as follows.

Definition 1. Given a tristate gate T, the pass-transformation of T consists
of a pair of binary gates, P and @ with the same set of inputs, followed by a

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

484 o A. Glebov et al.

(a)

Fig. 7. Elementary and complex tristate gates and their MTBDD representations.

in] — in]
inz— T _x in2 Q
+ g
NN — mny—t s X

Fig. 8. Pass-transformation of tristate gate.

unidirectional pass-transistor E, such that:

—the output of P is connected to the input s of E;
—the output of @ is connected to the input g of E;

—if the output of T' is Z then the output of @ is 0 and the output of P is either
Oorl,;

—if the output of T is 0 then the output of @ is 1 and the output of P is 0;
—if the output of T is 1 then the output of @ is 1 and the output of P is 1.

Since our purpose is the calculation of logic implications, it is not necessary
to explicitly construct gates P, @ and only their ROBDDrepresentations are

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 485

Fig. 9. Result of pass-transformation applied to tristate gate from Figure 7(b).

Table I. Logic Function of Ideal
Unidirectional Pass Transistor

¢ [s [X |
0 0 Z
0 1 Z
1 0 0
1 1 1

formed. Given the MTBDD representation T of a tristate gate, the ROBDD for
gates P and @ can be easily constructed as follows.

—To construct the ROBDD for @ we transform the MTBDD T into
an ROBDD by changing each terminal vertex Z in T to 0 and by
merging terminal vertices 0 and 1 in 7 to 1. This is followed by OBDD
reduction.

—To construct the ROBDD for P we transform the MTBDD T into an ROBDD
by merging terminal vertices Z in T into 0. This is followed by OBDD
reduction.

The construction of the ROBDDs P and @ is illustrated in Figure 9 for the
MTBDD shown in Figure 7(b).

After we have applied the pass-transform on all MTBDDs, we generate SLIs
for the tristate gates. We first consider binary SLIs (B-SLIs) and then dis-
cuss tristate SLIs (T-SLIs). The P and @ functions obtained after the pass-
transformation are binary ROBDDs and, we can use the same forward and
lateral SLI propagation as described in Section 2.3 for their constituent AND,
OR, and INV gates. For the ideal unidirectional pass transistor (UPT), we de-
rive its propagation rules from its logic function, which is shown in truth table
form in Table I. Since the first two entries result in a Z -state, they are not use-
ful for binary SLIs. Therefore, we obtain the following two Boolean implications
for the UPT gate: s A g — x and § A g — Xx. We now propagate SLIs using list

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

486 o A. Glebov et al.

intersection and list union operations based on the Boolean implications of the
gate, as follows.

Hi = Hi N HE
% = Ly n HE,

with similar rules for the Hf and Lj lists. Also, we perform lateral propagation
of B-SLIs through the UPT gate based on the derived gate implications x A
g —8,X Ag—3§, as follows.

HS, = H5 N HE
Ly = Ly n HE,

with similar rules for the Hj and Lj lists. Note that contrapositive and transi-
tive laws are applicable to all B-SLIs, including B-SLIs obtained by propagation
through the UPT since they are fundamental logic laws. It is thus clear that us-
ing the pass-transform, generation and propagation of binary SLIs for tristate
gates are quite similar to those for Boolean gates.

We now discuss the generation of tristate SLI. As explained in further detail
in Section 3, false noise analysis using SLIs is based on detecting that simulta-
neous switching of two nodes is prohibited by the presence of an SLI between
these two nodes. However, a tristate implication, such as (a =1) — (b=Z) will
not provide useful information for false noise avoidance, since the Z-state is a
unknown binary value and could be interpreted as either logic O or logic 1. For
false noise analysis, we therefore introduce a new signal state Y which repre-
sents an unknown stable Boolean state, which is stored on the capacitance of the
wire. In other words, a signal is in a Y -state if it cannot switch (in a glitch-free
circuit). We can therefore propagate T-SLIs of the type (¢ =V)— (=Y), and
(@a=Y)—> (b=Y), where V is from {0, 1}, and a, b are circuit nodes. We define
the propagation and generation of T-SLIs for unidirectional pass-transistors,
INV, AND, and OR gates as follows, where p is an arbitrary circuit node and V'
is from {0, 1}.

UPT (unidirectional pass transistor), s,g,x—source, gate, drain, respectively:

—if(p=V)—>(g=0)then (p=V)—> (x=Y);
—if(p=V)>(G6=Y)and (p=V)—>(g=1) then(p=V)—> (x=Y).
INV (inverter), a—input, x—output:
—if(p=V)—>(@=Y)then (p=V)—> (x=Y);
—if(p=Y)—>(@=Y)then(p=Y)—> (x=Y).
Simple two-input gate (AND, OR, ...), a,b—inputs, x—output:

—if(p=V)—(a=Y) and (p =V)— (b =non_controlling_value)
then (p=V)— x=Y);

—if(p=V)—>(@=Y)and (p=V)—>b=Y)then(p=Y)—>(x=Y);

—if(p=Y)—>(@=Y)and (p=Y)—> (b=Y)then (p=Y)—> (x=Y).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 487

A tristate gate in a high-impedance state will have an output node that is in
the Y-state. However, it should be emphasized that the meanings of the Z-state
and the Y-state are different, and that the Y-state can propagate, whereas the
Z-state cannot. For instance, if the input of an inverter is in the Y-state, its
output is also in the Y-state, and it cannot be in the Z-state. Based on the
above gate implications, we can again define the propagation of T-SLI through
tristate and binary gates using the union and intersection operations of SLI
lists. We can also again apply the contrapositive law. For instance, applying the
contrapositive law to implication (p =0) — (x =Y) will result in the implication
(x=Y)—=(p=1).

In the example circuit shown in Figure 5, the following two T-SLIs are gen-
erated relating a2 to a1 using the proposed approach: (@2=Y)— (a1=Y) and
(@1=Y)a2=Y). These implications therefore indicate that if either aggressor
al or a2 is switching (i.e., is not in a stable state), the other aggressor is in a
stable unknown Boolean state and cannot inject noise simultaneously with the
switching aggressor.

3. FALSE NOISE ANALYSIS USING SLIs

After SLIs are generated in the circuit, we apply them in our false noise anal-
ysis. For each victim net, a set of aggressor nets that inject coupled noise on
the victim net is identified, where each aggressor can potentially contribute
a different amount of injected noise. A victim net and its associated aggres-
sor nets are referred to as a noise cluster. Among the set of aggressors in
a noise cluster, we intend to find the subset of aggressors with a maximal
sum of injected noise, such that the logic constraints represented by SLIs be-
tween a pair of aggressors and between an aggressor and the victim net are
satisfied. We refer to this problem as the maximum realizable noise prob-
lem and the set of aggressors responsible for the maximal realizable noise
as the maximal realizable aggressor set. Note that each noise cluster can be
analyzed individually since the global logic relationships present in the cir-
cuit are already represented by pairwise SLIs between the nets in the noise
cluster. The maximum realizable noise problem is therefore defined with the
information:

(1) a single victim node V,

(2) a set of aggressor nodes A; that inject noise w;, i=1,..., n on the victim
net V, and

(3) anoise typet,t € {LowR, LowF, HighR, HighF, RiseR, RiseF, FallR, FallF }.

The first four noise types correspond to functional noise where the victim net
is either at a stable low state (LowR andLowF) or a stable high state (HighR
andHighF), while the aggressor nets are either rising (LowR andHighR) or
falling (LowF andHighF). The second set of four noise types corresponds to
delay noise where the victim net is either rising (RiseR and RiseF) or falling
(FallR and FallF) while the aggressor nets are again rising (RiseR and FallR)
or falling (RiseF and FallF).

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

488 o A. Glebov et al.

The false noise analysis algorithm now consists of several basic steps. First
we compute the SLIs in the circuit, as was explained in Section 2. Second, we
represent the logic constraints between the aggressors for a particular noise
type using a constraint graph, as presented in Section 3.1. Finally, we find the
maximum realizable noise by solving the Maximum Weight Independent Set
problem for the constraint graph as presented in Section 3.2.

3.1 Forming the Constraint Graph

A constraint graph is an undirected graph G=(V,E,w) of vertex set
V ={vy,..., vy}, edge set E ={(u,v) : u,veV,u # v}, and a vertex weighting
function w such that w(u) >0, V(u € V). The vertices represent the aggressor
nets of a noise cluster and the weight of a vertex is the amount of noise injected
by the associated aggressor net on the victim net. We form a separate constraint
graph for each noise type. An edge exists between two vertices in the constraint
graph if the two associated aggressors cannot simultaneously switch and inject
noise on the victim net.

For each particular noise type, we first determine the initial and final states
of the victim nets Vi and V/ and the initial and final states of the aggressor net
V! and V. For instance, for noise type LowR, Vi =0,V =0,V!=0,V/ =1and
for noise type RiseF, V=0, V/ =1, Vi=1, VI =0. We then determine which
aggressor nets can have a transition that is logically compatible with the initial
and final victim states for this particular noise type. If, for a victim/aggressor
pair (v, a;), either of the following two B-SLIs exist, (v:VUi)—> (a; =Vf1) or
w=V/)—> (= V(f), then the aggressor net is not compatible with the victim
net for this noise type and is not included in the constraint graph. For instance,
if the noise type is RiseF, the victim is switching from low to high, and the
aggressor must switch from high to low. Therefore, the presence of implication
(v =0) — (a; =0) would prohibit aggressor a; from switching and injecting noise
on net v, since it would already be in its final state at the start of the victim
transition. Similarly, the implication (v=1)— (e¢; =1) would prohibit the ag-
gressor a; from switching since it would be in its initial state at the end of the
victim transition. In this case, a; would not be included in the constraint graph
for victim net v under noise type RiseF.

For T-SLIs we consider functional and delay noise separately. For func-
tional noise (LowR, LowF, HighR, HighF), the victim is in a stable state
and Vi = V/. Therefore the presence of the implication (v=V})— (a; =Y) be-
tween victim v and aggressor a; will eliminate the aggressor from participat-
ing in the constraint graph, since the aggressor cannot switch while the vic-
tim is in its stable state. For delay noise (RiseR, RiseF, FallR, FallF), the
victim transitions. The presence of the implication: (v=Y)— (a; =Y) there-
fore means that the aggressor net will be in a stable Boolean state and
cannot switch when the victim transitions, and aggressor a; cannot con-
tribute noise to the victim in this case and is not included in the constraint
graph.

After the vertices of the constraint graph have been identified, we de-
termine which edges exist in the graph. We examine each pair of vertices

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 489

wnl)=0.1 \m6)=0.1 w(nl0)=0.1
w(n2)=0.1 w(n5)=0.1

Maximum Weighted Independent Set:{nl,n2,n5,n10} with total weight 0.4

Fig. 10. Example of the constraint graph.

(vi,vj),1#Jj, vi, v; € V. Again, we can determine if v; and v; can both switch
in the required direction by searching for an SLI that renders their transi-
tions logically incompatible. In this case, if we find either of the two B-SLIs
(@;=V)—>(a;=V9), (ai=VI)—>(a; =V!), orthe T-SLI (a; =Y) — (a,; =Y), a;
and a; cannot both participate in the maximal realizable aggressor set and an
edge (v;, v;) is created in the constraint graph.

3.2 Solving MWIS Problem

Given the constraint graph constructed according to Section 3.1, we can find the
maximal realizable aggressor set and the associated maximal realizable noise
by solving the maximum weighted independent set (MWIS) problem for the
constraint graph. Consider the constraint graph G =(V, E, w) and the global
weighting function W(K)=) _w(u), for K C V. An independent set S is a sub-
set, S C V, such that for any u,v € S; (i, v) ¢ E. The maximum independent set
is the independent set S, such that W(S) is maximum.

For a general constraint graph, the MWIS problem is known to be NP-
complete [Garey and Johnson 1979]. However, in our problem formulation, we
have the advantage that the number of significant aggressors in a noise cluster
is typically small (<15). Therefore the MWIS problem for the associate con-
straint graph can in most cases be solved exactly by exhaustive enumeration
of all independent sets. For larger graphs, we use the heuristic algorithm of
Loukakis and Tsouros [1983]. As a simple example of our approach, again let
the circuit in Figure 1 be considered. Let n7 be the victim node with LowR
noise, and let all 10 other nodes be potential aggressors, each aggressor net
contributing the same injected noise. As shown in Figure 10, the resulting con-
straint graph consists of the {n1, n2, n5, n6, n10} aggressors’ vertices and two
edges (n1, n6) and (n6, n10). The final set of maximal realizable aggressor nets
is {n1, n2,n5, n10}.

4. EXTENSION TO TIMED SLls

Until now, we have considered false noise analysis based on zero-delay im-
plications. These implications are only valid when the circuit has reached a
stable state, that is, at the beginning and end of a clock cycle. However, when
the circuit is in transition, it is possible that two aggressor nets can switch
simultaneously, even though their zero-delay SLIs would indicate that such
a transition is impossible. This occurs when there are glitches in the circuit,

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

490 o A. Glebov et al.

C

T

(b)
Fig. 11. Noise injection by glitches.

as shown in the simple example in Figure 11(a). In this example, nodes z1
and z2 are aggressor nodes of victim v. Using the contrapositive law and di-
rect SLI propagation, the following implication will be computed under the
zero-delay model, (z2 =0) — (z1 = 1), which will disallow both aggressors from
switching in the same direction, which is correct when we consider the final
transition of these nets. However, if we switch signal a low, while setting inputs
b and c high, signal z1 glitches, as shown in Figure 11(b), and can inject noise
simultaneously with aggressor z2. Therefore, zero-delay implications will yield
a conservative false noise analysis only if the circuit in question is glitch-free. In
this section, we therefore show how our zero-delay implication can be extended
with delay information to obtain so-called timed implications that can be used
for false noise analysis in circuits that have glitching signals. For simplicity, we
restrict our discussion to binary SLIs, although the proposed methods are also
applicable to the discussed tristate SLIs.

4.1 Basic Definitions
In Bobba and Hajj [1998], timed SLIs are proposed using the formulation:

(a@®)=Vq)— (bt +T)=Vp). (6)

Here a transition of net a to value V, implies that net b will be at value Vj, after
some fixed time interval 7'. This model is applicable if all gates have a constant

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 491

delay and we refer to these SLIs as fixed delay SLIs. In practice, however, the
delay of a gate varies due to process variation and state dependence. Therefore,
fixed delay SLIs cannot be used in such cases and we propose the following two
types of timed logic implications.

Definition 2. An exclusive timed SLI (or E-SLI) is the relation between
signals a, b:

V(¢ € [t1, ta)a®) = Vo) — (V(t € [t1 + T, t2 + ToD(B(@) = V). (7

An E-SLI reflects the situation where the presence of a stable value of signal
a during the entire time interval [¢1, 3] guarantees the stable value of signal b
during the entire time interval [¢; + T1, to + T3]. The SLI is said to be exclusive,
since other values for signal ¢ and b are not permitted during the respective
time intervals. We use the following short notation to denote an E-SLI:

(a=1)— (b=0)T1, T2). €))

Definition 3. An inclusive timed SLI (or I-SLI) is the relation between sig-
nals a, b:

(3¢ € [t1, 2Dat)=V,) — Q¢ € [t1 + T1, t2 + To))(b(E) = V). 9

An I-SLI implies that if signal a is at value V, at least once in the time interval
[t1, £2], signal b will be at value V}, at least once in the time interval [t + T7, o +
Ts]. Since the I-SLI allows for other signal values to exist during the respective
time intervals, it is said to be inclusive. We use the following short notation to
denote an I-SLI.

(@a=1)=>b=0)Ty, Ts). (10)

We can see Equations (7) and (9) are only meaningful if ¢, — #; > max(0, 71 —T5).
Also, note that zero-delay SLIs and fixed delay SLIs (6) are special cases of E-
SLIs and I-SLIs.

We now introduce the following two useful definitions.

Definition 4. An E-SLI or I-SLI is said to be expanding if T > T} and is said
to be contracting if Ty > Ts.

An E-SLI or I-SLI is neutral if it is both nonexpanding and noncontracting (i.e.,
T, =Ty). Clearly, zero-delay SLIs and the fixed delay SLIs (6) are neutral.

We now examine a logic gate with input a and output b and zero-delay SLI
(@a=1)— (b=1). Also, assume that the rise and fall, minimum and maximum
delays of the gate are TE TE TE 'TF . Arising transition of signal @ may
be accompanied by a rising transition of b with a time shift lying between
TE | TE asshown in Figure 12. Similarly, a falling transition of a may be ac-
companied by a falling transition of b with a time shift lying between T'F. | T'F
We can see from Figure 12 that when signal a is at a stable high value dur-
ing the entire interval [t, £2], b will be guaranteed to be at a stable high value
for the entire time interval [t; + T.F ., to + T'F: 1, excluding the shaded areas in

Figure 12. Therefore, we can formulate the following exclusive-SLI.

(@a=1)— (Bb=1)(TE _ TF)

max’ * min

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

492 o A. Glebov et al.

Fig. 12. Timed SLIa — b(TE TF).
Similarly, we can see that the presence of a high value for signal a during at
least one point in time interval [¢1, £2] implies that for signal b a high value will
exist for at least one time point in the interval [¢; + TE _, t5 + TF max], includ-
ing the shaded areas in Figure 12. We can therefore formulate the following
inclusive-SLI.

(@=1D=>G=1(TE, TE).

min’ * max
For typical gates, the time intervals of I-SLIs will expand as we propagate them
through the circuit, and the time intervals of E-SLIs will shrink.
Below, we now show the contrapositive and transitive laws for timed SLIs.

If(a=v,) > b=vp)(T1,Te) then (b=0p)=>@=0,)(—T1, —T). (11)
If (@ =vy)=> (b=vp)(T1,To) then (b=70y)— (@ =0,)(—T1,—T2). (12)

One can see that the result of applying the contrapositive law to an E-SLI
results in an I-SLI, and vice versa. This motivates the need for having
two types of timed SLIs. Although only E-SLIs are directly used for false
noise elimination, the creation and propagation of I-SLIs allows us to gen-
erate more E-SLIs through the application of the contrapositive law. For ex-
ample, in the situation shown in Figure 12 we can obtain a second E-SLI
(b=0)—(@=0)-TE —TF), through the application of the contrapositive
law to the I-SLI (a =1) =3 (b=1)TE | TI). In general, an E-SLI is always
accompanied by an associated I-SLI, which results in a reverse E-SLI by ap-
plying the contrapositive law. In addition to the contrapositive law, we can also
extend the transitive law to time SLIs as shown below.

If(a=v,) = b=vp)(T1,To) and (b=uvp)— (c=v T3, Ty)

then (a=v,)— (c=v)T+ T3, To + T4). (13)
If(a=vy)=>b=vp)T1,To) and (b=uvp)=> (c=v.)T5,Ty)
then (a=vy)=> (c=v)T1+ T3, To+ Ty). (14)

4.2 Propagation of Timed SLIs

Similarly to zero-delay SLIs, we store timed SLIs for a circuit node x using
four implication lists: L}, Hf, LY, Hi . Every implication list is a list of E-SLIs,
where each list entry contains both the implicating node and its associated time
shifts T} and T». For instance, the implication list

L} =1{a(1,2),a(—4, —2), b(0, 1)} (15)

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 493

describes the following set of E-SLIs at x: (a=1)— (x=0)(1,2),(a=1) —
(x=0)(—4, -2),(b=1)— (x =0)(0, 1).

If an implication list contains two entries with the same node but with dif-
ferent time shifts: a(Ty, Ts), a(T3, Ty), we can merge these two entries into a
single entry in the following two cases.

—Both SLIs are noncontracting and the intervals [T}, T5] and [T3, T4] intersect.
In this case, the two entries can be merged into a single entry a(T5, Tg), where
[T, Te] is the union of intervals [T4, T5] and [T3, T4].

—Both SLIs are contracting and interval [T}, T3] is contained in interval
[T5, T4]; then the first SLI can be deleted, since it follows from the second
SLI. (A similar operation can be performed when [T}, T3] contains [T3, T4].)

During propagation of timed SLIs, at each node all possible SLIs in the SLI
lists are merged.

The propagation of SLIs across a logic gate from the gate inputs to the gate
output is performed using two basic operations: timed union of two implication
lists and timed intersection of two implication lists, as explained in more detail
below.

Timed Union. The timed union of two implication lists Lq, Lo is denoted
as L = LiU;Ly, and is obtained as follows. First, we compose a new list L
containing all entries of L; and Ls shifted with use of proper gate delays. Then,
we perform all possible merges of entries (as described above).

Timed Intersection. To formulate the timed intersection operation, we con-
sider an AND gate with inputs a,b and output x, and the two timed im-
plications: (p=1)— (a = 1T, T¢) and (p=1)— (b=1)(T?, T?). For time in-
terval [t1, 2], if p([t1,t2]) =1 then a([R{, R§])=1 and b([Rll’, R;’]): 1, where
R{=t1+ T}, R§ =tz + T4, and Ri’ =t + le, RS =to+ T2b. We can take [¢1, t2]
such that intervals [R%, RY] and [R?, R}] intersect. In this case x=1
within time interval [Q1, @2], where Q;=max((R{+ Dg,max)’(Rl{ + Dp max))s
Q2 = mln((Rg + Daf,min)’ (RS + I)lf,min))’v"here Dz’;,max’ Daf,min’ Dl’;,max’ Db,min’ are
the minimum and maximum, rising and falling gate delays from input a or b
to output x. So, we obtain the following E-SLI at x.

(p=1— (& =D(max (T} + D max)> (T7 + Df max))
min ((T¢ + D/ ..), (T2 + D/ .;.)))- (16)

a,min b,min

Based on this consideration we can formulate the timed intersection rule: The
timed intersection of two implication lists L1, Lo is denoted as L = L1I; Ly, and
is obtained as follows. First, we initialize L with an empty list. Then, for every
pair of entries a(TY, Ty') from L; and b(le, sz) from Ly, such that a =5 (the
same node), we add a new entry to L using a formula like (16) with the proper
gate delays. Finally, we perform all possible merges of entries in L.

Clearly, this rule is valid also for lateral propagation of E-SLIs. There-
fore, the algorithm for E-SLI generation and propagation is similar to that for
zero-delay SLIs except for the additional timing information. Also, timed-SLIs
are propagated through complex gates using their ROBDD representations

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

494 o A. Glebov et al.

A - activity window

S
v [[—
A

h

/ EsLi S - Sensitivity window

Al
: A
A2 [N
A . X
A3 '
A ; X E-SLI
A4 L

Fig. 13. Constraint graph generation using timing windows and E-SLIs.

directly, without actual decomposition of the complex gates into simple
gates.

4.3 Use of Timed SLlIs for False Noise Analysis

Timed SLIs can be used in the elimination of false noise from a circuit. Un-
like zero-delay SLIs, a timed SLI will result in a conservative analysis that is
valid even for circuits with glitches. False noise analysis with timed SLIs is
similar to that with zero-delay SLIs in that we formulate the problem using a
constraint graph and solve it using the MWIS problem. First, a timing analysis
of the circuit is performed to obtain the timing windows of the signals. For
the aggressor nets, so-called activity windows are constructed, indicating the
possible time interval when an aggressor net can switch. For the victim net,
a so-called sensitivity window [Levy et al. 2000] is also constructed, indicat-
ing the time interval when a coupled noise event could have an impact on
the logic operation of the circuit. The use of E-SLIs combined with the tim-
ing windows is illustrated in Figure 13. A cluster of four aggressors (A1l to A4)
and one victim (V) is shown. For the victim both the activity and sensitiv-
ity windows are shown, and for the aggressors only the activity windows are
shown. We consider the presence of two E-SLIs, (V =1) - (A1=1)(T'1, T2) and
(A3=0)— (A4=1)T3,T4). The arrows in Figure 13 show timing shifts for
each E-SLI. We consider a HighF noise which requires that during the sensi-
tivity interval of V', the victim net is logic 1 while the aggressors switch from
1— 0. However, the E-SLI between V and Al prevents Al from switching
from 1 — 0 during the sensitivity interval since the victim is in a static logic 1
state after its activity interval and hence, Al is not included in the constraint
graph. The constraint graph therefore consists of three vertices, A2, A3, and
A4. Also, due to the E-SLI between A3 and A4, only one of these two aggres-
sors can switch from 1 — 0, resulting in an edge between A3 and A4. The false
noise analysis is now performed by solving the MWIS problem, as discussed in
Section 3.2.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The presented algorithms were implemented in an industrial noise analysis tool
called ClariNet [Levy et al. 2000]. The system was designed using a separate

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 495

Block / Cell Level Chip Level

|
|
| Chip-leVel required
blocks/cells in spice | | | netlist correlations
(] |
| A

chip level
logic constraints

logic
implications
black b .

Fig. 14. Block diagram of SLI-based noise analysis algorithms.

Table II. Results of Testing SLI Propagation Algorithm

Number #SLIs #SLIs Number
of Without with % SLIs/

Circuit Nets Lateral | Lateral | Lateral | Pair(%)
cnt_0 83 1196 1466 23 21
cent 1 87 1222 1516 24 20
cnt_ones 97 1976 2248 14 24
cnt_zeros 99 1812 2098 16 21
c432 248 7826 20210 158 33
clal 333 5136 5672 10 5
testckt 474 82572 86444 5 38
c1355 59 27218 32802 21 10

logic analysis engine called DiNo, which generates the SLIs for the circuit.
First, the noise analysis tool performs the analysis without logic information.
If a victim fails, the noise tool will request the SLIs for the nets belonging
to the noise cluster of the failing victim net and form the constraint graph to
determine the maximum feasible noise.

The analysis can be performed both at the block- and chip-level. At the block-
level, the tool directly operates on the transistor-level description of the circuit.
At the chip-level, DiNo first precharacterizes each gate in the library with a
so-called logic implication black box. These black boxes are then used in the
chip-level generation of SLIs to allow for increased efficiency. Figure 14 illus-
trates the chip level analysis methodology.

In Table II, we show the number of generated SLIs for a number of circuits
using the proposed SLI generation and propagation approach. The first two
circuits are ISCAS benchmark circuits [Brglez and Fujiwara 1985], and the
remaining circuits are industrial circuits synthesized using a commercial syn-
thesis tool. The third and fourth columns show the number of generated SLIs
using only direct propagation and using both direct and lateral propagation,
respectively. In the fifth column the percentage of increase in the number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

496 o A. Glebov et al.

Table III. Results of SLI-Based Noise Analysis on Block Level

Number Number Number Number

of of SLIs of Failures %
Circuit Nets Computed | Failures | with DiNo | Reduction
plldriver 35 188 59 31 47
cntrl 47 112 73 63 14
srot8 308 24380 401 358 11
xbar 433 2336 384 314 18
srot16 622 55976 975 841 14
adder32 1168 195902 112 81 28
srot32 1588 451422 2005 1417 29
proc 46168 10910 11603 10452 10

generated SLIs due to the use of lateral propagation is recorded. The final col-
umn shows the number of SLIs as a percentage of the total number of node
pairs. The results in Table II demonstrate the effectiveness of the lateral SLI
propagation proposed in this article, which increased the number of generated
of SLIs on average by 38%. The total number of SLIs, as a percentage of the
number of node pairs ranges from 5 to 38%, revealing significant dependence
on the structure of the circuit. On average, the algorithm generated SLIs for
21% of all node pairs.

The false noise analysis was used on a number of industrial circuits, as shown
in Table III. Circuits plldriver and cntrl are small control blocks. Circuit xbar
is a small crossbar switch, circuit rot8, rot16, and rot32 are 8, 16, and 32-bit
shifters, circuit adder32 is a 32-bit adder, circuit proc is a microprocessor core.
The second column shows the number of top level nets analyzed for noise. The
fourth column shows the number of noise failures without false noise analysis,
and the fifth column shows the number of failures with false noise analysis
as presented in this article. Note that the number of failures can exceed the
number of nodes, since there are several noise types for each net. The final
column shows the percentage of decrease in the number of noise failures due to
the use of false noise analysis. On average, a decrease of 27% is obtained over
all test cases, which significantly reduced the task of fixing noise failures for
the designers. Besides reducing the number of noise failures, SLIs also reduce
the noise value of the nets that remain failures. For example, for the circuit
proc the proposed approach significantly reduces the noise level for 3500 nets.

6. CONCLUSIONS

In this article, we presented a new approach for false noise analysis. We pro-
posed the use of logic implications for eliminating aggressor nets that cannot
simultaneously switch. We first showed how simple logic implications can be
effectively generated and propagated in the circuit. We proved that SLIs only
fully represent the logic function of a circuit if it consists of simple NAND, NOR,
and INV gates. We then showed how SLIs can be generated for complex gates
using implicit decomposition of their ROBDD representation. We also intro-
duced a new, so-called, lateral propagation method to increase the number of
obtained SLIs in a circuit and methods for handling tristate circuits. Using the

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

False-Noise Analysis Using Logic Implications . 497

SLIs we showed how the false noise problem can be formulated as a constraint
graph and solved as a maximum weighted independent set problem. Finally,
we showed how the proposed SLIs can be extended to timed implications for
conservative false noise analysis in nonglitch-free circuits. The presented algo-
rithms were implemented and used on industrial circuits. The results showed
a reduction of 27% in the number of failures on average, underscoring the im-
portance of false noise analysis.

REFERENCES

BanHAR, R. 1., Burns, M., HACHTEL, G. D., ET AL. 1996. Symbolic computation of logic implications
for technology-dependent low-power synthesis. In Proceedings of the International Symposium
on Low Power Electronics and Design.

Bosea, S. aND Hagg, I. N. 1998. Estimation of maximum current envelope for power bus analysis
and design. In Proceedings of the International Symposium on Physical Design.

BraLEz, F. AND Fustwara, H. 1985. A neutral netlist of 10 combinatorial benchmark circuits. In
Proceedings of the IEEE ISCAS, IEEE Press, Piscataway, N.dJ., 695-698

Brown, F. M. 1990. Boolean Reasoning. Kluwer Academic, Hingham, Mass.

Brvant, R. E. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35, 677-691.

CHEN, P. aND KeUTZER, K. 1999. Towards tyrue crosstalk noise analysis. In ACM/IEEE Proceed-
ings of the International Conference on Computer-Aided Design, 132-137.

Garey, M. R. anp Jounson, D. S. 1979. Computers and Intractability, A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

HacHTEL, G., JACOBY, R., MocEYUNAS, P., AND MorrisoN, C. 1998. Performance enhancements in
BOLD wusing implications. In ACM/IEEE Proceedings of the International Conference on
Computer-Aided Design, 94-97.

KIRKPATRICK, D. A. AND SANGIOVANNI-VINCENTELLL, A. L. 1996. Digital sensitivity: Predicting signal
interaction using functional analysis. In ACM/IEEE Proceedings of the International Conference
on Computer-Aided Design, 536-541.

Kunz, W. anp MEenon, P. R. 1994, Multi-level logic optimization by implication analysis. In
ACM/IEEE Proceedings of the International Conference on Computer-Aided Design, 6-13.

Levy, R., BLaauw, D., Braca, G., DasauPTa, A., GRINSHPON, A., OH, C., OrRsHAV, B., SIRICHOTIYAKUL, S.,
AND ZoroTov, V. 2000. Clarinet: A noise analysis tool for deep submicron design. In Proceedings
of the IEEE | ACM Design Automation Conference (June), 233—238.

Long, W., Wy, Y. L., anp Bian, J. 2000. IBAW: An implication-tree based alternative-wiring logic
transformation algorithm. In Proceedings of the Asian Pacific Design Automation Conference,
415-422.

Loukakis, E. anp Tsouros, C. 1983. An algorithm for the maximum internally stable set in a
weighted graph. Int. J. Comput. Math. 13, 117-129.

MemEeL, C. anp TeoBaLD, T. 1998. Algorithms and Data Structures in VLSI Design, Springer-
Verlag, New York.

Rugio, A., Itazakr, N., Xy, X., anp KiNvosHiTa, K. 1997. An approach to the analysis and detection
of crosstalk faults in digital VLSI circuits. IEEE Trans. Comput. Aid. Des. 13, 3.

SueparD, K. L. 1998. Design methodologies for noise in digital integrated circuits. In Proceedings
of the ACM/IEEE Design Automation Conference, 94-99.

SuePARD, K. L., NaravanaN, V., ELEMENDORF, P. C., AND ZHENG, G. 1997. Global harmony: Coupled
noise analysis for full-chip RC interconnect networks. In ACM /IEEE Proceedings of the Interna-
tional Conference on Computer-Aided Design, 139-146.

Tomngr, T. S., A, H., HETZEL, A., AND KoEHL, K. 1998. Analysis, reduction and avoidance of crosstalk
on VLSI chips. In Proceedings of the International Symposium on Physical Design, 211-218.

ViITTAL, A. AND MAREK-SADOWSKA, M. 1997. Crosstalk reduction for VLSI. IEEE Trans. Comput.
Aid. Des. 16, 3 (March), 290-298.

VitTAL, A., CHEN, L. H., MAREK-SADOWSKA, M., WANG, K.-P., AND YaNG, S. 1999. Crosstalk in VLSI
Interconnections. IEEE Trans. Comput. Aid. Des. Integ. Circ. Syst. 18, 12 (Dec.), 1817-1824.

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

498 o A. Glebov et al.

WROBLEWSKI, A., SCHIMPFLE, C. V., AND NossEK, J. A. 2000. Automated transistor sizing algorithm
for minimizing spurious switching activities in CMOS circuits. In Proceedings of the ISCAS,
291-294.

Xug, T., Kun, E. S., aAND WanG, D. 1994. Post global routing crosstalk risk estimation and re-
duction. In Proceedings of the IEEE [ACM International Conference on Computer-Aided Design,
616-619.

Zuou, H. anp Wong, D. F. 1998. Global routing with crosstalk contraints. In Proceedings of the
IEEE/ACM Design Automation Conference, 374-377.

ZURADA, J. M., Joo, Y. S., anp BeLL, S. V. 1989. Dynamic noise margins of MOS logic gates. In
Proceedings of IEEE ISCAS, 1153-1156.

Received June 2001; revised May 2002

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.

