Slope Propagation in Static Timing Analysis

David Blaauw, Vladimir Zolotov;, Savithri Sundareswaran*, Chanhee Oh and Rajendran Panda
Motorola Inc. Austin, TX, *Motorola India Electronics Ltd., Bangalore, India

1 Abstract

Static timing analysis has traditionally used the PERT method for
identifying the critical path of a digital circuit. Due to the influence of
the slope of a signal at a particular node on the subsequent path delay, an
earlier signal with a signal slope greater than the slope of the later signal
may result in a greater delay. Therefore, the traditional method for tim-
ing analysis may identify the incorrect critical path and report an opti-
mistic delay for the circuit. We show that the circuit delay calculated
using the traditional method is a discontinuous function with respect to
transistor and gate sizes, posing a severe problem for circuit optimiza-
tion methods. We propose a new timing analysis algorithm which
resolves both these issues. The proposed algorithm selectively propa-
gates multiple signals through each timing edge in cases where there
exists ambiguity regarding which arriving signal represents the critical
path. The algorithm for propagating the corresponding required times is
also presented. We prove that the proposed algorithm identifies a cir-
cuit’s true critical path, where the traditional timing analysis method
may not. We also show that under this method circuit delay and node
slack are continuous functions with respect to a circuit’s transistor and
gate sizes. In addition, we present a heuristic method which reduces the
number of signals to be propagated at the expense of a slight loss in
accuracy. Finally, we show how the proposed algorithm was efficiently
implemented in an industrial static timing analysis and optimization tool,
and present results for a number of industrial circuits. Our results show
that the traditional timing analysis method underestimates the circuit
delay by as much as 38%, while that the proposed method efficiently
finds the correct circuit delay with only a slight increase in run time.

2 Introduction

Two approaches are commonly used to verify the timing of a digital
circuit: dynamic simulation and static timing analysis. A disadvantage of
dynamic simulation is that it requires the user to generate a set of input
vectors which exhaustively exercise all possible paths in a circuit. It is
therefore applicable only to small circuits and tends to be error prone.
For large designs, static timing analysis has become the predominant
method for timing verification. Static timing analysis also has become
the core engine used inside circuit optimization tools such as transistor
and gate sizing tools [2], [6] and logic synthesis tools.

In static timing analysis, the so-called arrival times or signals, which
represent the latest time a signal can transition at a node due to a signal
change at a circuit input, are propagated forward through a circuit from
inputs to outputs. Similarly, the so-called required times, which repre-
sent the latest time a signal can transition at a node in order to meet per-
formance constraints, are propagated from circuit outputs to inputs. An
arriving signal consists of both the crossing time, when the -signal
reaches the 1/2 Vdd point, and the slope of the signal. As signals are
propagated across a gate, their crossing times and slopes are updated.

In recent years, extensive research has focused on how to efficiently
and accurately calculate propagation delays and slopes for gates in a cir-
cuit [1], as well as on methods to eliminate false paths, which are unreal-
izable due to logic and timing correlations in a circuit [7], [8]. However,
the essential principle of static timing analysis has remained largely
unchanged since it was proposed in the eighties by [5], [4] and is still
based on two fundamental assumptions:

The first assumption is that, when calculating the delay of a gate, only
one input of the gate is switching at a time. This results in a calculated

0-7803-6445-7/00/$10.00 © 2000 IEEE

338

gate delay that may be smaller than the actual delay when multiple
inputs switch simultaneously, and may therefore yield an overly optimis-
tic timing analysis report. In [9], this problem was discussed and a solu-
tion was proposed.]

The second assumption is that at each node, the arriving signal with
the latest crossing time results in the longest path delay and is therefore
propagated forward, while all earlier arriving signals are not. This
assumption is the topic of this paper. The traditional implementation of
propagating only the latest arriving signal is referred to as the latest
propagation algorithm (LPA).

LPA selects one signal for forward propagation out of all signals
arriving at a node. The basic problem with LPA is that it makes this
selection based only on the crossing time of the arriving signals without
regard to their slopes. The slope of a signal at a node, however, has a
direct impact on the delay of subsequent gates in its path, and therefore
affects the overall path delay of the signal. Given two signals, the signal
with an earlier crossing time might well have a larger overall path delay
if it has a significantly larger signal slope. Such a signal would not be
propagated under LPA and its path would remain undetected, resulting in
an underestimation of the worst circuit delay. To illustrate this problem,
we have shown in Figure 1(a) a simple two-input circuit with two possi-

TTTTTDOETTTTTTI T
6,800 0,300 0,600 0.980 1.200 1.508 9.600 9.309 0.680 6,9
time in nS
) ©
T,

n
1.158 _ [4
1.108_|{
1.850_|
1.008_|
9.950 _}
0.900 _]
0.850_}

W(GI)

0.800_|

8.758 _}

8.700
r1r 17 1 T 1 T T T T T 1T T T T 11
1.490 1.860 2.200 2.600 3.860 3.409 3,800 4.200 4.609

@
Figure 1. Error in calculated circuit delay with LPA method

ble signal paths, one originating from input A (signal A) and one origi-
nating from input B (signal B). Figure 1(b) shows the Spice waveforms
and the associated crossing time and slope of the two signals at node D.
Since the crossing time of signal B (0.7ns) is later than that of signal A
(0.64ns), LPA propagates signal B through gate G3 resulting in a total
path delay of 0.82ns as shown in Figure 1(c). However, the slope of
arrival signal A (1.36ns) is larger than that of signal B (0.1ns), and would
result in a significantly larger delay of gate G3 if signal A was propa-
gated instead of signal B. The total path delay of signal A would there-
fore be 0.95ns, as shown in Figure 1(c). For this simple circuit,
traditional timing analysis using LPA reports a worst circuit delay of
0.82ns, while the actual worst circuit delay is 0.95ns. Although LPA cor-
rectly calculated the path delay of signal B, it did not detect that signal A
resulted in a longer path delay than signal B and therefore identified the
wrong critical path and underestimated the total circuit delay. It should
be noted that this error is independent of the delay model provided the
model accounts for the influence of signal slope on gate delay, as is the
case for all modern delay models. In the above example, the circuit was
simulated with Spice.

Besides underestimating the total circuit delay, LPA poses problems
to circuit optimization algorithms since it results in discontinuities in the
calculated worst circuit delay with respect to transistor and gate sizes in
the circuit. This is illustrated in Figure 1(d) where the worst circuit delay
is shown as a function of the size of gate G1. A sudden change in the cal-
culated circuit delay occurs when the size of G1 is increased such that
the crossing time of signal B at node D becomes earlier than that of sig-
nal A. At this point, the signal propagated by LPA switches from signal
A to signal B and the slope used to calculate the delay of gate G3
changes abruptly from 0.1ns to 1.36ns. This results in a sudden increase
in the delay of G3 and hence in the worst circuit delay. Of course, the
actual delay of the circuit is a continuous and smooth function of gate
sizes, and the observed discontinuity is purely an artifact of LPA.

Such discontinuities pose a severe problem for efficient gradient-
based optimization methods, which rely on the continuity and smooth-
ness of their objective function [3}. Discontinuities tend to trap such
optimization methods far from an optimal circuit solution. To address
this problem, a recently proposed optimization method [2] propagates
the latest arriving signal, but modifies its input slope to be the maximum
slope of all signals arriving at a node. This guarantees the continuity of
the objective function, but can significantly overestimate circuit delay. In
the example of Figure 1, the propagated arrival signal would have a
crossing time of 0.7ns and a slope of 1.36ns, resulting in an overestima-
tion of circuit delay and a sub-optimal optimization result.

Increasingly, designers are using automated sizing and logic synthesis
tools which result in optimized circuits with highly balanced path delays.
In such balanced circuits, the signals converging at a particular node are
likely to have crossing times very close to one another. However, they
may have dramatically different slopes, and LPA is therefore more likely
to select the wrong signal for forward propagation and report an optimis-
tic worst circuit delay. Hence, there is a critical need to address this issue
in static timing analysis.

In this paper, we propose a new signal propagation method which is
guaranteed to identify the worst circuit delay correctly. The algorithm
uses the propagation of multiple signals in cases where there is ambigu-
ity regarding which signal results in the longest path delay. An associ-
ated algorithm for backward propagation of required times is also
presented to allow the calculation of slacks for all nodes in the circuit.
We shall prove that the proposed algorithm identifies the correct worst
delay of the circuit and also that the calculated worst circuit delay is con-
tinuous with respect to gate/transistor sizes. Since the proposed algo-
rithm increases the number of propagated signals and required times, it
increases the run time of the analysis compared to the LPA method.
However, we show that for digital circuits an upper bound can be calcu-
lated for the added delay due to differences in the slope of signals, and
we use this proposed bound to reduce the number of propagated signals.
With this bound, the increase in the run time over LPA proves to be small
in practice. Based on experiments on several industrial circuits, we show
that LPA can underestimate the worst path delay by as much as 38%. We

339

also demonstrate the occurrence of discontinuities in the worst circuit
delay when sizing using LPA and show how these discontinuities are
removed with the proposed propagation algorithm.

The remainder of this paper is organized as follows: In Section 2 we
present a formal formulation of the timing analysis problem. In Section 3
we present the newly proposed propagation algorithms, and prove that
they correctly identify the worst circuit delay. We also present a delay
bound for reducing the run time for digital circuits. In Section 4 we
present our results, and in Section 5 our conclusions.

3 Problem Formulation

In this section, we present a formal definition of a timing graph and

the latest propagation algorithm. For the purpose of our discussion, we
do not include the elimination of false paths due to logic or timing corre-
lations in a circuit in our formulation. The problem addressed in this
paper is orthogonal to the problem of false path elimination, and our pro-
posed solution can be applied to these methods as well.
Definition 1. A timing graph is defined as a directed graph having
exactly ome source and one sink node: G={N,Engng, where
N={np,ny,..,n;} is a set of nodes, E={ejey,....e)is a set of edges,
n € N is a source node, and n, € N isa sink node. Each edge e € E
is simply an ordered pair e=(n;,n;) of nodes.

The nodes in the timing graph correspond to nets in the circuit, and
the edges in the graph correspond to the connections between gate inputs
and outputs. Although circuits in general have multiple inputs and out-
puts, we can trivially transform them to graphs with a single source and
sink by adding a virtual source and virtual sink. We also assume without
loss of generality that signal crossing times are measured at 50% of the
signal level.

Each edge E is assigned two functions: a delay function d,=d,(sy),
which represents the signal propagation delay from a gate’s input to its
output, and a slope function s,=s,(s;), which represents the slope of the
signal at the gate’s output. Both are functions of the gate input slope s;
and have the following property which reflects the fact that for a logic
gate, a faster input slope produces a lesser gate delay and faster output
slope.

Property 1. If slope s,<s; then delay d,(s,)<d.(s;) and slope
So(5a)<Se(sp)-

Below we give a definition of a path in the timing graph G and of its
path delay.

Definition 2 A path P of Timing Graph G={N,E,ngng is a sequence of
its nodes P=(ng,ny,...,n;) such that each pair of adjacent nodes n, and ny
has an edge egp=(ngny).

A path P=(ngny,...,n,) defines a sequence of edges (ezp.€p--r€y;).
Given the slope s, at the first node n,, of path P, we can determine the sig-
nal slopes for all the nodes on the path using the equation s;=s;(s;) recur-
sively, where s; is the to-be-determined slope at node n;, s; is the slope at
the predecessor node n;, and s;; is a slope function of the edge e;;. After
the signal slope at each node of a path is determined, the delay of the
path is determined using the following definition:

Definition 3. The path delay dp of path P is defined as 2 4 s)) s

eij ep
where dygs;) is a delay of an edge ¢;; on path P with input slope s;, and
the summation is over all edges belonging to path P.

Finally, among all paths terminating at a node, we define the path with
the maximum crossing time as the critical path up to that node:
Definition 4. A path having the maximum delay among all paths with
the same ending node is called critical.

The critical path of the sink node nyof a timing graph is referred to as
the critical path of the timing graph, and its path delay, d(G), is referred
to as the delay of the timing graph. The main objective of timing analysis
is to find the correct critical path in a timing graph and to compute its

delay. It is clear that this critical path is the limiting factor for the perfor-
mance of a circuit, and that its delay must be decreased in order to
increase circuit performance. We will now show that the actual delay of
a timing graph is a continuous function with respect to gate delays. This
property is important for circuit optimization methods, since many of
such methods rely on their objective function being continuous.
Theorem 1. If the edge delay and slope functions are continuous with
respect to some parameters, then the timing graph delay is also continu-
ous with respect to these parameters.
Proof. The delay of each path in a graph is a finite sum of finite compo-
sitions of delay and slope functions of individual edges. Hence, the path
delay is a continuous function with respect to the parameters of the slope
and delay functions. The total graph delay is the maximum of all path
delays in the timing graph and is therefore also continuous, since the
maximum operation is a continuous function.

The most obvious technique for finding the critical path of a given
timing graph is to simply enumerate all paths from its source to sink,
compute their delays, and select the path with the worst delay. However,
since the worst-case number of paths in a circuit is exponential with cir-
cuit size, this approach is infeasible for modern circuits. The traditional
approach for finding the critical path in a circuit is based on the PERT
algorithm and uses the propagation of signals from the source node to
the sink node. We define a signal as follows:

Definition 5. A signal S, at a node n is a quadruplet S,={n, Ty, s, P}
where n is the node at which the signal is situated, T is its crossing time
at the node n, s is its slope at the node n, and P=(ng, n,, ..., n) is the sig-
nal propagation path from the source node r, to the node of interest n.

The traditional timing analysis algorithm iterates through each node
in a timing graph in topological order, selecting the signal with the latest
crossing time from among all incident signals for forward propagation.
As a signal is propagated forward, its crossing time is increased by gate
delay dyqs;) and its slope is replaced with s;(s;), where s; is the slope of
the selected signal. We have referred to this algorithm as the latest prop-
agation algorithm (LPA) to reflect its selection criteria. Note that in LPA,
only one signal is propagated across each edge, and each node in the tim-
ing graph is visited exactly once. Although in our notation a signal at a
particular node records its entire path to that node, in practice a signal
only needs to record its predecessor node. So, traditional timing analysis
has a run time complexity that is linear with the number of edges in the
timing graph. The latest propagation algorithm is presented below in
Figure 2.

In Section 1, we already presented a small example circuit for which
the latest propagation algorithm identifies the wrong critical path in the
timing graph. We now show below in Lemma 1 that, given two signals at
a particular net, the path delay of any path from this net to the sink node
of the timing graph will be greater for the signal with the slower signal
slope. We then show in Theorem 2 that if this signal with the slower
slope also had an earlier arrival time, this signal can cause LPA to fail.
We prove that the existence of such a signal is a necessary and sufficient
condition for the existence of a graph with this signal on which LPA
fails. From this we show, in Theorem 3, that the graph delay calculated
by LPA can be discontinuous with respect to the gate sizes.

1. Assign to the source node ny the signal So={ng, Ty sg Pp/
where Tp=0, Py=(ng)
2. Visit each node, i, in the graph in topological order doing the
following:
2.1. For each incoming edge ey; to node i from node k with sig-
nal Sy=(ny, Ty, 5, Py), create a new signal Sy;=(n; Ty, Sp;
Py;) where Ty=Ti+di{s), s5i=Sk{S)» Pri=(Pg, n)
2.2. From all signal §; select signal S;,,.,=(1;, Tigresy Siatess
Piasess): where Tlate:x = ma'x(Tki)
2.3. Assign the computed signal ., to node n;.

Figure 2. Traditional arrival signal propagation algorithm.

Lemma 1. Given two signals S,={n, T, s, P,} and Sy={n, T}, 55, PpJ at
node n, where s,<s;, then for any signal path Q from node » to node z the
path delay d,(Q) of signal S, is always less then the path delay d(Q) of
signal S, .
Proof. Lemma 1 follows directly from Property 1 of delay and slope
functions, the recurrent dependence of gate output slopes on gate input
slopes, and the additive property of path delay in Definition 3.
Theorem 2. If, for some node n; of timing graph G, LPA selects the sig-
02l Syures=(M; Tiates Stateso Platesr) and the slope sy is less than the
slope s, of another signal S;;=(n;, T},s;, P;) propagated to n;, then we can
construct a new graph H, containing all nodes and edges in G that have
already been visited by LPA, such that in H Sy is critical but S,,,,, is not.
Proof. We first construct H such that it contains only the nodes from G
that have been visited by LPA. To complete H, we then add a sink node
nyand an edge e;=(ny ng) for each node ny of H that does not have an
outgoing edge (including node #;). To all edges e; we assign delay func-
tions di(s)=0, except for e;=(n; ny). We now calculate the maximum path
delay of the set of all paths that do not pass through node n;, and denote
it as d,,,. For edge e;=(n; ng) we assign a delay function dj(s) such that
A S1atest)=Amax A di(sp)=d 1+ Tiges-Ti+A, where A > 0. Note that
this delay function does not violate Property 1. From this construction it
is clear that signal S;; will arrive at the sink node of timing graph H later
than signal S;;e-

From Theorem 2 we obtain the following corollary:
Corollary 1. There exist timing graphs for which LPA computes an
incorrect critical path and delay.
Theorem 3. It is possible to construct a Timing Graph G with edge delay
functions d, depending continuously on a certain edge parameter x,, but
such that the timing graph delay d(x,) computed by LPA is a discontinu-
ous with respect to x,.
Proof. We use the timing graph H constructed in the proof of Theorem 2.
Assuming that the edge delay function d, of subpath Py, depends
strongly and monotonically on parameter x,, we set x=xp such that the
path delays of subpath Sj,,,, and Py; are equal. Then, a small variation of
x around xp will result in a variation of the graph delay by A.

4 Proposed Propagation Algorithm

In order to perform a timing analysis which correctly identifies the
critical path and delay of a timing graph, we propose a new propagation
algorithm. The algorithm propagates multiple signals forward in cases
where there is ambiguity regarding which signal results in the longest
path delay. Only if two arrival signals are incident on a node, such that
one of the signals has both an earlier crossing time and a faster slope, is
this signal pruned from the analysis. We prove that this algorithm finds
the correct critical path and graph delay for any timing graph. Also, we
show that the algorithm propagates the minimal set of necessary arrival
signals. It is not possible to propagate fewer signals without incurring an
incorrect critical path and circuit delay for some general timing graph.
However, given some additional properties of the signal propagation
through digital circuits, we can bound the delay added due to the slope
difference between two signals. In Section 3.2 we show how this allows
us to significantly reduce the number of propagated signals for this spe-
cific class of timing graphs. In Section 3.3 we present the algorithm for
propagating a required time backward from the sink node to the source
node. This is necessary to calculate slacks for all circuit nodes.

4.1 Arrival Signal Propagation

The proposed arrival propagation algorithm is shown below, in Figure
3. Note that in steps 2.2 and 2.3, a set of signals is propagated forward
instead of a single signal as in LPA. We now prove in Theorem 4 and 5
that the proposed algorithm identifies the correct critical path, in Corol-
lary 2 that the calculated graph delay is a continuous function of edge

340

delays, and in Theorem 6 that the number of propagated arrival signals is
minimal.

1. Assign to source node n the signal set Cyp={S,}, where Sp={n,,

To s, Pol, To=0, Po=(np)

2. Visit each node #; in topological order and compute its signal set
Cy=(Sk1,5k2,---) as follows:

2.1. For each incoming edge e;=(n n;) from node k with signal
set Cy={Sy;, Siz-..J create a new signal set
Ck,-=(Ski1,Sk,-2_Sk,-3’..4), with Skl'j=(ni'Tkij’skij'Pki)’ where
Tki=Tij+dri(siids Skij=SkilSkjr Pri=(Pio 1y)-

2.2 Assign to node n; signal set C;, consisting of the union of

signal sets Cy;.

2.3 Remove from the signal set C; any signal Si={n;, Tjj s Py}
if C; has another signal Sy={n; Ty, sy, Py} such as T<Ty
and Sij<sik

Figure 3. Proposed Signal Propagation Algorithm.

Theorem 4. For any timing graph G and for any of its nodes n;, any sig-
nal Sy={n; Tj; sy, Py;} that is pruned by the proposed algorithm does not
have the latest crossing time at any node n; following node n;.

Proof. If, in the proposed algorithm, we prune signal Sy={n; Ty sy Pk,
then at this node n; there exists another signal Sy={n; Ty, sy, Py} such
that T;<Tj and s;<sy. Since both §;;and S propagate through the same
edges after node n;, and from the property of the slope function, it fol-
lows that at any node n, after node n; the slope s;; of signal Sy; will be less
than the slope sy of Sy. From this and the property of the edge delay
function it follows that the edge delay along the path of signal Syj from
node n; to node n; will always be less than the edge delay along the same
path for signal Sy. Since the crossing time is the summation of edge
delays from node n; to node n;, and since T,~]<T,-,c at node n;, it follows that
S;; will always be earlier than S,

Theorem 5. The proposed algorithm correctly calculates the critical path
and delay of a timing graph. ‘

Proof. From Theorem 4, it follows that the proposed algorithm never
prunes a signal that could be critical. Hence, all potentially critical sig-
nals are propagated to the sink node, where the critical path and graph
delay are determined by identifying the latest signal from the set of prop-
agated potentially critical signals.

Corollary 2. The timing graph delay computed by the proposed algo-
rithm is a continuous function of any parameters of the edge delay or
slope function if these functions are, in turn, continuous functions of the
chosen parameters.

Proof. It follows from the fact that the algorithm correctly computes the
timing graph delay, and from Theorem 1 that the calculated timing graph
delay is a continuous function of the parameters of the edge delay and
slope functions.

Theorem 6. If, for some node »; of timing graph G, the proposed algo-
rithm selects the signal S;;=(n,, Tjjs35.Py), we can construct a new graph
H containing all nodes and edges in G that have already been visited by
the algorithm, such that the critical path of H includes the path P;;.
Proof. The proof for this theorem is similar to that of Theorem 2, and is
omitted for brevity. :

Theorem 6 shows that if, at the time of pruning at node n;, there is no
information available regarding the timing graph beyond node n;, it is
necessary for the algorithm to propagate all selected signals. It is there-
fore impossible to reduce the number of propagated signals further with-
out possibly incurring a wrong solution. If, however, certain properties
(which we discuss in the next section) can be assumed for this portion of

341

the timing graph, the number of propagated signals can be reduced fur-
ther.

4.2 Reduction in Propagated Signals

If the proposed algorithm is used for the analysis of digital circuits,

we can utilize some well-known properties of such circuits to signifi-
cantly reduce the number of propagated signals. Let us consider two ris-
ing signals S;, and S, that are applied to a digital gate resulting in two
falling output transitions Sja and Sjb, as shown in Figure 4(a). We define
the following property:
Property 2. For a digital gate connecting input node n; with output node
n;, if two input signal waveforms S;, and Sy, are related such that at any
point along their transition S;, is earlier than S, then for all time points
along the output waveforms S;, and S, waveform §;, will be earlier than
S]‘b.

If signal S;, is later than S;, at all points along its transition, it follows
that at every point in time, the voltage of signal waveform S;, will be less
than the voltage of waveform S;, (assuming a rising input transition).
Digital gates have the property that at any instance in time, a lesser input
voltage results in a lesser instantaneous drive current that charges the
output load of the gate. Since the output voltage waveform of a gate is
simply the integral of this drive current divided by the load capacitance,
it is clear that a gate with a lesser driving current at all time points, will
also have a less complete transition and therefore a later waveform at all
points. In other words, a digital gate can only produce an output signal
waveform Sj, that is earlier than signal Sj,, if the input signal Sj, is ear-
lier than signal S;, on at least one time instance along its transition. Note
that Property 2 is stronger than Property 1, and that it may not hold for
certain analog circuits or for circuits where parasitic inductance and cou-
pling capacitance dominate the signal delay. However, Property 2 holds
for all standard digital circuits for which static timing analysis is per-
formed, including very high performance and deep-submicron designs
as illustrated by the waveforms in Figure 4(a) from a typical gate of a
0.13um, 2Ghz digital processor.

We now consider two signals S;, and S;, at a node »; with the same
crossing time but with different slopes, s;, and s;,, signal S;;, having the
slower slope, as shown in Figure 4(b). We would like to calculate a
bound J on the difference in crossing times of these two signals at the
sink node ny. To do this, we first replace signal S;, with a signal §;., such
that signal §;. has the same slope as signal S;, and completes its transi-
tion at the same point in time as signal S;;. Note that signal S;. is later
than signal S;;, at all points along its transition. Based on Property 2, sig-
nal §;, will be later than signal S, at all points along its transition at the
next node n;, and by recursion, also at node ny Therefore, S;, has a later
crossing time at node ny than signal Sg, and therefore the difference in
crossing times of S;, and S at node n;is an upper bound on the differ-
ence in the crossing times of S;; and Sy, at node n;. Since §;, and S;. have
identical slopes, it is clear that the bound & is exactly the difference in
the crossing times of S;, and S;.. at node n;, which is (s;, - 5;,) 7 2.

Using 8, we can prune from the propagation any signal S;,={n; T;,
Siw Pig/ if another signal S={n; Ty, sy, P/ exists such that Ty, - T;, >
8, 0r Ty, - Ty, > (54, - 5;3) / 2. In this case, signal S, is earlier than signal
S;p to such an extent that the added delay of S;, in the path from n; to ny
will not render it critical. Use of this condition in step 2.3 of the pro-
posed algorithm limits the propagated signals to a small window of
crossing times preceding the latest crossing time and significantly
reduces the number of signals propagated through the timing graph. This
condition guarantees the correct calculation of the critical path and graph
delay for circuit where the gates comply with Property 2, which holds
for all digital circuits. The proof is omitted for brevity. Note that even if
Property 2 does not hold, the obtained timing result will be at least as

Ty \BREERS REa YT
9.200 9.300 9,400
time in nS

9.108

t
: Sicrl !
' L

(sip-5iaV2}
PO

Figure 4. Bound on added path delay

accurate with LPA, since the signal with the latest crossing time is
always be propagated.

We now examine the runtime complexity of the proposed algorithm.
In step 2.3, a subset of all signals incident on a node is selected to be
propagated forward. This operation involves the sorting of all signals
according to their crossing time and is thus O(N log N), where N is the
number of signals incident on the node. The sum of all of signals propa-
gated across an edge in step 2.1 is in the worst case equal to the sum of
all path lengths in a circuit. Therefore, the overall complexity of the pro-
posed algorithm is exponential in the worst case, since the number of
paths in a circuit is exponential with the size of the graph. This, however,
would require that the signal order in terms of decreasing crossing time
and increasing signal slope is identical, thereby not allowing any prun-
ning. In practice, this is unlikely, and we find that for industrial circuits
the number of signals that are propagated in the proposed algorithm is
increased only slightly when compared with LPA.

4.3 Backward Propagation of Required Times

Many optimization algorithms require the calculation of node slacks
for all nodes in a circuit. To accomplish this, required times must be
propagated backward from sink node nsto source node n, and the slack
at each node must be calculated as the difference between the required
time and the crossing time of a signal. As required times are propagated
backward across edges, their crossing times are decremented by the edge
delay. For each signal that is propagated forward, it is therefore neces-
sary to have an associated required time that is propagated backward
such that this required time is decremented by the same delays as the
crossing time of its forward propagated signal was incremented. This
way, the arrival signal and associated require times are updated with the
same edge delays as they are propagated, and remain consistent. A pos-
sible implementation involves storing multiple edge delays for each edge
in the timing graph, and tagging each edge delay and associated arrival
signal and required time with a unique identifier.

For an arrival signal Sj, that is pruned at node n;, a new required time

T;, must be created during the backward propagation as shown in Figure

5. For this purpose, we select from among the propagated signals at node

Figure 5. Propagation of required times.

n; the signal S;, with a slope s;, that has the least slope greater than S;, of
all propagated signals. The required time Tj,, of signal Sjp is then propa-
gated backward as T;,. In Figure 5, required time 7. is selected from
among the two propagated required times Tj;, and T;.. Using the above
criteria for creating the required time of a pruned signal, the selected sig-
nal §;, has a greater slope than the pruned signal S;,. Therefore, the
required time T, will overestimate the delay between node n; and ng
meaning that T, will be earlier than the exact required time of S, result-
ing in an over-estimation of the slacks on the path P,; of signal S;,. This
guarantees the important condition that the slack along the sub-critical
path of §;, is always higher than the slack of the critical path at node n;.

5 Results

The proposed algorithms were implemented in an industrial transis-
tor-level static timing analysis and optimization tool. Both the basic
algorithm presented in Figure 3 and the extended algorithm which
reduces the number of propagated arrival signals for digital circuits were
implemented. The algorithms were tested on a number of industrial
designs ranging in size from 780 to 12,500 transistors. These included
circuit blocks from high-performance microprocessors and DSP chips.
In Table 1, we show the circuit delay calculated by the traditional LPA

Total Circuit Delay in nS
Circuit |# transistors
LPA New %Error in LPA

mux 784 0.88 0.99 10%
adder 1,074 0.55 0.87 36%
decoder 1,490 2.11 347 38%
contr3 3,190 2.63 322 18%
reg 4,902 3.83 . 4.66 17%
contr2 11,112 8.49 9.26 8%
contrl 12,519 2.07 2.26 8%

Table 1. Effect of slope propagation on estimated delay

method and the proposed exact method from this paper. The table dem-
onstrates that the LPA method underestimates the circuit delay by as
much as 38% for the decoder circuit and by 19% on average. It is clear
that this is a significant error that can not be ignored.

In Table 2, the run time and the number of propagated signals for the
traditional LPA method, the proposed basic method, and the proposed
extended method are shown. The exact method has a run time penalty of
4.1 - 17.8% over the traditional LPA method. On the other hand, the
extended method reduced the run time penalty to only 1.2 - 9.9% over
the LPA method. In all cases, the extended method produced identical
results with the basic method, as expected. Finally, the proposed meth-
ods were also used in transistor size optimization. In Figure 6, we show
the area/delay trade-off produced during the optimization of circuit mux
for both the LPA and the proposed method. The discontinuities in the
circuit delay are evident towards the end of the trade-off curve produced

342

by LPA. The trade-off curve produced by the proposed method is free of 6 Conclusions
such discontinuities.

In this paper we have shown that the traditional timing analysis
approach can significantly underestimate the delay of a circuit, due to its

#s;gnals propagated(% Rur_l time in Seconds (% method of propagating arrival signals. We also showed that this can lead

. increase over LPA) increase over LPA) to discontinuities in the circuit delay as a function of its transistor sizes,
circuit New. New which creates difficulties for circuit optimization tools. We therefore pre-
LPA New Prunc, d LPA| New ane’ d sented a new algorithm that addresses this problem and is proved to cor-

rectly calculate the critical path in a circuit and its circuit delay. We also

mux [1614 [1836(13.8)f 1744 8.1) | 1.7 [1.9(11.8) | 1.8(5.9) showed that this algorithm propagates the minimum number of possible
adder | 1524 1597(48) 1541(1.1) | 49 5.1(4.1) 50(20) arrival signals for a general timing graph Then, based on the speciﬁc

properties of digital logic gates, we showed that the number of propa-
decoder| 2636 | 2732(3.6) | 2638(0.1) | 3.25 | 3.37(3.7) |3.29(1.2) gates arrival signals can be further reduced for digital circuits, without
contr3 | 4863 |5476(12.6)| 5276(8.5) | 8.3 | 8.6(3.6) | 8.4(1.2) incurring an error. Finally, we presented the algorithm for propagating
reg 132130[35150(9.4)| 32584(1.4)| 15.1 |16.8(12.3)] 15.9(5.3) the required times in a manner consistent with the arnval signal propaga-
contr2 |92792(98288(5.9)| 93511(0.8) | 35.6 [41.0(17.8)[30.19.0)| ‘tion to enable the calculation of node slacks at all circuit nodes. The pro-
posed algorithms were implemented in an industrial timing analysis and
contrl |58215(59820(2.8)| 58595(0.7) | 32.5 | 34.4(6.1) | 33.7(3.9) optimization tool and were tested on a number of processor circuits. The
results show that the traditional method can underestimate the actual
delay of a circuit by as much as 38%. We also show that the proposed
algorithms increase the run time of timing analysis only marginally by
10%. ’

Table 2. Performance Comparison

7 References

[1] Ayman I. Kayssi, Karem A. Sakallah, Trevor N.Mudge The
Impact of Signal Transition Time on Path Delay Computation,
IEEE Transactions on circuits and systems-II: Analog and digital
signal processing, Vol. 40, No. 5, May 1993

[2] Chandu Visweswariah, Andrew R.Conn, Formulation of Static
Circuit Optimization with Reduced Size, Degeneracy and
Redundancy by Timing Graph Manipulation, Proc. IEEE’ZACM
ICCAD, 1999, pp.244-251.

[3] Gill, P.E., Murray, W. and Wright, M.H., Practical Optimization,
Academic Press, New York, 1983.

[4] Hitchcock, R.B. Timing verification and the Timing Analysis
program, Proc., IEEE/ACM DAC, 1982, pp.594-604

[5] Jouppi, N.P. Timing analysis for nMOS VLSI, IEEE/ACM
Design Automation Conf., 1983, pp. 411-418

[6] J.P.Fishburn, A.Dunlop, “TILOS: A posynomial programming
approach to transistor sizing”, ICCAD, Nov 1985

[7] S.Devadas, K.Keutzer, S.Malik, “Computation of Floating Mode
Delay in Combinational Circuit: Theory and Algonthms" IEEE
Trans. on Computer Aided Design, Dec 1993.

[8] Y.Kukimoto, W.Gosti, A.Saldanha, R.Brayton, “Approximate-
Timing Analysis of Combinatorial Circuits under XBDO Model”,
ICCAD, 1997, pp. 176-181

9] H.Yalcin, J.P.Hayes, “Event propagation conditions in circuit
delay computation”, ACM Transactions on Design Automation
of Electronic Systems, July 1997

Figure 6. Clrcult Optlmlzatlon with LPA and new method

343

