16.4

Removing user-specified false paths from timing graphs

David Blaauw, Rajendran Panda, Abhijit Das
Motorola, Inc., Austin, TX. E-mail: {blaauw, panda}@ advtools.sps.mot.com

Abstract

We present a new method for removing user-specified false sub-
graphs from timing analysis and circuit optimization. Given a tim-
ing graph and a list of specified false paths, false subpaths, or false
subgraphs, we generate a new timing graph in which all specified
Jalse paths are removed using a process of node splitting and edge
removal. We present the necessary and sufficient condition for split-
ting a node, and show that the number of nodes that must be added
to the timing graph is linear with the size of the false path specifica-
tion. We also present an algorithm for finding the minimum set of
nodes that must be split. Since this algorithm requires exponential
run time for false subpaths and false subgraphs, we present a heu-
ristic splitting approach which has linear worst-case run time, and
where the number of added nodes is linear with the size of the false
path specification. The heuristic approach was implemented and
results are given for large industrial circuits.

1. Introduction

Static timing analysis has become an integral part of the timing
verification and optimization of large digital IC designs. However,
static timing analysis may include false paths in its analysis, and
this results in an overly pessimistic timing report. Many circuit
optimization tools, such as those used for transistor and gate
sizing[1], use static timing analysis in the inner loop of their
optimization. In this case, the presence of false paths unnecessarily
constrains the optimization problem and leads to either a
suboptimal solution or 2 complete failure to meet timing
constraints. Therefore, effective removal of false paths from static
timing analysis is critical. Furthermore, since static timing analysis
is part of the inner loop of the optimization, the false paths must be
accounted for efficiently to ensure that overall performance of the
optimization is not significantly compromised.

Extensive research has been done on the problem of identifying
false paths which arise in a circuit due to reconvergent fanout.
These false paths are caused by logic and temporal correlations
between the circuit nodes. Although the complete identification of
all such false paths in a circuit is an NP-complete problem, a
number of exact or approximate methods have been proposed[2-7].

Also important are user-specified false paths. These are paths that
may be logically and temporally sensitizable but are unimportant to
the intended operation of the circuit. For instance, a path between
two latches may be false when the clocks that drive the latches are
asynchronous with respect to one another. Another example is a
path which is part of a reset or scan circuit. Since such false paths
rely on specific information unavailable to the static timing analysis
tool, they must be manually identified.

In this paper, we present an efficient approach for removing a set of
specified false paths from timing analysis for use in the inner loop
of circuit optimization. The set of false paths can be specified as
complete paths, subpaths, or subgraphs, and will be referred to as
false paths specification. The actual identification of false paths can
be performed either manually or automatically, and is not discussed
in this paper. We propose a method which, given a directed, acyclic,
timing graph and a false paths specification, generates a new timing
graph (called the true timing graph) from which all specified false
paths have been removed.

Permigsion to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

DAC 2000, Los Angeles, California

©2000 ACM 1-58113-187-9/00/0006..$5.00

270

Une approach tor removing speciied lalse paths trom timing
analysis is to simply filter them from the timing report. However,
most circuit optimization tools require not only the identification of
the true critical path, but also the true slack of all nodes in the
circuit. True slacks are not available in the path filtering approach.
In [8], an approach for removing known false subgraphs from
timing analysis is proposed. This method uses additional book-
keeping during the propagation of arrival and required times.
However, the method has a worst-case complexity that is
exponential with the number of specified false subgraphs. Also, it is
not clear how easily other timing algorithms such as incremental
timing analysis, multicycle path handling, and top critical path
enumeration can be extended with this approach. In [9], an
improvement of the algorithm in [8] is proposed. The run time is
significantly reduced, but the worst-case run time remains
exponential with the number of false subgraphs.

In this paper, we use an approach based on node splitting. By
splitting nodes and removing certain edges from the graph, it is
possible to isolate and remove the specified false paths without
removing any true paths. An advantage of this approach is that all
timing analysis algorithms can be directly applied to the newly
generated true timing graph without any modification to these
algorithms. The cost of generating the true timing graph is incurred
only once, and is amortized over the large number of timing
analysis invocations during circuit optimization. The runtime
penalty during timing analysis is linearly related to the number of
added nodes in the new timing graph, which, in turn, is linear with
the size of the false path specification. Thus, the proposed approach
is very attractive for use in an optimization framework, unless the
optimization procedure alters the false paths, either through timing
changes or logic changes.

Earlier work in node splitting was reported in [10,11] where it was
shown that a path can be removed from a timing graph by splitting
nodes along the path from the last node with multiple fanout to the
circuit input nodes. This approach yields a number of new nodes
that is linear with the number of false paths. However, for false
subpaths and false subgraphs, splitting all nodes from the first
multiple fanout node to the primary input will yield an exponential
number of new nodes in the worst case. Our approach presented in
this paper uses a similar splitting method. However, it is shown that
not all nodes from the last multiple fanout node to the input node
need to be split. We present the necessary and sufficient condition
for splitting a node, and then show how this condition is satisfied
for a false subgraph by splitting only the nodes that lie on the false
subgraph. Using this method, the number of new nodes added to the
timing graph is linear with the size of the false path specification.
Finally, in [12], a method for removing false paths from a timing
graph through node splitting was introduced for false paths and
false subpaths. This method is computationally expensive as it
relies on path counting to determine which nodes must be split and
which edges can be removed. Also no algorithm is provided to
remove false subgraphs from the timing graph.

In this paper, we first present the necessary and sufficient condition
for splitting a node in the timing graph. Using this condition, we
then show that only a subset of nodes that lie on false subgraphs
need to be split to remove all false paths from the timing graph. We
then present an algorithm for determining the minimum set of
nodes that must be split. This algorithm has worst-case exponential
complexity. We therefore present a heuristic that has a quadratic run
time and generates a number of nodes that is bounded linearly by
the size of the false paths specification.

2. Removing false paths through node splitting

Definition. An edge is a true edge if every path through it is a true
path. It is a false edge if every path through it is a false path. Itis a

stained edge if one or more false paths (and possibly some true paths)
pass through it. Thus, the false edges in a timing graph are a subset of
the stained edges in that graph.

Our approach for generating a false-path-free timing graph relies on
the following simple observation: If an edge is false, it can be deleted,
thus removing every false path through that edge without affecting
any true timing path in the circuit. Conversely, to remove a false path
it must have at least one false edge.We illustrate our approach in
Figure 1(a), which shows a timing graph with a single false path P.
An edge e along this false path can be removed if all nodes on the
false path with multiple fanin lie topologically after e, and all nodes
along the false path with multiple fanout lie topologically before e.
This condition guarantees that no paths other than the false path use
e, and by removing e from the circuit we remove only the false path.
We define the first node along a false path which has multiple fanin as
the first-fanin-node (FFI) of the path, and the last node along the false
path that has multiple fanout as the last-fanout-node (LLFO) of the
path. In order for a false path to contain at least one edge which can
be removed, it is necessary that the FFI node of the path lies
topologically after the LFO node of the path. In Figure 1(a), the FFI
node of path P is node n3 and the LFO node is n5. Since the FFI node
for path P occurs topologically before its LFO node, path P contains
no edges that can be removed without also removing some true paths.
The following lemmas provide sufficient conditions for removing

edges from a timing graph without affecting any true
path.
nl n2
~— [] o
N
\n3 \"4 n3 /
8 —— DO
~N
N6

(b)

Lemma 1. If, in a false path P, the LFO node lies before the FFI node,
then P can be eliminated (and all other paths preserved) by deleting
every edge on P between the LFO and FFI nodes.

Proof. For an edge of P lying between the LFO and FFI, there is
exactly one path, P, passing through it, as there is no fan-in before
and no fan-out after the edge. Thus, every edge between the LFO and
the FFI is false and can be removed.

Lemma 2. A fan-in (fan-out) free false path P can be eliminated (and
all other paths preserved) by deleting every edge on P occuring after
(before) the LFO (FFI) node.

Lemma 3. A fan-in free, fan-out free false path P can be eliminated
(and all other paths preserved) by deleting every edge on P.

Lemmas 2 and 3 are simply special cases of Lemma 1, which
provides a sufficient condition for removing an edge. We call the
false paths that can be eliminated by the application of Lemmas 1-3
as ‘simple false paths’.

The basic idea of our approach is this: When the sufficient condition
is not met for some path, we transform the graph such that the
condition is satisfied for some edges on the false path, allowing that
false path to be eliminated. We do this by splitting all nodes from the
LFO node to the FFI node in a manner similar to that described in
[10] and [12] and as illustrated in Figure 2.

For each stained fanout edge e; of node N which lies on one or more
false paths, we generate a new node, N;. In Figure 2, e; and e, are the
stained fanout edges of node N. So, we generate two new nodes N
and N,, corresponding to these fanout edges. To N;, we then create
new edges from all fanin nodes of node N, and move the fanout edge

Figure 2. A node before and after node splitting.
e; from node N to node N;. After splitting node N, the false paths P;
(Py, Py, and P5 in the figure) now pass through the newly created
nodes N; (nodes N; and N, in the figure) and no longer have multiple
fanout at this node. Therefore, if node N is the LFO node of a path P,
then after splitting, it is no longer the LFO. Also, the fanin node of N;
along P (node N;) has multiple fanout edges after splitting, since the
fanin edges of N have been duplicated. Thus, if node N was the LFO
node of P before splitting, node Ng; is the LFO of P after splitting

node N. The LFO node of P has been moved exactly one node toward
the input along path P.

It follows that, by splitting all nodes from the LFO node to the FFI
node in reverse topological order, the LFO node will be exactly the
fanin node of the FFI node along P, and the edge between them can
be removed. This is illustrated in Figure 1, where nodes n5, n4, and
n3 are split in that order. After splitting, node n2 is the LFO node of P
and lies before the FFI node of P (n3_new). The edge between n2 and
n3_new can then be removed to eliminate P from the timing graph.
The node splitting procedure is given below.

Procedure 1. Node Splitting. Consider a node N with stained fan-out
edges E = {e;,....,e;}. The splitting of N is done in the following
sequence of steps:

(i) Add k nodes Ny,, N;. (ii) Connect all fan-in nodes of N to each
of Ny, ..., Ny. (iii) For i=1,...k, move fan-out e; from N to N;.

The above node splitting procedure has the following properties
which we will use to eliminate the false paths:

Path preservation property: The procedure preserves all the paths
in the original graph, except that node N is replaced by one of N,
through N, on some paths.

Fan-out transfer property: The k stained fan-outs of N are
transferred to each fanin node of N. N; through N, are now fan-out
free, and N has only true fan-out edges. Note that the fan-ins of every
node in the graph have remained the same.

It may first seem that the node splitting procedure will add an
exponential number of new nodes. A careful analysis will reveal that
the number of nodes added is bounded by N, where N is the number
of edges in the false paths specification. When a node N is split, the
number of newly generated nodes is equal to the number of fanout
edges of N that lie on one of more false paths (stained edges).
Splitting node N also increases the number of stained fanout edges of
the fanin nodes of N. Thus, by splitting nodes in reverse topological
order we increase the number of edges in the timing graph for the
next level of nodes that will be split. However, the total number of
stained edges itself does not increase as a result of node splitting, as
can be seen from Figure 2. Also, the number of stained edges can
never exceed the number of edges in the false path specification.
Since only one new node is created at the most for every stained
edge, the number of nodes added in the true timing graph is bounded
by the number of edges in the false path specification.

Theorem 1. Let P be a false path in circuit graph C with Nggy and
Nj ro as the FFI and LFO nodes on P, such that either Ngg; and Ny g
are one and the same node, or Ny g occurs after Ngg;. The false path
P can be eliminated, and all other paths preserved, by splitting every
node from N;zp up to Npgy (both inclusive), in that order, using
Procedure 1, and then deleting the stained edge on P that is fanning
into one of the split nodes of Ngg;.

Proof: The path preservation property guarantees that all paths in the
original graph are preserved after every splitting. Let S be the split

271

node of Ngg; through which P is passing in the new graph obtained
after all splitting. Due to the fan-out transfer property of Procedure 1,
and the order in which we split the nodes (viz. from Ny o up to Nggy
in that order) path P in the new graph is guaranteed to be fan-out free
from S onwards. Thus the node fanning into S and lying on P (call it
N,,) is now the LFO node of P. Moreover, since the fan-ins of no
node in the graph has changed, S will be the FFI of P. By lemma 1, P
can be eliminated, and all other paths preserved, by deleting the edge
between N;, and S.

Corollary 1. Suppose C is a circuit graph with no simple false paths
(those paths which can be eliminated by application of Lemmas 1-3),
and P is the set of all false paths in C. Let N be the union set of nodes
from the FFI up to the LFO (both inclusive) of every path P in P. All
paths in P can be eliminated, and all other paths preserved, by first
splitting every node in N using Procedure 1 in an order guaranteeing
that a node is not split after any of its fan-in nodes is split, and then
deleting the stained fan-in edges of every path fanning into one of the
split nodes of the FFI of that path.

Property. Fan-out free tail creation. Call the set of edges of a false
path P from a node N through the last edge the tail of P at N. The
splitting of all nodes from LFO up to and including N in that order
creates a tail of P at some Ny, (a split node of N) such that this tail is

fan-out free.
Procedure 2. Elimination of all false paths.

(i) Levelize the circuit graph C. (ii) Construct a set of nodes N
consisting of all nodes from the FFI to the LFO of every false path in
P. (iii) Split every node in N in a levelized manner from output to
input. (iv) Delete the edges on each path that are fanning into the split
nodes of the FFI nodes of every path.

We will now show that we can do better than what is suggested by
Procedure 2. We will introduce the notions of ‘true FFI’ and ‘true
LFO’ to help develop the necessary concepts.

When multiple false paths are present in a timing graph, the FFI and
LFO nodes can be defined more precisely as the first node along a
false path P where a true path joins path P, and the last node along
path P where a true path leaves P, respectively. We earlier defined the
tail of path P at node N, where N is a node on P, as all edges of P
from node N through the last edge of P. Likewise, we define the head
of P at node N as all edges of P from the first edge of P through the
fanin edge of node N. We are now ready for defining the notion of
true FFI and true LFO.

Definition. True First Fan-in Node: The true FFI node of a path P is
the first node N along P with one or more fanin edges e_in that do not
belong to P, such that there is at least one true path that lies on e_in
and the tail of P at N. If all paths that lie on e_in and the tail of P at N
are false, then there is no true fanin path joining P at node N, and N
does not qualify as a true FFI node for P.

Similarly, a node N along path P only qualifies as a true LFO node of
P if, for a fanout edge e_out which does not belong to P, there is at
least one true path that lies on e_out and on the head of P at N.

The following theorem is key to develop the necessary and sufficient
condition for splitting a node:

Theorem 2. Let N be a node in C. Suppose T (H) is the set of distinct
tails (heads) of all the false paths passing through N, the tails (heads)
being constructed from (until) node N. Procedure 2 will eliminate all
the false paths without splitting N if N meets the following
conditions:

(a) Every fan-in (fan-out) edge of N is stained.

(b) For every ¢ (k) in T (H), every fan-in (fan-out) of N has at least
one false path through it that has the same tail (head) as ¢ (h).

(c) N is the first (last) fan-in (fan-out) node of all false paths passing
through N.

We prove the case for paths with common tails only:

Proof: Consider the situation in which every node from the LFO
nodes up to the FFI nodes on every false path, including N have been
split using Procedure 2. Consider a fan-out free tail ¢; at a new node

Figure 3. False paths that share a common tail.
N;. Theorem 1 guarantees that all the false paths sharing ¢; can be
eliminated by deleting some of the fan-in edges of N;. This, combined
with condition (b), will delete every fan-in edge of N;, thus making
node N; redundant.

Corollary 2. In theorem 2, condition (c) can be replaced by requiring
that no true path entering NV has a tail in T

The essence of theorem 2 and corollary 2 is that any node satisfying
their conditions is not a ‘true’ fan-in (fan-out) node, in the sense that
the true paths through it are created only by fan-out (fan-in) nodes
lying after (before) that node on any path. Application of theorem 2
to the FFI and LFO nodes and subsequently corollary 2 repeatedly on
the topologically-next nodes has the effect of moving the boundaries
(FFI and LFO) closer. That is, FFls are pushed toward the outputs
and LFOs pushed toward the inputs, thus reducing the number of
nodes to be split significantly.

Figure 3 shows a simple example of a timing graph with two false
paths which share a common tail at node n5. If each path is
considered individually, node n5 will be the FFI node and node n7 the
LFO node for both paths. Therefore, all nodes from n7 to n5 would
be split. Using the above definitions, however, the false path on e3
has a common tail with the false path on e4 at node n5. Therefore, the
first FFI node is not n5 but n6, and only nodes n7 and n6 need to be
split. Figure 3(b) shows the timing graph after both these nodes are
split. Edge e5 can now be removed to eliminate both false paths.

It can easily be shown that the set of nodes identified for splitting by
Procedure 1 together with Theorem 2 and Corollary 2 is optimal.
That is, the set cannot be further reduced and still cause all false paths
to be removed. Thus, the necessary and sufficient condition for
splitting a node is that it lies between the first ‘true’ fan-in and the last
‘true’ fan-out of any false path.

3. False subpaths and false subgraphs

A false subpath P with start node s and end node f potentially
consists of an exponential number of complete false paths. However,
all these false paths share a common tail at node s and a common
head at node f. Thus, it is clear that the earliest possible FFI node of P
is the fanout node of s, and the last possible LFO node of P is the
fanin node of f. Because of this, only the nodes that lic between the
start node of P and the end node of P may need to be split.

Likewise, a false subgraph with entry nodes S and exit nodes F
consists of a set of false subpaths Pj, with start node s; € S, and end
node f; e F. Therefore, only the nodes between s; and f; need to be
split, as explained above. This means that for a false subgraph, only
the nodes that lie on the false subgraph between the entry and exit
nodes may need to be split.

From the aforesaid discussion, it is thus clear that the maximum
number of new nodes that need to be added to the true timing graph is
bounded by the number of edges in the false path specification for
false paths, false subpaths, or false subgraphs.

The minimum set of nodes that need to be split can be determined
using the exact algorithm shown below in pseudo-code.

FindFaninNodes()

for (all edges e) {if (e € a false path) e->stained=T}
for (all nodes n) {n->fanin=F; if (n € a false path) n->stained=T}

272

for (all stained nodes n, in C, in topological order)
if (for any fanin edge e_in, of n, e->stained == F) n->fanin =T
for (all fanout edges e_out, of n) {
e_out->tail_list = tails of paths € e_out, at n
for (all paths P, starting at n, € e_out->tail_list)
for (all fanin edges e_in, of n)
if (for all false paths FP € e_in, FP !¢ P) n->fanin="T
if (n->fanin==T)
for (all fanout edges e_out, of n) e_out->stained = FALSE

The number of paths that lie on the tail of a false subpath or subgraph
can grow exponentially with the size of the timing graph. The above
algorithm thus has a worst-case run time exponential with the size of
the timing graph. To avoid this complexity, we also propose a
heuristic approach to identify the common set of tails and heads for
the false paths. In this algorithm, a set of paths is considered to have a
common tail, only if these paths started at the same node. This is
more restrictive than the criteria set forth in Theorem 2, and
therefore, it will not find all common heads and tails. The algorithm
propagates a set of path-sets along edges, each path-set having a
common tail. In order to obtain a linear run time, the list of path sets
is limited to a user specified constraint K, set to S0 in our
experiments. The algorithm for finding common tails is shown below
in pseudo-code:

FindCommonTail()

for (all edges e)
e->tail_| = NULL; e->mark = F;
e->start_set = set of paths that end at e;
e->path_set = set of paths the lic on e;
for (all nodes n) n->c_tail=T;
for (all stained edges e, in topo-reverse order) {
for (all fanout edges e_out of e->fanoutnode)
for (all path_sets S, in e_out->tail_)
add_to_list(e->tail_l, S n e->path_set)
add_to_list(e->tail_l, e->start_set);
if (number of elements e->tail_l > K)
remove all path sets in e->tail_l after K;
if (a path p € e->path_set is not € e->tail_I)
e->fanin_node->c_tail=F;
for (all tail sets S in e->tail_l)
/* check if all fanin edges have a path in S*/
for (all paths p, in S) p->fanin_edge->mark=T
for (all fanin edges e_in, of e->fanin_node)
if (e_in->mark==F) e->fanin_node->c_tail=F;
e->mark = F;

We must point out that the number of new nodes added to the graph is
O(N), where N is the number of edges in the specification of false
path, false subpath, or false subgraph, even when the set of nodes to
be split is determined by the heuristic algorithm. The heuristic (sub-
optimal) procedure should not be confused as one that gives rise to
the addition of an exponential number of new nodes to the graph.

4. Experimental results

The method described above for generating true timing graphs from a
timing graph with user-specified false subpaths was implemented in a
timing analysis and circuit optimization tool. The proposed approach
was tested on industrial circuits ranging from 1,700 to 22,000
transistors and of both semi-custom and custom design styles. Table 1
shows the results of eliminating false subpaths from the delay graph
for the benchmark circuits. :

For each circuit in Table 1, the number of false subpaths removed is
listed. Some circuits were run multiple times, each time with a
different number of false subpaths. The list of false subpaths was
generated by the user or through automatic means. The table shows
that the number of newly added nodes in the timing graph (#added
nodes) is easily bounded by the number of edges in the false path
specification. In reality, the number of added nodes is dramatically
less than the bound given by the size of the false path specification.
This is due to the presence of a large number of paths with common
tails and heads, and with overlapping edges. The table shows that the
number of added nodes is small, even for a very large number of false

subpaths. The table also shows that the run time for generating the
false-path-free timing graph scales linearly with the number of false
subpaths, and is less than 700 seconds for 500,000 subpaths. In
practice, timing analysis will be performed many times during circuit
optimization, and the run time for generating the true timing graph
can easily be amortized over the circuit optimization run time.

5. Conclusions

We presented a new method for generating a false path free timing
graph from a timing graph and a list of user-specified false subgraphs,
false subpaths, or complete false paths. The necessary and sufficient
condition for removing a false path from the timing graph was
defined, and from this, the minimum number of nodes that are
required to be split was derived. Since determining the minimum
number of nodes to be split requires exponential run time for false
subgraphs and false subpaths, a linear time heuristic was proposed.
This heuristic generates a false path free timing graph where the
number of added nodes is bounded by the number of edges in the
false path specification. The algorithms were implemented and tested
on a number of large industrial benchmark circuits. The results show
that the method can easily remove a large set of specified false
subpaths and subgraphs with excellent run time performance.

edges in Time for
Circuit| # FET | #1A15¢ | e parn | e graph |#added
subpath e generation | nodes
specification
(sec).
mrd | 1,744 49 435 <1.0 99
28 156 <1.0 43
mefrm | 4,029 210 2,574 <10[105
10,210 156,358 14.0 181
32,932 456,480 36.0 195
mbbus | 4,157 1,532 17,220 1.0 158
4,320 41,362 12.0 454
mereg | 4,902 2,398 13,334 5.0 405
96 1,272 6.0 113
vmtx (22,11317224128] 2,471,936 340.0] 268
426,144 5,270,656 644.0 412
Table 1: False path removal results
References

{1] I P. Fishbum, et.al. "TILOS: A posynomial programming approach to
transistor sizing," ICCAD, Nov 1985.

[2] D.H.C. Du, et. al. "On the general False path problem in timing analy-
sis”", DAC, 1989, pp. 555-560.

{31 P.C. McGeer, et. al. "Efficient Algorithms for Computing the Longest
Viable Path in a Combinational Network", DAC , 1989, pp. 561-567.

[4] S. Devadas, et. al. "Computation of Floating Mode Delay in Combina-
tional Circuits: Theory and Algorithms”, IEEE Trans. on Computer
Aided Design, Dec. 1993.

[S1 H. Yalcin, et. al. "An Approximate Timing Analysis Method for Datap-
ath Circuits", ICCAD, 1996.

(6] Y. Kukimoto, et. al. "Approximate Timing Analysis of Combinational
Circuits under XBDO Model", ICCAD, 1997, pp. 176-181.

[71 Y. Kukimoto, et. al. “Hierarchical Functional Timing Analysis”, DAC,
1998, pp. 580-585.

[8] K. PBelkhale, et. al. “Timing Analysis with known False Sub-Graphs”,
ICCAD, 1995, pp. 736-739.

[9] E. Goldberg, et. al. “Timing Analysis with Implicitly Specified False

Path”, Int. Workshop on Timing Issues in the Specification and Synthe-

sis of Digital Designs, T99, 1999.

K. Keutzer, et. al. “Is Redundancy Necesssary to Reduce Delay”, IEEE

Trans. on CAD, April 1991.

[11] A. Saldanha et. al, “Circuit structure relations to redundancy and delay:
the KMS algorithm revisited”’, DAC 1992, pp. 245-248.

[12] D. Blaauw, et. al. “Generation of false path free tming graphs for circuit
optimization”, Int. Workshop on Timing Issues in the Specification and
Synthesis of Digital Designs, 1999.

[10]

273

