14.1

ClariNet: A noise analysis tool for deep submicron design

Rafi Levy*, David Blaauw, Gabi Braca*, Aurobindo Dasgupta, Amir Grinshpon*, Chanhee Oh,
Boaz Orshav, Supamas Sirichotiyakul, and Viadimir Zolotov
Motorola Inc. Austin, TX, *Motorola Semiconductor Israel Ltd. Tel Aviv, Israel

Abstract

Coupled noise analysis has become a critical issue for deep-sub-
micron, high performance design. In this paper, we present, Clari-
Net, an industrial noise analysis tool, which was developed to
efficiently analyze large, high performance processor designs. We
present the overall approach and tool flow of ClariNet and discuss
three critical large-processor design issues which have received
limited discussion in the past. First, we present how the driver
gates of a coupled interconnect network are represented with accu-
rate linear models. Second, we show how to speed the analysis of
large designs by using noise filters based on reduced interconnect
representations and then pruning the nets coupled to a signal net.
Third, we show how to incorporate logic and timing correlations
into noise analysis to reduce its pessimism. We present the results
from several industrial circuits, including a large high performance
microprocessor design and a DSP design.

1 Introduction

For large, high performance designs, functional noise failures
have become a significant design and verification issue. Due to the
non-uniform scaling of interconnects cross-coupling capacitance
between wires is becoming an increasingly dominant fraction of
total wire capacitance, causing an increase in cross-coupled noise
effects. At the same time, the quest for higher performance circuits
has pushed designers to use more aggressive but less noise-
immune circuit structures, such as dynamic logic and unbuffered
latches. The combination of higher cross-coupling noise and more
noise sensitive circuit structures has resulted in a significant noise
problem, making effective noise analysis methods critical.

During noise analysis, nets are divided into two classes: aggres-
sor and victim nets. A victim net is a net on which noise is injected
by one or more neighboring nets through cross-coupled capaci-
tances. The nets that inject noise onto a victim net are considered
its aggressor nets. We broadly categorize noise into two types:
functional noise and delay noise. Functional noise occurs when a
victim net is intended to be at a stable value, and noise is injected
on to the net, causing it to glitch. The glitch may propagate to a
state element, such as a dynamic node or latch, altering the circuit
state and causing a functional failure. The second type, delay
noise, occurs when victim and aggressor nets simultaneously tran-
sition causing the transition delay of the victim net to be altered. In
this paper, we focus only on functional noise analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

DAC 2000, Los Angeles, California

©2000 ACM 1-58113-187-9/00/0006..$5.00

233

We present a new analysis tool called ClariNet. To address the
large number of nets in a processor design, ClariNet uses linear
models of the aggressor and victim driver gates and simulates the
resulting linear circuit with PRIMA[4]. Noise from different
aggressors of a victim net is combined using linear superposition
and is propagated through the victim receiver gate. If the noise at
the output of the receiver gate exceeds a predetermined noise
threshold, a noise failure is reported to the user. For efficiency, the
linear models of the driver gates and the noise immunity of the
receiver gates are stored in pre-characterized tables.

In this paper, we focus on three critical issues that come to the
forefront in a effective noise analysis tool: accurate and efficient
linear modelling of aggressor and victim driver gates, efficient
noise filters and reducing the pessimism of noise analysis through
the use of logic and timing correlations in the circuit.

Aggressor and victim driver models: Accurate linear models
for switching gates have been proposed [5] and can be used to
model the aggressor driver gate. However, the victim driver in
noise analysis is stable and therefore requires a separate linear
model. We present a new algorithm for efficiently generating an
accurate linear model for a victim driver. Qur algorithm automati-
cally detects the driver state which results in the lowest gate con-
ductance and therefore the worst case noise analysis.

Depending on the structure of the victim driver gate, it might
not precharge a victim net to the full rail voltage (Vdd or Gnd).
This introduces a voltage drop in addition to the noise that is
injected by aggressor nets. We present a new algorithm to effi-
ciently determine the maximum and minimum pre-(dis)charge
voltage of a victim driver gate and show how to incorporate this
additional voltage drop in noise analysis.

Noise Filters: We present a number of new interconnect reduc-
tion techniques that allow very fast filtering of nets which have
clearly less than the allowable noise voltage. We propose three
successive circuit structures, each with increasing circuit detail and
analysis run time. The filters are guaranteed to be conservative,
meaning they will overestimate the actual noise. We also propose
methods to prune the number of aggressor nets that couple to a vic-
tim net with a small impact on accuracy of the analysis. Using
these techniques, ClariNet can process more than 1000 nets per
minute, allowing it to analyze a complete high performance micro-
processor in a few hours.

Logic and Timing Correlations: Since noise analysis uses an
inherently conservative approach, many reported violations are
unrealizable in practice. It is therefore essential that a noise analy-
sis tool reduces the pessimism of the analysis as much as possible
by accounting for the logic and timing correlations of the victim
and aggressor nets. Logic and timing correlations constrain aggres-
sor and victim nets such that only a subset of all aggressors can
switch simultaneously and inject noise into a victim net. Tradition-
ally, timing windows of aggressor nets have been used for timing
correlations. In this paper we also consider static windows and
observability windows for victim nets in order to further reduce the
number of falsely reported failures. For logic correlations, we pro-
pose an efficient BDD-based algorithm to enumerate the number
of aggressor subsets satisfying user specified logic correlations.

2 Overview and Previous Work

Dynamic noise analysis methods were first introduced [7]. In
these methods, the worst case AC noise pulse that occurs on a net
is calculated for every signal net. The receiver gate of the signal
net is simulated with the AC noise pulse and is checked for noise
attenuation. In [6] a method is proposed to propagate noise from
one net to the next, as shown in Figure 1. Gate g/ is simulated with
noise at its input net n/, and the resulting noise at the output of g/
is added to the cross-coupling noise induced on net n2. Whenever
noise is propagated through a gate, the gate is verified to attenuate
the noise. This analysis method requires all the circuit elements to
be processed in topological order from the inputs to the outputs of
the circuit, and multiple iterations may be needed to converge in
the presence of feedback in the circuit.

bt A
—D“ L/ _/LDO‘

Figure 1. Noise due to propagation and coupling

A simplified approach that is commonly used in industrial set-
tings is to simulate gate g/ with the noise pulse on net n/ and
check that the output of g/ does not exceed a given allowable glo-
bal noise threshold, V4, This noise threshold is set such that
every gate satisfying the design rules attenuates noise if its output
noise voltage is less than Vy;,,. When analyzing net n2, the propa-
gated noise from g/ is conservatively assumed to be Vyy,,- The
effective noise on the net is then the sum of the cross-coupled
noise and Vjy,, This approach allows independent analysis of
nets nl and n2, and eliminates the need for a topological order of
nets and iteration over feedback loops for convergence.

In ClariNet, we use this second approach for efficiency reasons.
However, the presented algorithms for driver modeling, filtering,
and accounting for timing and logic correlations apply to either
approach. We analyze four types of noise: low-undershoot, low-
overshoot, high-undershoot and high-overshoot. Low (high) noise
refers to noise when the victim state is low (high). Undershoot
(overshoot) noise refers to noise when the aggressor nets are fall-
ing (rising).

ClariNet iterates over all nets to analyze their noise. First, the
victim net is reduced to a simplified network which is guaranteed
to overestimate the noise. The calculated noise is compared against
a designer specified acceptable noise value and if it is smaller, the
victim net passes the noise analysis. Three filters with increasing
complexity are used sequentially to quickly eliminate those nets
that are guaranteed to pass noise analysis. If the net does not pass
noise filters we linearize the aggressor and driver gates. The noise
on the victim net is calculated using linear superposition where the
noise induced by each aggressor is simulated while grounding the
other aggressor voltage sources. We then use the logic and timing
correlations to determine the subset of aggressors that induce the
maximum possible noise. The combined noise from these aggres-
sors is added to the propagated noise from the previous stage
which is a predetermined noise threshold voltage. This aggregate
noise pulse is propagated through the victim receiver gate by simu-
lating it. If the noise peak at the output of the receiver gate is
greater than the predetermined noise threshold, a noise failure is

234

reported. For faster execution, the aggregate noise peak can be
compared against a pre-characterized table of AC noise margins of
the receiver gate.

3 Victim Driver Models

In ClariNet, we model the driver gates by linear models which
allows the use of fast linear simulation and the use of linear super-
position. For the aggressor we use a standard Thevenin model[5].
For the victim net, the driving gate has a table state and all con-
ducting transistors are operating in the linear region. The gate is
therefore accurately modeled with a linear resistor, called the hold-
ing resistance with R = 1/g,,, where gy is the channel conduc-
tance. For a complex gate, the equivalent conductance of a network
of transistors is needed. Also, the holding resistance of such a gate
depends on its input state. Therefore, the worst case input state,
resulting in the highest holding resistance, must be determined.
These two issues are solved in ClariNet as follows.

Efficient holding resistance calculation: Given an input state
of a gate we represent each ON transistor on a path from the output
node to the rail by its equivalent linear resistor and disconnect all
other transistors. The equivalent linear resistance of a transistor is
obtained using pre-calibrated tables where resistance is stored as a
function of transistor width. The equivalent holding resistance is
calculated by performing iterative series/parallel reductions and
star-delta transformations. If the network cannot be solved using
these simple reductions, the holding resistance is calculated by
solving a set of linear equations.

During a noise spike at the gate output node, non-linearity of the
transistor causes an increase in its channel conductance. Hence, to
ensure a conservative analysis, the pre-calibrated resistance is gen-
erated using the channel conductance of the devices biased at
V4s=Vp where V is the expected worst-case allowable noise.

Worst-case input state calculation: We propose the following

P1
~o‘ P3—o| P4

X

d
—o

/\0

@4\.

X"

_—1N3

v w2

R(P1) = R(P2) = 400, R(P3) = 200, R(P4) = 240
H,=A*B+A +C=A+C, L, = A*C*(A+B) = A*C,
G =H L, =A+C

Max holding resistance = max(R(P3), R(P4)) = 240

Figure 2. Equivalent holding resistance calculation.
algorithm for calculating the gate state which results in the worst

case holding resistance, without enumerating all possible input
states:

¢ Build the logic function for the gate output (x) to be high using
BDDs. Gy = Hy * L, where H, and L, are the pull-up and
pull-down functions for output x.

® For each path in the BDD G, that reaches a leaf node 1:

p—

Assign known input values from the BDD path.

2. Find the transistor set U, where U contains all transistors
which 1) have a gate node with an unknown state and 2) lie on
a path from x to Vdd consisting of transistors in either ON or
unknown state, i.e. connect to both Vdd and x through a poten-
tially conducting path.

3. For each transistor in U, if a feasible assignment of the gate
node of the transistor exists, assign the transistor gate node this
state. A gate node assignment of a transistor t is said to be fea-
sible if it turns OFF the transistor t and does not turn ON any
other transistors in U. A feasible assignment guarantees that
the gate conductance is not increased and is therefore conser-
vative.

4. Repeat steps 2 and 3 until no more feasible assignment can be
made.

5. If U is not empty, generate the set S, where S contains the enu-

meration of all possible state of the gate input node of transis-

tors in U. S is therefore the set of worst-case input vectors
associated with the current BDD path.

® Let V be the union of all S sets. For each input vector v in V,
calculate the equivalent holding resistance Ryy4(V) of the gate
under input state v and return the maximum value.

In the BDD function G, of the OAI gate in Figure 2 two BDD
paths to a leaf node 1 exist: {A=0} and {A=1, C=0}. If we enu-
merate all unknown inputs, the set of input vectors that are consid-
ered is ABC={000, 001, 010, 011, 100, 110}. In the proposed
algorithm, for the BDD path { A=0}, we identify that P1 and P3 are
ON. In step 3, we find U={P2, P4}, both of which are turned OFF
under the feasible assignment B=1, C=1, resulting in the vector
ABC={011}. For the BDD path A=1, C=0, we identify that P1 and
P3 are OFF while P4 is ON and U is empty. Hence the set of input
vectors V which is considered for holding resistance calculation is
ABC={011, 1X0).

The complexity of the underlying problem, and hence the pro-
posed algorithm is inherently exponential in the worst case. In
practice, however, the algorithm is very efficient since it dramati-
cally reduces the number of input vectors to be considered.

Victim Voltage Calculation: Special precharge (predischarge)
driver structures are commonly used that do not driven the victim
net to a full Vdd (or Gnd) voltage, but rather with a voltage drop.
In this case, there already exists a DC noise equivalent to this volt-
age drop on the victim net, and the net is significantly more sensi-
tive to additional noise. We propose a new algorithm to detect the
maximum and minimum precharge and pre-discharge voltage of a
victim driver. The maximum and minimum precharge (predis-
charge) voltage is used as the initial victim voltage for high (low)-
overshoot and high (low)-undershoot noise analysis respectively.
‘We examine the case when output x is high. The case where output
x is low is analogous. We first construct the logic constraint func-
tion G, = Hy * L,, which represents the input states that result in a
high output state. In addition, we generated the logic constraint
function f, = hy * L, where h, is the pull-up function of the driver
gate with all NMOS transistors removed. The function f, repre-
sents the input states that result in a high output state without any
Vt drop. The maximum and minimum precharge voltage is now
determined by comparing the satisfiability of G, and f, as shown in
Table 1.

When G,=0, there is no valid input assignment that precharges
the gate output and the gate is disconnected. When G, is satisfi-
able, and f,=0 (the second row in Table 1), there does not exist a
pull-up path that consists of only PMOS transistors, i.e. all con-
ducting paths contain at least one NMOS transistor, and the gate
always has a voltage drop. When f, is satisfiable (the third and the
fourth row in Table 1), pull-up paths that consist of only PMOS
transistors exist and therefore the maximum voltage is Vdd. To

v Min Max
G f, G, *{
X * X *| Voltage | Voltage Note
0 X (VN T -1 igh out-
put is not
feasible
Satisfi- 0 - Vdd-an Vdd'vt()n Always has
able V, drop
Satisfi- | Satisfi- 0 Vi A\ No V, drop
able able
Satisfi- | Satisfi- | Satisfi- { V44-Vion Vad V,drop
able able able possible

Table 1. Min. and max. precharge voltage calculation.

determine whether a voltage drop is also possible, we examine the
function G,*T,. When G, *f,=0 (the third row in Table 1), all
assignments that satisfy G, also satisfy f, and all pull-up paths
consist of PMOS transistors only and a voltage drop is not possi-
ble. On the other hand, if Gx*fx is satisfiable (the fourth row in
Table 1), there exist some assignments that satisfy G, and not f,
and some pull-up paths contain at least one NMOS transistors and
the minimum voltage is Vdd-Vq,.

The proposed approach has the favorable property that it does
not require enumeration of input states of the gate. Note that the
analysis makes the simplifying assumption that the voltage drop
across a path is constant, regardless of the number of NMOS tran-
sistors that are in series. If needed, paths with different number of
NMOS transistors in series can be analyzed by enumerating the
input vectors that satisfy G, (for the second row in Table 1) or
G, *T, (for the fourth row in Table 1) at the cost of additional run
time.

If the victim driver has a possible voltage drop the equivalent
holding resistances for the gate with and without a voltage drop
can be significantly different. The holding resistance under input
states without a voltage drop is obtained by executing the pre-
sented algorithm on the logic constraint function f, instead of G,.
The holding resistance with a voltage drop is obtained by using the
logic function G, *f,, instead of in G,

Multiple Drivers: It is common that a victim or aggressor net is
driven by multiple driver gates. In practice, not all drivers of a net
will be active at the same time, and hence, we need to determine
which drivers should be applied simultaneously. For the worst case
noise condition, we can apply all aggressors drivers of an aggres-
sor net and only the single victim driver with the largest holding
resistance for a victim net. However, this leads to very pessimistic
results and a large number of false violations. To determine the
exact worst case set of aggressor and victim drivers requires exten-
sive logic and state-space analysis with excessive run time. We
therefore propose a heuristic that uses the fact that tristate gates
typically do not drive a net simultaneously while non-tristate gates
are always driving a net.)

Victim Net Drivers: If both tristate and non-tristate drivers are
connected to a victim net, the realistic worst case noise occurs
when all non-tristate drivers are driving the victim net while all
tristate drivers are assumed to be in tristate mode and are effec-
tively disconnected. A single simulation is therefore needed with
the holding resistance of all non-tristate drivers connected to the
victim net.

If all victim drivers are tristate, we assume that at all times, at
least one driver is in a driving state and is holding the victim net
stable. Each victim driver is simulated in turn, each time discon-
necting the other drivers, and the highest noise pulse at each sink
node is recorded.

Aggressor Net Drivers: If some of the drivers are tristate, the
realistic worst case noise will occur when only one of the tristate
gates is driving the net, while all other tristate gates are in tristate
mode. On the other hand non-tristate drivers are always driving an
aggressor net when it switches. For an aggressor net, we therefore
apply one tristate driver and all non-tristate drivers using the fol-
lowing algorithm:

1. Simulate each tristate driver with: 1) all other tristate drivers
disconnected. 2) all non-tristate drivers connected to the
aggressor net and their voltage sources shorted.

2. Among all tristate drivers, identify the worst one.

3. Determine the noise contribution of each non-tristate driver by
simulating it with: 1) all other non-tristate drivers and the worst
tristate driver connected with their voltage sources shorted. 2)
all tristate drivers, except for the worst one, disconnected.

4. Use the superposition of all noise waveforms obtained from
step 3 and from the worst tristate driver in step 2.

4 Noise Filters

Due to the large number of nets in circuit designs and the enor-
mous number of interconnect and cross-talk elements the cost of
loading and simulating all nets is prohibitively high. Therefore, it
is essential to have efficient noise estimation techniques to quickly
filter out nets that are guaranteed to pass noise analysis. The noise
estimation method presented in [1] has the disadvantage that it
requires the expensive loading of the full subcircuit consisting of
the victim net, aggressor nets, and all their constituent interconnect
and cross-talk elements. Also, it significantly overestimates the
noise for fast aggressor edge rates, due to the assumption of an
infinite ramp. An extension of this method, proposed in [3], suffers
from the first disadvantage and also does not guarantee conserva-
tism.

In ClariNet, we use a simple structural filtering strategy that
offers both efficiency and accuracy. The coupling capacitance
between the aggressor and victim nets (Cv_coupled) is lumped
between the aggressor source and victim sink to ensure a conserva-
tive estimate. Similarly, capacitances to ground from the aggressor
and victim nets are lumped as far away as possible from the
aggressor source or victim sink since they decrease the noise value.

The three filters used in ClariNet are each applied successively
until either the victim net passes noise analysis for any filter or
until it fails all the filters and is simulated in full detail. Each suc-
cessive filter is less conservative but requires a higher run time.

Filter 1: As drawn in Figure 3(a), the total resistance on the vic-
tim net is given by R, .. The grounded capacitance on the victim
net is lumped together as Cy_grong_ner and connected away from

the victim sink. The lumped resistance and capacitance values are
usually stored with the extraction data and can be directly loaded
without having to load every element of the net, thereby making
this filter the fastest. A default aggressor and victim driver model
that is conservative is used in this filter to avoid computing or load-

236

ing the driver models. The Thevenin resistance, R, Thevenins Of the
aggressor driver model is the parallel equivalent of the Thevenin
resistance of all possible aggressor drivers. The Thevenin voltage
source used is the Thevenin voltage of the aggressor driver with
the fastest rise time. This filter structure can be solved analytically
under the conservative simplification that R, rpeenin = 0. The

closed form expression for peak noise has the form
(l—eaT) (l—ebT
k1 oty where k;, k5, a and b are con-

stants determined by the values of the resistances and capacitances
in the filter, and T is the transition time of the aggressor ramp. The

— VW
Aggresso‘r/r é Ra_Thevnin ‘

Cv_J:oupIed
Rv_net
Victim
— A W—i—p
Ry_nolding Victim output

Cv_ground__nel

1
L
(a) Filter 1

— AV
Agg resso‘r/r

Ra_Thevnin

L

Cv_coupled—-_.

Ry_side Victim Rv_path

._[F‘v_holding

v_ground_side

——P
Victim output

v_ground_path

Los)

.||__5”_<.

(b) Filter 2 with more detailed model of the victim net

Aggressor‘[

R a_Thevenin R side

Cv_ground_net
c v_coupled

Rv_side Victim Rv_path

Victim output

Rv_holdin Cv_ground_palh

Icv_ground_side

(c) Filter 3 with more detailed model of the aggressor net

Figure 3. Filters used in ClariNet.

derivation and exact expression are presented in [8].

Filter 2. As shown in Figure 3(b), the second filter includes
more details of the victim net than used in the first filter while the
aggressor net remains modeled with a lumped default model. We
load the RC elements of the victim net and calculate the total resis-
tance on the path from a victim source to a victim sink where the
noise is measured, denoted by Ry_pae, and lump the capacitance to

ground on this path, denoted by Cy_ground_pam- All other resis-

tances and capacitances of the victim net are lumped together and
are denoted as R, g and Cv_ground_side' R, _ground_side
Cy_ground_path are connected away from the victim sink at the vic-
tim driver. R, _g;q4, is the maximum of the resistances calculated for

each path from the victim driver to any grounded capacitance not

on a path to the victim net. It can be shown that calculating R, _gqe

in this manner yields a conservative estimation. Since it is neces-
sary to load the elements of the victim net, the requiring run time
in filter 2 is greater than filter 1. The noise overestimate by this fil-

ter is less than filter 1.

Filter 3. In filter 3 the details of the aggressors are included as
shown in Figure 3(c). The grounded capacitance of all the aggres-
sors are lumped together and are denoted by C, ground_ner- TO be
conservative, Cy_ground_net is connected away from the aggressor
source. R, gqe is calculated in a manner similar to R, ;4. This fil-
ter has the maximum loading time because it has to read in every
element from all the aggressor nets. However, it is also the most
accurate of all filters with the least amount of noise overestimation.

Aggressor Pruning. The number of aggressors coupled with a
single victim net can be extremely high, averaging several hundred
for some circuits. The user can instruct ClariNet to use one or more
of the following three criteria to reduce the number of aggressors.
1. The number of highly coupled aggressor nets is limited to a

specified number with all other aggressors being discarded.

2. Using an approximate noise estimation similar to filter 1, Clar-
iNet can discard aggressor nets that induce a combined noise
that is less than a user defined value.

3. All aggressors that have a ratio of total coupling capacitance to
the victim grounded capacitance that is smaller than a user
specified threshold are discarded.

The coupling capacitance from the victim to all discarded
aggressors are grounded with the underlying assumption that they
are not switching.

5 Logic Correlations and Timing Windows

All nets may not induce noise simultaneously, because of logic
and timing restrictions imposed by the circuit. Taking these restric-
tions into account results in trimming down the set of aggressor
nets as described below.

Logic Correlations. In our noise analysis tool, we consider the
following logic constraints: invert (logical negation), same (logical
identity), imply (logical implication), one-hot (one and only one
net can be at logic value 1) and one-cold (one and only one net can
be at logic value 0).

The logic constraints between the nets are either provided by the
designer or automatically extracted from the circuit. However,
logic correlations under a zero delay assumption are not conserva-
tive for noise analysis. For example, the output of a two-input
NAND gate, where the inputs are switching in opposing directions
with some delay, may glitch, whereas zero-delay logic constraints
would predict a stable value. Therefore, designers should only
specify logic constraints for signals that are glitch free. For auto-
matically extracted logic constraints, we restrict ourselves to only
pairwise relationships across single gates to avoid this problem.

For efficient representation, logic correlations among aggressors
and a victim are stored in the form of single BDD, by converting
each constraint into a boolean equation and combine them. Each
variable in this BDD represent the logic value of a net.

Timing Correlations. In addition to logic correlations, the vic-
tim and the aggressors may have restrictions in the temporal
domain due to signal delays in the circuit.

237

An activity window for an aggressor net is defined as the inter-
val from the earliest time to the latest time the net can switch. Typ-
ically, activity windows are obtained from static timing analysis by
propagating the early and the late arrival times of the circuit inputs
(or latch outputs in sequential designs) along all paths to the out-
puts (or latch inputs). Similarly, we obtain sensitivity windows by
performing backward propagation of required times at circuit out-
puts or latch inputs. An observability window of a victim net is
defined as the interval from the earliest required time and the latest
required time. Note that the sensitivity window really needs to be
calculated using gate delays under partial transitions instead of full
rail-to-rail transitions because the noise pulses do not necessarily
result in full transitions. This requires a timing analysis with spe-
cial delay models, and is difficult since propagation delay under a
partial transition is dependent on the noise height. Alternatively,
we can use propagation delay under full transition but add some
margin to the windows to account for variation in gate delay.

Figure 4 shows the algorithm used for combining the logic and
timing constraints to reduce the number of aggressors. Note that cl

1. Construct logic constraint BDD C by logical-ANDing individ-
ual constraints
2. Reduce C by asserting victim logic state
3. Intersect sensitivity window and activity windows to find a
superset S of all aggressors that can simuitaneously switch;
4. Sortthe set s in S in descending order of SUM of all aggres-
sors in s
5. max_valid_noise = 0,
6. Foreachsin$S
7. max_noise = SUM (noise from all aggressors in s);
8 if (max_valid_noise < max_noise)
9 For each pair of logic constraint (c1, c¢2) in C such that
cll=c2
Identify MUST_SWITCH, STABLE, and
MAY _SWITCH set of aggressors;
Remove aggressors in STABLE set from set s;
next if any aggressor in MUST_SWITCH does not
belong to set s;

13. valid_noise = SUM (noise from all aggressors in s);
14. if (max_valid_noise < valid_noise) max_valid_noise =
valid_noise;

Figure 4. Logic and Timing correlation algorithm

and c2 in step 9 are two different traversals to 1-leaf nodes of the
logic constraint BDD C and correspond to logic constraints before
and after the aggressors switch, respectively. MUST_SWITCH is
defined as the set of aggressors whose logic values in cl and c2 are
the same as the intended aggressor switching. STABLE is the set
of aggressors whose logic values do not change in ¢l and c2.
MAY_SWITCH is the set of aggressors which do not appear in
both c1 and c2.

6 Results

The noise analysis methodology described in this paper has
been implemented and applied to a number of industrial circuits.
Although our noise analysis uses linearized models for victim and
aggressor driver gates and a fast interconnect evaluation engine,
the accuracy of noise estimation is very good. Table 2 compares
the maximum noise values on nets in circuit dsp to the values
obtained from SPICE simulation with real drivers. Noise peak

voltages from ClariNet are shown to be within 4% of those from
SPICE simulation.

i oise peak
Nets frr:l(: Sélgfi;ke: flr\]om eSlg[CE error (%)
net_1 5923 5771 73
) 6918 6680 32
net_3 687.7 673.6 71
et 4 6837 658.7 38
net_5 6950 681.0 22
net_6 6326 667.1 23

Table 2. Accuracy of Noise Analysis.

In Table 3, details of the interconnects for some circuits are
shown. Circuits dsp, control and adder are custom-designed func-
tional blocks for a DSP core, a communication processor and a
microprocessor, respectively. Circuit chip is a high speed Power-
PCry microprocessor.

The noise analysis results for the circuits are presented in Table
4. Note that our multi-stage filtering allows us to screen out as
much as 96% of total nets without detailed analysis.

#RC elements per net | #aggressors per net
Circuit | # of nets
max. | avg. [min | max. [avg | min
dsp 46,035 147927 [105 | 6 [56121 19 |
control | 30,795 [114,41812,787| 628 | 1,039 | 391 | 277
adder | 1,168 | 11,639 | 133 | 21 886 19 3
chip | 406,404 | 58,835 | 305 | 16 | 1,596 | 41 2

Table 3. RC interconnect data

For circuit adder and chip, we show run times for two analyses;
one with noise filtering and the other without. Run time with filter-
ing is dramatically smaller. Note that both analyses use the pre-
sented methods for aggressor pruning, since without it, the run
time is extremely large and analysis is infeasible. The significant
aggressors are defined as the set of aggressor nets whose noise
contribution is at least 90% of the total noise at a victim.

#net avg. #
L # nets S 14 nets sign. | Run
Circuit # nets fully . .
filtered failed | aggres | time
analyzed
sors
dsp 46,035 44,2421 1,793 [301 [43 [1Th
control 30,795 | 26,393 | 4,402 |1,859| 3.7 |15h
adder w/ filter | 1,168 | 1,068 100 87 88 |[31s
adder w/o fil- | 1,168 0 1,168 87 84 |101s
ter
chip w/ filter. |406,404 1335,182| 71,222 2,356| 6.9 |5.5h
chip w/o filter. { 406,404 0 406,404 2,336 6.7]20.3h
chip w/o cor- [406,404 (335,182 71,222 12,777} 6.9 | 8.2h
relation info

Table 4. Noise Analysis Results

To demonstrate the effectiveness of using logic and timing cor-
relation in reducing the number of false noise violations, we show

238

two analysis results for chip example: one with the correlation
information and the other without.

CPU time for noise analysis is reasonable and less than 15 hours
for each circuit we presented here. Note that the run times for dsp
and control are large compared to that of chip, although the
designs are much smaller. This is because for these examples the
linearized driver models are generated on-the-fly and each noise
waveform at the victim sink is propagated through the receiver
gate using simulation. Driver characterization and noise propaga-
tion account for more than 70% of the entire run time in each
example. For the circuit chip, driver and receiver models are gen-
erated apriori and on-the-fly noise propagation is not needed.

7 Conclusion

In this paper, we presented a functional noise analysis tool,
ClariNet, which incorporates a practical and comprehensive strat-
egy for analyzing coupling noise effects in large, high-speed digi-
tal designs. We presented new algorithms for critical issues in
noise analysis: the accurate and efficient modeling of driver gates,
noise filtering for the efficient processing of very large designs,
and logic and timing correlation for reducing false noise viola-
tions. We demonstrated the use of the tool on a number of indus-
trial designs, including a DSP and PowerPCry; processor. Our
results show that the accuracy of the linear models generated by
our proposed methods is within 4% of full non-linear spice simula-
tion. We also show how aggressor pruning and noise filtering allow
ClariNet to analyze a 400,000 net design in under 6 hours, and how
incorporating logic and timing correlation into noise analysis
reduces the number of false violations.

References
[1] A. Devgan, “Efficient coupled noise estimation for on-chip
interconnects,” Proc. IEEE Intl. Conf. Computer-Aided
Design, pp. 147-151, Nov. 1997.

A. Dharchoudhury, D. Blaauw, J. Norton, S. Pullela and J.
Dunning, “Transistor-level sizing and timing verification of
domino circuits in the PowerPCyy microprocessor”, Proc.
Intl. Conf. Computer Design, pp. 143-148, 1997.

M. Kuhlmann, S. S. Sapatnekar and K. K. Parhi,” Efficient
crosstalk Estimation,” Proc. IEEE Intl. Conf. Computer
Design, pp. 266-272, Oct 1999.

A. Odabasioglu, M. Celik and L. T. Pileggi, “PRIMA: Pas-
sive reduced-order interconnect macromodeling algo-
rithm,” Proc. Intl. Conf. Computer-Aided Design, pp. 58-
65, 1997.

J. Qian, S. Pullela and L. T. Pillage, “Modeling the effec-
tive capacitance for the RC interconnect of CMOS gates,”
IEEE Trans. Computer-Aided Design, pp. 1526-1555, Dec
1994.

K. L. Sheppard, V. Narayanan, P. C. Elementary and G.
Zheng, “Global Harmony: Coupled noise analysis for full-
chip RC interconnect networks,” Proc. Intl. Conf. Com-
puter-Aided Design, pp. 139-146, 1997.

J. M. Zurada, Y. S. Joo, S. V. Bell, “Dynamic noise margins
of MOS logic gates”, Proc. IEEE ISCAS, pp. 1153-1156,
1989.

V. Zolotov et al,” Closed form noise filter expressions”,
Tech Report, Motorola.

(2]

3]

4]

(5]

(6]

[7]

(8]

