24.2

Migration : A new technique to improve synthesized designs
through incremental customization

Rajendran Panda, Abhijit Dharchoudhury, Tim Edwards, Joe Norton, and David Blaauw
Advanced Tools Group, Advanced System Technologies Lab., Motorola, Austin, TX 78730
email: panda@adttx.sps.mot.com

Abstract - A novel technique to explore the perfor-
mance vs design effort trade-off is proposed. Starting from
an optimally synthesized design, performance-critical cells
are incrementally and optimally selected and custom-sized
to generate this trade-off. Efficient algorithms for the opti-
mal selection, and for improving the reuse of custom-sized
cells in the design are given. Significant performance gains
are shown in several real circuits through the addition of
very few customized cells.

Keywords - migration, custom sizing, timing opti-
mization

1. Introduction

Circuit designers today face two challenges of conflict-
ing objectives - designing for optimum performance, and de-
signing in a minimum time to reduce the ‘time to market’.
Though full-custom solutions are ideal for achieving opti-
mum performance, they require the most time and man-
power resources. On the other hand, automatically synthe-
sized solutions are attractive in the required design effort,
but often fall short of the performance goals. The common
design practice of identifying a priori what portions of a de-
sign are to be custom-designed and what are to be synthe-
sized can be very sub-optimal, in terms of both the achieved
performance and the design resources spent. There is cur-
rently no systematic way of automatically, and optimally,
exploring the trade-off between these two metrics. Address-
ing this need, we provide a technique to generate design
solutions that lie on an optimal performance vs design ef-
fort trade-off, and let the designer select the solution that is
appropriate for the situation.

Despite the advancements in automatic synthesis, full-
custom solutions still show superior performance than their
synthesized counterparts, as illustrated by a real design in
Figure 1. The curve in the figure is the optimal area vs
performance trade-off generated by a mature custom sizing
tool using a TILOS[1]-like algorithm.

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 98, San Francisco, California

©1998 ACM 0-89791-964-5/98/06..$5.00

The x, y co-ordinates are performance (in terms of slack)
and transistor area respectively, with points toward the left
indicating better performance.

Also shown in the figure to the right of the curve is a
standard-cell solution synthesized for optimum performance,
using a commercial synthesis tool and an industrial library
of 163 cells, and 2 - 4 drive strengths per cell type. Note the
large performance difference between the two design meth-
ods. This is clearly due to the extreme flexibility in custom-
sizing the devices, since the circuit structure is the same
for these solutions. This is despite the fairly large size of
the library used in synthesis. We have observed such per-
formance differences consistently across numerous designs,
and with different libraries. The library cells which are opti-
mized for a wide range of loads may be suitable to instantiate
a major chunk of logic which is not critical. However, while
instantiating some logic on critical paths, the finite selection
of drive strengths in the library, their fixed transistor sizes,
and the fixed P/N ratio for a given drive strength become
severe bottlenecks from the performance point of view.

Figure 1. Performance gap between
custom and standard cell designs.

The key idea in our proposal to optimize both the per-
formance and the design effort is to stay close to the stan-
dard cell design paradigm, while also adding the flexibility of
fine-tuning the device sizes of a selected few logic instances.
This is very similar to what the designers have been do-
ing, but with two important differences: (i) the custom-
synthesis partition is now fine-grained, which is done at the
cell (i.e. gate) level, and (ii) the partitioning decision is au-
tomatic and nearly optimal. The starting point is a synthe-
sized design that has been optimized for performance and a

given area. The performance is then improved in incremen-
tal steps, while maintaining the same area, by replacing a
selected few critical cell instances with optimally sized cus-
tom cells. In Figure 1, this process is shown by the horizontal
trade-off line which is migrating the design from the stan-
dard cell solution point to the left toward the full-custom
trade-off curve. The number of custom cells needed at each
step of migration is shown below the solution point. The
main steps in the process are the optimal selection of the
cell instances to be customized, and the optimal sizing of
the selected instances. The latter step can be accomplished
using sizing techniques proposed earlier, such as [1]. We
address here the first part, viz. the optimal selection.

The remainder of the paper is organized as follows. In
Section 2, we review the state-of-the-art in circuit optimiza-
tion. Section 3 presents the proposed technique and the
algorithms. Finally, Section 4 presents the results of several
case studies and the conclusion.

2. Related Work

The topic of transistor and gate sizing for optimal per-
formance/area/power has been very actively addressed. {1]
proposed an optimization based on the posynomial relation
between device sizes and circuit delays. [2] optimizes de-
lay in a convex non-linear problem. Optimal gate sizing is
addressed in [3] using linear programming techniques. {4] ad-
dresses the power-delay trade-off in gate sizing. [5] combines
iterative and linear programming techniques for gate sizing.
[6] proposes transistor sizing based on dynamic timing, and
using nop-linear solution techniques. A related problem of
simultaneously optimizing the devices and wires has been
studied in [7) and [8).

Earlier approaches assumed either custom or standard
cell design paradigm and targeted at optimal performance
vs area/power trade-off. In contrast, our work uniquely ex-
tends sizing techniques to explore the ‘performance vs design
effort’ trade-off.

3. Custom Cell Addition

We shall formulate the task as a constrained optimiza-
tion problem, discuss its complexity, motivate our approach
and then present effective heuristics. First, we introduce the
relevant concepts and terminologies.

The overall objective is to improve the delay graph of a
circuit, which is a DAG of timing arcs between nodes after
all feedback arcs are broken. Every arc is marked with a
value which is the propagation delay between its nodes, and
there are distinct arcs for rising and falling transitions. A
path is a sequence of edges in the delay graph. Associated
with each arc is a trigger transistor, the device whose gate
node is the source of the timing arc.

The sizing optimization is done iteratively on the tran-
sistor with the largest figure of merit, the merit being de-
termined by a combination of slack and sensitivity metrics,
given below :

Slack of a node is the difference between the required
and the actual arrival times for the node, with large negative
slack signifying large timing criticality.

389

Delay sensitivity, §(m,a), of a transistor m w.r.t. an
arc a is a measure of change in a’s delay to a small change
in the size of m[1)], a large negative value indicating a favor-
able area/delay relation. Delay sensitivities are calculated
directly from analytical timing relations.

The size of a device affects the delays of several arcs -
all arcs through the device, and arcs from or to those nodes
whose loading is affected by the size of that device. There-
fore the merit of a transistor should consider its sensitivities
w.r.t. every arc it can affect.

In our discussion, the term cell refers to a logic gate in
the library, and instance refers to a logic block that can be
mapped to a cell.

3.1. Formulation

We assume that the design effort (layout, extraction
and characterization) needed to generate a new library cell is
constant, and is independent of its logic functionality. Then
the additional design effort to improve a given standard cell
design can be measured by the number of new cells required.
We can now formally pose the problem as a constrained op-
timization problem, as follows.

Given an initial standard-cell design, and a perfor-
mance improvement target, find a minimum cardinality set
of customized cells with which a subset of the cell instances
of the design can be replaced to realize that performance im-
provement.

Let G be the delay graph under optimization and d be
the delay of the longest (slowest) path in the circuit. To
improve the performance of the circuit by a small amount,
say, Ad, we need to improve a set P of the most critical
paths whose delays are in the range [d, d — Ad}, such that
their delays become equal to or less than d — Ad.

The problem is inherently complex for several reasons.
(1) More than one arc in G has delay dependencies on the
size of a transistor. So it becomes difficult to study the opti-
mization of the identified critical paths in isolation. Chang-
ing the size of a transistor to improve a critical path in P
can increase the delays in paths outside P. (2) The relative
criticality of paths need to be considered in deciding which
arcs of a path should be improved.

We consider a hypothetical, simplified, version of the
above problem, purely to get a handle on the theory and to
motivate our approach.

Consider a reduced delay graph ¢’ C G comprising
only of timing arcs lying on the paths in P. Assume that (1)
G’ can be optimized without changing the delaysin ¢ — G,
(2) for every a; € G', there is a unique transistor m; such that
8(mi, a;) = Kfori J and = 0 otherwise in the region
of improvement (Ad), and where K is a negative constant,
and let M be the union of such transistors, corresponding to
all the arcs in G’, (3) for any m ¢ M, and any arc @ € G,
8(m, a) 0 and (4) the transistors in M each belong to
distinct cell instances in the design.

(1) above ignores the effect of sizing on the delays of
arcs outside the selected critical paths. (2) and (3) together
identify one and only one transistor for every arc on the
critical paths that can be sized so that the arc’s timing will

be improved. The equal delay sensitivity (K) eliminates the
relative area merits of improving one arc over other. (4) es-
tablishes a simple cardinality relation between the instances
sized and the transistors sized.

It is clear that, to improve G’, every path in P must
be covered (i.e. improved), by improving one or more edges
in each path. Since improving an edge corresponds to sizing
its corresponding transistor, this cover must be optimal to
minimize the design effort. We refer to this problem as the
optimal selection problem. We can easily show that the above
simplified version of the problem is NP-complete, by reduc-
ing the Hitting Set Problem[9], known to be NP-complete,
to this problem in polynomial time.

3.2. Optimal Selection

The foregoing formulation motivates an approach that
improves the delays of a set of edges s.t. every path in P is
covered (improved). This edge set is in fact the hitting set for
P. The delay of each edge in the hitting set can be reduced
by resizing the instance containing the trigger of that edge.
Although resizing other instances may also improve an edge,
the rationale for sizing the instance of the trigger is that the
trigger and the transistors in its dc-component usually have
larger sensitivities w.r.t. that edge than the transistors in
other instances. Only in rare extreme cases when the trigger
is already over-sized and is also driving no load or light load,
this is not true.

To minimize the number of cells resized, the hitting set
must be optimal. A good heuristic for the hitting set prob-
lem is the greedy covering of P using edges that lie on the
most number of paths in P. We use such a greedy approach
but with certain modifications so that the deviations from
the above simplifying assumptions are properly accounted
for. The simple greedy measure of an edge, which is the
number of paths it covers, is modified by weights based on
the slacks and sensitivities associated with the edges.

Without going into detail, we give below the merit func-
tion of a transistor that is used in determining the optimal
set of instances to be resized. For an edge a, and a transistor
m, let S(a) be the slack of a, §(m, a) be the delay-sensitivity
of m w.r.t. a, ¥(m) be the input-capacitance-sensitivity of
m, R;,(m) be the drive resistance at the input (gate) of m,
Sin(m) be the slack at the input (gate) of m, and r(m) be
the total number of paths covered by the arcs in G’ for which
m is a trigger.

Then, the merit function F(m) is taken as :

F(m) =r(m) x w(m)

w(m) =

. gg,S(a) x 8(m,a)
+ 7v(m) X Rin(m) x Sin(m)

The S(a) weights account for the relative criticality of
the edges. Likewise, §(m, a) considers relative gains of sizing,
and v(m) considers the loading effects on the driver. The
slacks are forced to be negative by suitably shifting their raw
values so that the weighting function is not misinterpreted
for an arc with positive slack and positive sensitivity.

390

3.3. Auto-grouping

Suppose multiple instances of a cell have identical
drivers and loads, and the logic structure surrounding these
instances are ’identical’. An example of such identical struc-
tures is a battery of inverters driving a bus, as shown in
Figure 2. In such situations, if one instance is performance-
critical, it is very likely that the other copies are also equally
critical. Moreover, it is possible to resize all of them identi-
cally so that several signal paths in the design are improved
with just one custom cell. This is the basic idea in improving
reuse of customized cells. The designer can explicitly specify
which are similar instances that can be grouped for sizing.
When no explicit information is available, the auto-grouping
algorithm detects such situations automatically.

As soon as a cell is selected for sizing, the auto-grouping
mechanism looks at all other instances of this cell in the
design, and verifies a set of conditions to detect if two in-
stances are similar. The conditions verified are related to
sizing. Specifically, we check to see if the instances have the
same cell type, strength, loads and slacks at the output pins,
and slopes at the input pins, within a specified tolerance. If
so, the similar instances are grouped.

INVv4

¢
.

INVv4

32-bit

Figure 2. Multiple similar instantiation of cells

If the similar instances were not grouped, then the siz-
ing algorithm would size them differently, though approxi-
mately equally, since the factors influencing the sizing algo-
rithm, such as slacks, sensitivities; loads, etc. will change
from one iteration to another, and are also dependent on
the order in which the instances are sized. This will lead to
more than one custom cell. The auto-grouping criteria are
easily tested on sorted lists of instances. Thus the algorithm
is very fast. o

The overall algorithm for migration is:

(1) Identify a set of top critical paths as the target set to
improve. A minimum of 5 ~ 50 paths are targeted at
each step of migration.

(2) Identify the triggers on the targeted critical paths.

(3) Merit the triggers using the cost function in Section 3.2.

(4) Greedily select the instances containing the triggers
with the highest merit, until all the targeted paths are
covered.

(5) For each selected instance, auto-group it with other
identical instances elsewhere in the design.

(6) Resize the transistors of selected instances for optimal
performance.

4. Results and Conclusion

The proposed technique was benchmarked using four
real circuits drawn from different designs - two control
blocks, one decoder logic, and one large microprocessor
core. The initial synthesized circuits were obtained using a
commercial synthesis tool, and running production quality
scripts to optimize the delay under area constraints. Three
different libraries were used in synthesizing the above four
circuits. The proposed migration algorithm was then ap-
plied to these circuits, specifying a maximum of 20-50 cells
in the design to be custom sized. The optimal selection and
grouping of cells was done as described in Section 3, and the
optimal sizing was done using a mature sizing optimization
tool. For the migrated circuits, only the selected cells were
allowed to be resized. The same sizing tool was used also
to completely resize the circuits to ascertain the maximum
performance gain achievable through sizing. The results are
reported in Table 1. Due to the large size of the micropro-
cessor core, a fully resized solution could not be obtained for
this case.

In the table, column 2 shows the size of the circuit.
Columns 3 and 4 show the size of the library used for syn-
thesizing the initial circuit. Columns 5 — 7 show the delays
respectively of the synthesized, fully resized, and migrated
circuits. . Column 10 shows the number of cells customized,
and its percentage w.r.t. the total cell instances. Column 8
shows the percentage reduction in the delay of the migrated
circuit w.r.t. the synthesized design. Column 9 compares the
improvement obtained by migration to the best improvement
possible by resizing the entire circuit. All delay comparisons
are w.r.t. a fixed area, which is the area of the inttial design.

Despite the high quality libraries used, the synthesized
designs were 1.4 times to 2.1 times slower than the fully re-

sized versions, indicating the sizing-related performance lim-
itation of the standard cell design. But by adding very few
(0.3% to 17%) custom cells, the migration obtained signifi-
cant speed improvements (11.8% - 38.1%) over the synthe-
sized design. The 11.8% delay reduction in the large micro-
processor core is significant considering the small (0.3%) part
of the design that required to be customized. This suggests
that another application of migration can be in a design sit-
uation when timing problems creep up after placement and
routing. In this situation, migration can supplement the
in-place optimization efforts.

The effectiveness of the algorithm is evident in the fact
that 45% to 71.4% of the performance gap between the full-
custom and synthesis solutions could be reclaimed at the
expense of as little as 0.3% - 17% custom design effort.

The above results indicate the usefulness of this ap-
proach in today’s design situation, where minimizing design
effort has become crucial to the success of a product. The
technique adds another dimension to the trade-offs that a
designer can exercise automatically.

REFERENCES

[1] Fishburn et. al. Tilos: A posynomial programming ap-
proach to transistor sizing. JCCAD, pp 326-328, 1985.

[2] Chuang, et. al. Timing and area optimization for
standard-cell vlsi circuit design. IEEE Trans. on CAD,
pp 308-320, 1995.

[3] Berkelaar et. al. Gate sizing in mos digital circuits with
linear programming. FDAC, pp 217-221, 1990.

[4] Sapatnekar et. al. Power vs delay in gate sizing : Con-
flicting objectives? ICCAD, pp 463-466, 1995.

[5] Chen, et. al. An iterative gate sizing approach with ac-
curate delay evaluation. JCCAD, pp 422427, 1995.

(6] Conn, et. al. Optimization of custom mos circuits by
transistor sizing. ICCAD, pp 174-180, 1996.

[7] Cong et. al. Simultaneous driver and wire sizing for per-
formance and power optimization. [FEFE Trans. on VLSI
Systems, pp 408-425, 1996.

[8] Menezes, et. al. A sequential quadratic programming
approach to concurrent gate and wire sizing. ICCAD,
pp 144-151, 1995,

[9] Garey et. al. Computers and Intractability, 1979.

TABLE 1. Results of Migration

Synthesized Design Custom Migrated Design

Circuit No. of Library Size Delay Delay Delay Improvement No. of

Name Trans. tells Strengths ns ns ns % over % of New Cells
synthesized best gain

Control 1 1059 163 2-4 37.3 17.4 23.1 38.1% 71.4% 30(17%)

Control 2 6239 163 2-4 41.0 28.5 34.5 15.8% 52.0% 20(2%)
Decoder 2926 430 3-4 12.0 7.1 9.8 18.3% 45.0% 30(5.5%)
Core 80542 175 2-4 22.8 n/a 20.1 11.8% n/a 51(0.3%)

391

