Reducing the Scheduling Cost in Event-Driven Simulation Through Component Clustering*

David T. Blaauw

Engineering Accelerator Development
IBM Endicott
Endicott, NY, 13760

ABSTRACT

Event-driven simulation has become a prominent method of
circuit verification. Although the event-driven scheme effectively
reduces the amount of circuit evaluation performed during the
simulation, a substantial scheduling cost is incurred to determine
which elements must be evaluated in a simulation cycle. In this
paper, we propose a method to reduce this scheduling overhead.
Circuit elements that are likely to be activated simultaneously are
grouped into clusters and are scheduled and evaluated
simuitaneously. This way, the number of entities involved in the
scheduling, and therefore the scheduling overhead, is reduced.
Different algorithms for partitioning the circuit into clusters are
presented and the relationship between the cluster size and the
simulation performance is studied. The presented algorithms
were implemented for a switch-level simulator and tested for
several large circuit descriptions. It is shown that with a carefully
picked cluster size and partitioning algorithm, the scheduling
overhead in the simulation can be significantly reduced and the
simulation efficiency improved.

1. Introduction.

Event-driven simulation has become an indispensable tool
in the design of large scale integrated circuits. Initially,
simulation was performed using the compiled simulation
approach. In this approach, the circuit elements are sorted
topologically and are evaluated according to this ordering. Each
circuit element is, therefore, evaluate at each simulation cycle.
More recently, the event-driven simulation approach was
introduced [1,2]. This approach is motivated by the observation
that for most circuits, only a small portion of all circuit nodes
exhibit change in a simulation cycle. The event-driven simulator
takes advantage of this fact by only evaluating the circuit
elements that are affected by these nodes. The event-driven
simulator uses a scheduler which tests circuit nodes for change
and schedules the fan-out of these nodes for evaluation. For
each simulated input pattern, only a small percentage of all
circuit elements is evaluated and a significant amount of circuit
evaluation is avoided.

* This research was supported in part by the Semiconductor Research
Corporation Contract 90-DP-142, at the University of Illinois, and in part
by NSF Grant MIP-87-10865.

1066-1409/93 $03.00 © 1993 IEEE

18

Larry G. Jones

Physical Design Technology
Motorola, Inc.
Austine, TX, 78735

Event-driven simulation consists of two distinct
components, namely the scheduling algorithm and the evaluation
algorithm. The scheduling algorithm determines which circuit
components are evaluated and in which order. The evaluation
algorithm determines the next state of a component given the
inputs and initial state of the component. The total cost of event-
driven simulation is the sum of the scheduling and evaluation
costs. In switch-level simulation, the circuit components
correspond to sets of channel-connected transistors, also called
dec-connected components. Since in switch-level simulation, the
evaluation algorithm has traditionally contributed the dominant
cost of the event-driven simulation, much emphasis has been
placed on developing fast evaluation techniques. Several methods
using presimulation analysis have been developed that perform
very efficient evaluation of dc-connected components [3-5].

With the decreasing cost of component evaluation, the cost
of the event-driven scheduler has become a more significant
factor in the performance of the simulation. In this paper, we
propose a method for reducing the scheduling overhead involved
in event-driven simulation. Since the scheduling cost is linear in
the number of nodes in the circuit description, it can only be
improved on by a constant factor. Algorithmic improvements
are, therefore, limited in their scope. Instead, we focus on
reducing the problem size, i.e. the number of circuit nodes and
components involved in the scheduling. Circuit components that
are likely to be activated simultaneously are grouped into so-
called component clusters. Each component cluster is scheduled
and evaluated as a unit during the simulation of the circuit. A
cluster of components is evaluated each time any component in
thecluster is affected by a change in the circuit state. Forming
component clusters reduces the number of entities involved in the
scheduling algorithm and, therefore, the scheduling overhead.
When a cluster is evaluated, however, it might include
components that do not exhibit change on their inputs in that
particular simulation cycle. The cluster approach, therefore, can
increase the evaluation cost of the simulation by performing
unneeded component evaluation.

The cluster size presents an inherent trade-off between the
scheduling cost and evaluation cost of the simulation. As the
cluster size increases, the number of clusters and nodes that are
involved in the scheduling decrease, thereby diminishing the
scheduling overhead. However, the probability that the
evaluation of a cluster includes unnecessary evaluation of circuit

components increases, thereby increasing the evaluation cost. If
the cluster size is chosen too large, the simulation will evaluate a
large number of unneeded circuit components, and incur a high
evaluation cost. If, on the other hand, the cluster size is chosen
too small, the simulation incurs a high scheduling overhead.
The optimal cluster size, therefore, balances the evaluation and
scheduling costs. In this paper, we perform an empirical study of
the clustering approach using the SNEL simulator [4] and a
number of large switch-level circuits. It was found that given a
particular simulator and circuits with a node activity within a
reasonable range, the simulation speed can be effectively
increased using a fixed cluster size. The proposed method is
applied specifically to switch-level simulation in this paper. Its
application can, however, be also extended to other levels of
event-driven simulation.

The remainder of this paper is organized as follows.
Section 2 discusses related work and gives an iverview of
clustered event-driven simulation. Section 3 presents the
algorithms for clustered event-driven simulation and circuit
partitioning. Section 4 presents the results of the clustering
approach. Section 5 offers some concluding remarks.

2. Clustered Event-Driven Simulation

In switch-level simulation, it has been recognized that very
large dc-connected components reduce the efficiency of the
simulation. In [6], a method was proposed to dynamically
partition large dc-connected components into sub-components
during the simulation. It was found that reducing the cluster size
in this sense increases the simulation performance. In {5] it was
observed, on the other hand, that if the component evaluation cost
of the simulator is small, it can be more effective to simply
evaluate all circuit components at each simulation cycle and
avoid the scheduling overhead. This approach is generally taken
in hardware accelerators which perform very fast component
evaluation and often do not support constructs needed to
implement event-driven scheduling. For many simulators,
however, the optimal cluster size might fall between the two
extremes of event-driven and compiled simulation.

To illustrate the trade-off between the evaluation and
scheduling costs in event-driven simulation, a simple gate-level
circuit description is shown in Figure 1. In standard event-
driven simulation, all of the input and internal nodes will be
tested for change during the simulation. If node inp0 changes
state it will produce the evaluation of gate nandl. Depending
on input inpl, the evaluation of gate nandl will result in a
change in the state of node n0. This change will again be
detected by the scheduling algorithm and will result in the
evaluation of inverter invl. If, however, gate nand! and invl are
placed in one cluster, they will both be immediately evaluated
upon a change of input inp!. Since the scheduler does not need to
test node n0 for change and separately schedule gates nandl and
invl, the scheduling overhead is reduced. If, however, input inpl

19

clusterl

inp0 nand1 invl

\ ™~ outQ

/ n0 I/
inpl

cluster2

nand2 inv2 .
. S~ out
EIPZ—_:D nl |

Figure 1. Example circuit for clustering approach.

is logic zero, the evaluation of gate nandl does not result in a
change of node n0. In this case, the clustering approach performs
an unneeded evaluation of inverter invl, which potentially
diminishes its efficiency.

The clustering method is, therefore, only effective if the
partitioning algorithm and the cluster size are carefully assessed.
The optimal cluster size, is a function of the relative efficiency of
the scheduling and evaluation algorithms of the simulator. If the
evaluation of a circuit component is relatively expensive
compare to the effort involved in scheduling it, smaller cluster
sizes will be more effective. Fast component evaluation
methods, therefore, advocate larger cluster sizes. The node
activity rate of the circuit nodes also affects the optimal cluster
size. The node activity rate is the ratio of the number of circuit
nodes that exhibit change in a simulation cycle over the total
number of nodes in the circuit, and is circuit and input
dependent. If the circuit has a very high node activity, the
probability that a circuit component will be evaluated is high, and
the probability of performing unneeded component evaluation in
a cluster is low. A high node activity rate, therefore, increases
the optimal cluster size.

3. Evaluation and Partitioning Algorithms

When the cluster-size is larger than one, an algorithm is
needed to group circuit components into circuit clusters. A
number of general algorithms for minimizing the number of
nodes between partitions in a graph, also called min-cut
algorithms, have been proposed. One of the most well known of
these min-cut algorithms is the algorithm by Kernighan and Lin
[7]. Min-cut algorithms seek to minimize the total
interconnections between clusters in the circuit. Since the
scheduling time is directly proportional to the number of nodes in
the circuit, the min-cut algorithms will tend to reduce the total
scheduling overhead. = However, the evaluation time is not
necessarily minimized by these algorithms. All circuit
components in a cluster are evaluated each time one or more
inputs of the cluster change state. It is, therefore, advantages to
place tightly coupled circuitry that is effected by the same circuit
node changes together. To minimize the evaluation time, one

must foresee which circuit components are affected by an event
and to place these components in one cluster.

Three types of partitioning algorithms were implemented:
depth-first-forward, depth-first-backward, and breadth-first. The
code for the depth-first-forward algorithm is shown in Figure 2.

depthFirstForward(targetSize:
{
cluster = getNewCluster();
component == componentNew = NULL,
clusterSize = 0,
while(componentsLeft > 0) {
if{lcomponent) {
do{ //work from a previously placed component //
componentNew = getFanout(component, targerSize, clusterSize),
if (componentNew) putStack(component),
else component = popStack();
} while(!componentNew && component),
component = componentNew,

if (\component) component = getNewComponent(),

if (newCluster(size(component), targetSize, clusterSize, circuitSize)) {
cluster = getNewCluster(),
clusterSize = 0,

}

addComponentToCluster(component, cluster),
clusterSize += size(component),
componentsLeft -,
circuitSize -= size(component),
b3
Figure 2. Partitioning algorithm for depth-first-forward scheme.

The algorithm performs a depth-first traversal of the circuit,
starting from the circuit inputs. Circuit components are then
placed together in the order that they are visited. Variable
targetSize is the chosen cluster size. Variable componentsLeft
initially contains the total number of circuit components in the
circuit and 1s decremented as they are assigned to circuit clusters.
The function getFanout() examines the fan-out of a component.
The fan-out component that creates the best match with the target
cluster size is then chosen. If a component has no unassigned
fan-out components, a new component is obtained from function
getNewComponent(). This function searches through the rank-
table of the circuit and returns the lowest ranked, unassigned
component. After a new component is found, function
newCluster() decides if it is added to the current cluster or if a
new cluster is started. The function uses variable circuitSize
which contains the total size of all unassigned components in the
circuit. It is was found that careful crafting of the function
newCell() greatly balance the size of the generated clusters.

The depth-first-backwards partitioning algorithm operates
similarly to the shown algorithm, except that it starts from the
outputs of the circuit and progresses to the circuit inputs. The
breadth-first algorithm performs a breadth-first traversal instead
of a depth-first traversal.

20

The cost function used in the partitioning scheme (function
size) in Figure 2) plays an important role in the partitioning
process. It expresses how 'expensive' the components are and
determines how many and which components are placed in a
cluster. The cost function should, therefore, reflect the actual
evaluation cost of a cluster. In switch-level simulation, the
evaluation cost of a dc-connected component depends on the used
evaluation algorithm. In the SNEL simulator, the evaluation cost
of a de-connected component is linear in the number of transistor
in the component. The cost function, in this case, simply returns
the number of transistors in the cluster. Depending on the
simulator, other cost functions must be used that accurately
reflect the evaluation cost of a cluster.

The clustering approach requires only minor modification
to the traditional event-driven simulation algorithm. Instead of
evaluating individual components, the simulation evaluates
clusters of components. Scheduled clusters are evaluated in a
topologically sorted order, until no more clusters are scheduled
for evaluation, and the simulator proceeds to the next time step.
The evaluation of each cluster generally involves the evaluation
of several components. The components within a cluster are,
therefore, topologically sorted prior to the simulation, and are
then evaluated during the simulation in this predetermined order.

Each time a cluster is evaluated the outputs of the cluster
are tested forchange. If the cluster output change was produced
by zero-delay circuit elements, the node change takes affect
immediately and all fan-out clusters of the node are scheduled for
evaluation in the current simulation time step. If the circuit
description contains circuit components with unit or multiple
delay, the cluster evaluation must take into account the delay of
the individual components in the cluster. We define the relative
delay of cluster node n as the difference between the time of a
cluster input node change and the time of the subsequent change
in node n. A cluster that is evaluated for time ¢, therefore,
schedules an change in cluster output node » for time ¢ + §,
where & is the relative delay of the node n. When the simulator
increments its clock to time ¢ + &, the logic state of the output
node is updated with the scheduled value. If a change has
occurred in its logic state, the cluster fanout of the node is then
scheduled for evaluation.

To illustrate the evaluation procedure in the presence of
delay, consider cluster 1 in Figure 1, when the two gates nandl
and invl are both assigned a delay of one unit. If the cluster is
evaluated at simulation step ¢, the evaluation of nand! produces a
potential change for node n0 at time ¢+/ and the evaluation of
inverter invl produces a potential change for node out0 at time
t+2. The relative delay of node out0 is, therefore, two delay
units. Since node n0 has no fan-out to other clusters, the cluster
evaluation can simply access nodes inp0 and inpl at time ¢,
evaluate gate nand! and invl and schedule the potential output
change of node out0 for time ¢+2. The scheduling of node 70 is,
therefore, eliminated from the simulation and is implicitly

performed in the cluster evaluation. If node n0 does have fan-
out of other clusters, the cluster evaluation must schedule a node
change of n0 for time 7+ in addition to scheduling node out0 for
time 7+ 2.

The relative delay of the nodes in a cluster is calculated by
examining the circuit components in their topological ordering.
All cluster input nodes are assigned a relative delay of zero. As
circuit components are traversed, the output of a circuit
component is assigned a relative delay equal to the relative delay
of the component inputs incremented by the delay of the circuit
component. It is possible that the inputs of a circuit component
have a different relative delay associated with them. In this
case, the circuit component can not be evaluated in the circuit
cluster, since not all of its inputs will be available for the correct
time step. The partitioning algorithm, therefore, calculates the
relative delay of cluster nodes as circuit components are
incorporated in the cluster. If a circuit component has inputs
with an uneven relative delay, it is then excluded from the circuit
cluster. This restriction on the partitioning ensures that all
inputs of a circuit component in a cluster have an equal relative
delay. It should also be noted that this restriction prevents cyclic
constructs from being incorporated in a single cluster. Similarly,
we exclude the presence of zero-delay cycles in the circuit. In
[8], it is shown that zero delay cycles result in unpredictable
simulation results.

4, Simulation Results of the Clustered Event-
Driven Approach.

The effect of the cluster size on event-driven simulation is
investigated using the switch-level simulator SNEL [4]. The
SNEL simulator first partitions the circuit into clusters of one or
more dc-connected components. For each component cluster,
evaluation code is generated using a compiled simulation method.
The circuit clusters are scheduled and evaluated in an event-
driven approach. The circuit cluster size, can be varied from
encompassing one dc-connected component, to encompassing the
entire circuit description. The SNEL simulator can, therefore,
emulate traditional event-driven simulation, complete compiled
simulation, or a hybrid using a specified cluster size.

The optimal cluster size was studied for a number of
switch-level circuits, including two commercial microprocessor.
For each circuit, the cluster size was varied from a single dc-
connected component to the entire circuit description. For all
circuits, the depth-first forward partitioning method was used.
Table 1 shows the tested circuits and their characteristics.

Circuits ¢1908 through ¢7552 are ISCAS-85
combinational benchmark circuits [9] implemented in static
CMOS. Circuits adderRC and adderl A are, respectively, a 64-
bit ripple-carry adder and a 32-bit look-ahead adder. Circuit
multiplier is a 16-by-16 multiplier array. Processor 1 and 2 are
commercial microprocessors implemented in custom CMOS.

21

number node dec cluster speed

circuit transistors | activity size size up
c1908 3482 6% 2.99 38.26 3.06
c3540 7632 5% 2.94 27.85 3.40
c5315 11270 5% 3.07 40.54 2.81
c6288 10112 10% 3.78 91.10 1.74
7552 15396 6% 2,98 43.13 2.24
adderLa 2380 22% 4.59 25.32 1.42
adderRc 3328 4% 5.70 25.02 1.48
multiplier 13600 10% 5.70 24.37 1.48
procl 20177 11.3% 6.1 3479 1.36
proc2 41062 7.9% 5.3 30.22 1.58

Table 1.

With the exception of procl and proc2, all circuits were
simulated for 10,000 cycles with randomly generated test
patterns. For circuit procl and proc2, functional test patterns
developed during the design of the processors were used. This
gives these test cases the advantage that they realistically reflect
the demands placed on logic simulation during the design
process.

For each circuit, Table 1 shows the total circuit size in
transistors (number transistors), the circuit node activity (node
activity), and the average dc-connected component sizes (dcc
size). The column cluster size shows the optimal cluster size in
transistors as determined by the simulation runs. The column
speed-up shows the speed-up of the simulation with the optimal
cluster-size over traditional event-driven simulation. The
simulation performance was improved by a factor ranging from
1.36 to 3.40 using the clustering approach.

Figure 3 and Figure 4 show the simulation performance of
the two processors as a function of the cluster size. The total
simulation time, as well as the scheduling time and evaluation
time are shown. The scheduling time initially decreases sharply
as the cluster size increases and then slowly levels of. Using the
optimal cluster size, the scheduling overhead was reduced by a

Figure 3. Sumulation time vs. cluster size for procl

\/

¢ + + +
200 300 400
Cluster Size in Tran

500

Figue 4. Sumulation time va. chuster size for proc2

140000

-g 120000
3 -
I
100000 T e
A / ~ s
\
80000 o e e
L ol
60000 ‘::/' e - total
evaluation
40000 ,ﬂ *.
U .
— e schedule
o Crehedds
20000
04— —— e e -
a 100 200 300 400

Claster Stze I Trem

factor of 2.0 for processor 1 and 2.35 for processor 2. The
evaluation time shows a steady increase with the cluster size.
For both processors the total simulation time initially decreases
sharply with the cluster size and then, after passing the optimal
cluster size, increases slowly.

Comparison between the simulated circuits shows that the
optimal cluster size varics for the different circuits. For
processors | and 2, the optimal cluster size is, respectively,
34.79, and 30.22 transistors. For circuits mult, adderRC, and
adderLA, the optimal cluster size fell between 24.37 and 25.32,
and for the ISCAS bench-mark circuits the optimal cluster size
fell between 27.85 and 91.10. This raises the question of how to
choose the optimal event-size for a circuit that has not yet been
simulated. A possible approach is to simulate the circuit for a
range of event-sizes with a small subset of the input vectors.
The optimum event-size for this subset is then determined and
used for the entire simulation. This approach, however, can
involve a large amount of overhead.

A simple and effective approach is to use a fixed cluster
size for all simulations. For a cluster size in the range of 25 to
50 transistors, the simulation performance for all simulated
circuits is within 15% of its optimal performance. Although the
stmulation time increases drastically for very large and very small
cluster sizes, it is relatively constant in this "middle range”. Any
cluster size from this range is, therefore, likely to perform well
for most simulated circuits. In the SNEL simulator, the cluster
size is set at 30 transistors. Using this cluster size, all tested
circuit operated within 12% of their optimal performance.

The three partitioning algorithms discussed in Section 2
were also compared for the tested circuits. Of the three partition
algonithms depth-first approach showed the best performance.
The approaches differ most for large cluster sizes. Within the
cluster size range of less than 60 transistors (10 dc-connected
components), the partition algorithms all produced simulation
results within approximately 20% of each other. Within this
range only a few dc-connected components are grouped together.
The coupling between these components is likely be high

22

regardless of the partition algorithm. The algorithms, therefore,
show similar performance in this range.

5. Conclusions

In this paper, a new approach to reduce the scheduling
overhead in cvent-driven simulation is proposed and is
implemented for a switch-level simulator. Circuit components
are grouped into clusters which are then scheduled and evaluated
as a unit. Three algorithms for partitioning the circuit into
clusters, as well as, the needed modifications to the event-driven
algorithm were presented. The cluster size represents a trade-off
between the scheduling and evaluation costs of the simulation.
The optimal cluster size balances these costs and was found to
significantly increase the performance of the simulation.
Although the optimal cluster size is a function of the circuit
characteristics, it was found that good performance was obtained
for all test circuit using a fixed cluster size.

References

[1] P. W. Case, H. H. Graff, L. E. Griffith, A. R. LeClerq, W. B.
Murley, and T. M. Spence, "Solid Logic Design Automation,”
IBM Journal, pp. 127-147, April 1964.

[2] E. G. Ulrich, "Event Manipulation for Discrete Simulation
Requiring Large Number of Events," Communications of the
ACM, pp. 777-785, September 1978.

[3] R. E. Bryant, D. Beatty, K. Cho, T. Scheffer, "COSMOS: A
Compiled Simulator for MOS Circuits," Proc. Intemational
Design Automation Conference, pp. 9-16, 1987.

[4] D. T. Blaauw, R. B. Mueller-Thuns, D. G. Saab, P. Banerjee,
and J. A. Abraham, "SNEL: A Switch-Level Simulator Using
Multiple Levels of Funcational Abstraction," International
Conference on Computer Aided Design, pp. 66-69, 1990.

[5] Z. Barzilai, D. K. Beece, L. M Hiusman, Iyengar, and G. M.
Silberman, "SLS - A Fast Switch-Level Simulator," IEEE
Trans. on CAD, pp. 838-849, August 1988..

[6] L. McMurchie, C. Anderson, and G. Borriello, "Hybrid
Compiled/Interpreted Simualation of MOS Circuits," Proc
European Design Automation Conference, 1991.

[71 G W. Kernighan and S. Lin, "An Efficient Heuristic
Procedure for Partitioning Graphs," Bell System Tech.
Journal, pp. 291-307, 1970.

{8] S. Gai, F. Somenzi, and M Spalla, "Fast and Coherent
Simulation with Zero Delay Elements," /EEE Trans. on
CAD, pp85-92, January 1987.

[9]1 F. Brglez and H. Fujiwara, "A Neural Netlist of 10
Combinational Bench Mark Circuits and a Target Translator
in FORTRAN," Proc ISCS-83, pp. 151-158, June 1985.

