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ABSTRACT:

Switch-level simulation has become a common means for
accurate modeling of MOS circuit behavior. In this paper, we
propose &8 new method for detecting logic gate implementations
and accurately modeling their switch-level behavior. The func-
tional abstraction replaces logic gate implementation in the
switch-level description with an accurate high-level model which
incorporates all relevant switch-level phenomena. The switch-
level accuracy of the simulation is, therefore, preserved. How-
ever, since the gate implementations are modeled at a higher,
more abstract level, the simulation speed is greatly increased.
The functional abstraction is automatic and completely tran-
sparent to the user. Detection of a gate is determined by express-
ing the logic function of . transistor network in the sum-of-
product notation and is not limited to a specific design style. The
proposed algorithms have tz:a implemented and tested on
several large circuits, including a complete microprocessor. For
this processor, 85% of all transistors were substituted with high-
level models. A significant decrease in simulation time and
storage requirement occurred for these circuits when gate abstrac-
tion was performed.

1. Introduction

Currently, simulation of large circuits is often performed at
the switch-level, as introduced by Bryant {1]. Simulation at this
level has the advantage that several detailed circuit phenomena,
such as charge sharing, bidirectional signal flow, signal strength,
and resolution of conflicting signals, are accurately modeled. The
disadvantage is that modeling these phenomena requires compli-
cated and time consuming path tracing algorithms. However, for
transistor structures implementing static logic gates, charge shar-
ing, bidirectional flow, and conflicting signal phenomena do not
occur. A logic gate implementation can be modeled at the
switch-level using a simple Boolean function, describing its logic
operation, and strength information, describing the equivalent sig-
nal strength of the gate. Simulation of these transistor structures
is, therefore, performed with much simpler and faster algorithms
than traditional path tracing algorithms without compromising the
switch-level accuracy. Since a large portion of the circuit con-
sists of logic gates, the simulation speed and storage requirement
of the circuit will benefit significantly from abstracting logic gate
structures.

This paper presents a new method to detect logic gate
implementations in a switch-level transistor description and to
mode] them at a higher level. The gate abstraction substitutes
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gate implementations with so-called gate descriptors. The gate
descriptor contains both the logic function and strength informa-
tion of the gate implementation. During simulation, gate descrip-
tors are evaluated by fast C-functions, while other transistors
structures are evaluated with standard switch-level simulation
techniques. The gate abstraction operates directly on th~ switch-
level description and is completely transparent to the user. Since
the gate abstraction is performed only once for éach design, it
adds litle overhead to the simulation process. Currently, extrac-
tion is performed for static CMOS and NMOS gates. However,
the presented methods can be extended to include dynamic gates.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 discusses functional
abstraction for logic gates. Section 4 presents the algorithms of
the gate abstraction. Section 5 discusses the performance results
for several large circuits and Section 6 offers concluding remarks.

2. Related Work

Several methods for detecting logic gates have been
developed in the area of design verification and generation of
gate-level descriptions from transistor descriptions [2]. These
methods translate switch-level descriptions into gate-level or
logic-level descriptions. During this process, transistor imple-
mentations of logic gates are detected and replaced with gates.
These methods have the effect of raising the level of the descrip-
tion from the switch-level to the gate-level or higher. However,
the switch-level accuracy of the description is lost. Therefore,
these methods do not directly apply to switch-level simulation.

In the area of switch-level simulation, work relating to
gate abstraction has been performed by [3, 4, 5). These simula-
tion methods analyze dc-connected components and translate
them into Boolean equations. They maintain the switch-level
accuracy and express the circuit behavior in terms of logic equa-
tions. They differ from gate abstraction in that they operate on all
possible transistor constructs and logic gates are not detected as
such. A logic gate differs from general transistor structures in
that it has dual pull-up and pull-down functions. The internal
operation of a gate need not be modeled and the output of the gate
is directly derived from the logic state of the input signals. The
mentioned switch-level simulation methods, however, cannot
assume the pull-up and pull-down functions to be duals. Both the
pull-up and the pull-down path of the gate are evaluated and
nodes internal to the gate structure are not always eliminated.
The potential advantage from specifically detecting logic gates
and modeling them at a higher level is, therefore, foregone in
these methods.



3. Functional Abstraction of Logic Gates

In this paper, we propose a new method for detecting a
logic gate implementation and accurately modeling its switch-
level behavior. In a switch-level circuit description each circuit
element (transistor or circuit node) can display the full range of
switch-level phenomena. For instance, all circuit nodes can
potentially store a charge, and all transistors are potentially
bidirectional. As presented in [6] , we call the possible operation
of an element or group of elements its functional domain. When
a circuit element is considered as part of the overall circuit its
actual operation is only a subset of this functional domain which
we call its functional application. For accurate simulation, only
the functional application, rather then the full functional domain
of an element must be modeled. Functional abstraction is the
process of determining the functional application of a circuit ele-
ment from its functional domain.

The functional domain of a static gate implementation
includes bidirectional signal propagation through each of its
transistors, charge sharing effects between its nodes, and charge
storage at each node. Most of these phenomena, however, do not
occur in the actual operation of the gate, and need not be
modeled. A static CMOS gate is characterized by pull-up and
pull-down functions that are duals of each others. This means
that, for all possible gate inputs, there is always a conducting path
from the gate output to either power or ground. Furthermore, for
all possible true input values (logic 0 or logic 1), there is either a
path to power or to ground, but not simultaneously to both.
Because of these characteristics, the functional application of a
logic gate is greatly simplified. Below, the switch-level
phenomena that occur in the functional domain of a static logic
gate, but not in its functional application, are treated.

1 - Charge Sharing and Charge Storage
Charge sharing occurs when two or more nodes, isolated
from power and ground, become connected through a con-
ducting path. The resulting signal at these nodes is a func-
ton of their logic states and capacitance sizes. Since in
static CMOS gates there is always a conducting path from
power or ground to the gate output, stored charge on the gate
output is overruled. Therefore, neither charge sharing nor
charge storage can affect the state or strength of the gate out-
put.

2 - Bidirectional Signal Flow
In a static logic gate, only the new value of the gate output is
determined. This gate output is always connected to power
or ground through one or more paths. Along these paths,
signals propagate only in the direction toward the gate out-
put. Bidirectional signal flow is, therefore, eliminated.

3 - Conflicting Signal Resolution

Signal resolution is necessary when two or more signals with
different logic states attempt to drive the same node. When
true-values (logic 0 or logic 1) are applied to a logic gate,
simultaneous paths to vdd and gnd do not occur. In this
case, signal resolution is, therefore, not needed. In the case
that unknowns are applied to the gate, it is possible that
simultaneous paths to vdd and gnd occur. However, if such
simultaneous paths occur, each path will contain at least one
transistor with an unknown signel controlling its gate. Since
both paths contain a transistor in an unknown state, the out-
put always evaluates to unknown. In this case, resolution of
conflicting signals is, therefore, also not needed.

Modeling a logic gate is further simplified by the fact that
its inputs all drive transistor gates. Only the logic state of the
inputs is needed and their strength can be ignored. The logic state
of the gate output is thus simply defined as a Boolean function of
the logic states of the gate inputs. The only other feature that
needs to be modeled for a logic gate is the strength of the pull-up
or pull-down path of the gate output. Charge sharing, bidirec-
tional signal flow, and conflicting signal resolution are eliminated
from the functional application and need not be modeled. Since
the functional application of a logic gate is greatly simplified, its
evaluation can be performed very efficiently.

4. Abstraction Algorithms

Gate abstraction for switch-level simulation consists of
three parts. The first part, called the logic analysis, obtains the
logic pull-up and pull-down functions of a dc-connected com-
ponent and determines whether it represents a valid logic gate.
The second part, called the strength analysis, analyzes the
strength of the pull-up and pull-down paths and incorporates this
strength information in the gate descriptor substituting the transis-
tor implementation. Finally, the third part generates an evalua-
tion routine for the gate descriptor. Since most gate descriptors
share evaluation routines, the total number of generated routines
is small. Below, each of the parts of the abstraction process is
described in more detail.

4.1. Logic Analysis

The logic analysis of the abstraction process determines
the logic pull-up and pull-down function of a dc-connected com-
ponent. The two functions are then compared to determine if
they are functional duals of each other. The algorithm performs
this task in three phases as explained below.

Identifying Potential Gate Outputs

The first phase identifies nodes that are potentially gate
outputs. A gate output is always connected to a P-type transistor
section and a N-type transistor section. Therefore, a node is
classified as a potential gate output (PGO) if it is connected to the
channel of at least one N-type transistor and the channel of at
least one P-type transistor. For each PGO node, the dcconnected
transistors are then examined to determine if the structure
represents a logic gate.

Constructing the Logic Function Tree

In the second phase, transistors that are dc-connected to a
PGO are traversed. During this traversal, a directed tree, called
the logic function tree (LFT), is generated that represents the
logic function of the transistor network. A logic function tree has
as nodes either OR or AND functions and has circuit signals as
leaves, either in complemented or non-complemented form. Each
node in the tree has an arbitrary number of children. One logic
function tree is generated for the N-type transistor section of the
network, called the N-LFT and one for the P-type transistor sec-
tion, called the P-LFT. In Figure 1, the P-LFT and N-LFT of an
example gate are shown. Any possible logic function can be
expressed using the logic function tree representation.

The conversion to the logic tree format serves three pur-
poses: first, the logic pull-up and logic pull-down functions are
expressed independently. The algorithm determines the N-
section and P-section and traces them separately. Secondly, the
comnectivity of the network is checked during the tracing. When
an illegal construct is encountered, the algorithm either aborts the
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Figure 1. A logic gate with its pull-up and pull-down LFT.

gate detection process or removes the function of the illegal con-
struct from the tree and continues the gate detection. Thirdly, the
logic function of cyclic constructs is expressed in a non-cyclic
representation. This simplifies further conversions and comparis-
aons of the pull-up and pull-down functions.

The conversation algorithm performs a depth-first trace of
all possible paths that start from the PGO node. For each
traversed transistor, an AND node with a connected LEAF node is
added to the existing tree. For each circuit node with multiple
fan-out, an OR node is added to the tree.

Conversion to Sum-of-Product Notation

The LFT generated in phase 2 completely represents the
logic pull-up and pull-down function of a transistor network. For
a valid gate, the function represented by the P-tree is the dual of
that represented by the N-tree. However, the actual form of the

tree depends on the used design style, the used circuit extraction
program, and the exact layout of the circuit. While the function
represented by the N-tree and the P-tree might be duals, the actual
trees might not be duals. An example of this situation is shown in
Figure 1. Although the structure shown in Figure 1(a) represents
a logic gate, Figure 1(b) shows that the generated logic function
trees are quite different. By examining the P-LFT and N-LFT
directly, it is difficult to determined that they represent dual func-
tions.

In order to detect logic gates independent of the specific
design style and layout the third phase of the logic analysis con-
verts the LFT representation into the sum-of-product (SOP) nota-
tion. This conversion has the effect of flattening the logic func-
tion tree, allowing it to be easily simplified and tested for
equivalence. The conversion can generate either the function
represented by the tree or its dual. For the P-LFT the SOP nots-
tion of the dual of the function is generated, while for the N.-LFT
the SOP notation of function itself is generated. The SOP nota-
tion is generated using a single, depth first traversal of a logic
function tree.

The generated SOP notations often contain redundancies.
Before the N-SOP and P-SOP notations are tested for
equivalence, redundant product terms and variables are removed.
In general, this involves the exponential tautology problem
presented in ESPRESSO ([7]. However, for SOP notations
derived during the gate detection process, redundancies in the
notation are completely removed in polynomial time. The N-
SOP corresponds to the N-section of the gate and involves only
N-type transistors. All variables in the N-SOP list are, therefore,
non-complemented. Similarly, all variable in the P-SOP are com-
plemented. An SOP list cannot contain both complemented and
non-complemented variables, which greatly simplifies the com-
plete removal of the redundancies. Only the two redundancies
shown below can occur in the generated SOP notions.

Duplication of variables: {a bca} —- f{abc)
Equivalence of terms: {abcd+abd} > (abd}
Both of these redundancies are easily removed with sequential
traversals of the SOP list. The time i for this nrocess
is 0(n?), where a is the length of the SOP list. After all redun-
dancy in the SOP notations are removed, their equivalence is
tested. If the two lists represent a valid logic gate, their SOP lists
must be identical except for the ordering of products and vari-
ables. This equivalence is established with an O(n2) search

method.

4.2. Strength Analysis

Switch-level simulation uses a simplified conductance
model to determine the combined strength of a transistor network
[1]. For a chain of transistors connected in series, the combined
strength of the chain is the minimum of the transistor strengths in
the chain. Conversely, the combined strength of paralle] transis-
tor connections is the maximum of the individual transistor
strengths. A transistor network implementing a gate can be seen
as a set of parallel branches connecting the gate output to vdd and
gnd. Each branch consists of one or more transistors connected in
series. The strength of each branch is the minimum strength of
the transistors in the branch. The strength of the entire gate is the
maximum strength of all conducting branches. We consider the
strength of the P-section (to vdd) and N-section (to gnd) indepen-
dently, If all branches in a section are of equal strength, it is
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called strength consistent. Furthermore, if both the N-section and
P-section of a gate are strength consistent, the gate is called
strength consistent. In this case, a unique pull-up and pull-down
strength are identified for the gate, and the gate strength is a func-
tion only of the logic state of the gate output. A strength con-
sistent gate is, therefore, fully described by its logic function, its
pull-up strength, pull-down strength, and its number of inputs.

If either section of the gate is not strength consistent, the
gate output strength depends on which branches in a section are
conducting and the gate is called strength inconsistent. An exam-
ple of such a gate is shown in Figure 2. Since the size of transis-
tor T1 is greater than that of T2, the pull-down strength of the
gate is greater when T'1 is conducting than when only T'2 is con-
ducting. ["or strength inconsistent gates, the output strength is not
only a function of the logic state of the output, but also of the gate
inputs.

The SOP notation derived during the gate abstraction is
particularly convenient for strength analysis of gate structures
since each product in the SOP notation corresponds to a branch of
the gate. During the construction of the logic function tree, each
leaf added to the tree is assigned the strength of its associated
transistor. When the SOP notation is produced, the strength of a
product is then the minimum strength of the leaves in the product.
If the strength of all products in the SOP notation are identical for
the pull-up function and the pull-down function, the gate is
classified as strength consistent. Conversely, if either the pull-up
function or the pull-down function contain products with differ-
ing strength, the gate is classified as strength inconsistent. It
should noted that for a strength consistent gate, the strength of the
pull-up function can differ from that for the pull-down function.
This is frequently the case, since designers size the pull-up and
pull-down transistors to achieve specific rise the fall times.

4.3. Gate Evaluation Methods

After the logic and strength analysis are completed, the
gate abstraction program generates a gate descriptor and a gate
evaluation routine. The gate descriptor provides the interface
between the used simulator and the gate evaluation routine. It is
an entry in the circuit description that replaces the original
transistor network and points to the subroutine that evaluates the
gate. Most gate descriptors share the same evaluation routine.

Figure 2. A logic gate with different pull-down strengths. Transistors
arclabeledas T, S, where § is the size of T, .
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The gate descriptor contains a list of parameters, necessary for the
evaluation of the gate. When the simulator encounters a gate
descriptor, it calls the associated evaluation routine and passes to
this routine the list of inputs and outputs, as well as the list of
parameters included in the gate descriptor. The method of
evaluation depends on the logic function and the strength
classification of the gate. Separate approaches are taken for
strength consistent and strength inconsistent gates.

Strength Consistent Gates

For strength consistent gates, the gate is fully described by
the type of logic function it performs, the number of inputs, and
the strength of the pull-up and pull-down functions (respectively
called the up strength and down strength). A gate extracted from
a transistor description is either an ‘Inverter’, a ‘NAND’, a
‘NOR’, or an ‘AND_OR_Inverter’ (AOI) gate. For a AOI gate,
not only the total number of inputs is specified in the gate
descriptor, but also the grouping of the inputs for each AND in
the AQI gate.

Evaluation for consistent NOR, NAND, Inverter, and AOI
gates is performed with a simple table lookup or poling routine.
For each type of logic gate a separate evaluation routine is used.
The evaluation routine for NAND gates is shown in Figure 3.
Variables in and ow point, respectively, to a list of input nodes
and the output node. The variable par points to the vector of
parameters contained in the gate descriptor. For clarity, a
pseudo-code version of the NAND evaluation routine is shown.
Since a gate descriptor contains the number of inputs and the up
and down strengths, only one evaluation routine is needed for
each type of gate. For strength consistent gates, a maximum of
four C-functions is, therefore, needed. The evaluation routine
examines the gate inputs sequentially and requires O (n) evalua-
tion time, where n is the number of inputs. It should be noted,
however, that each iteration involves only one or two comparison
statements. Evaluation for strength consistent gates is, therefore,
quite efficient.

Strength Inconsistent Gates

For strength inconsistent gates, the gate output strength is
not only a function of the output but also of the gate inputs.
Therefore, specifying a single up and down strength is not
sufficient and the evaluation method used for consistent gates
cannot be used. Instead, the exact output strength is specified for

NAND (in, out, par)

outState = 0;
for (i = 0; outState I= 1 && i < parfNum_Inputs]; i ++) {
if (state (*in) == 0)
outState = 1;
else if (state (*in) == X)
outState = X;
in ++;

setState (out, outState);
switch(outState) {
case 0: setStrength (out, parfDown_Str]);

case l1): setStrength (out, par{Up_Str));
reak;
case X: setStrength (out, max(par(Down_Str), par{Up_Str]));
break;
}
)
Figure 3. Evaluation code for a NAND gate implementation.



each possible set of input states.

Two evaluation methods were used to model these gates.
First, for gates with a small number of inputs, evaluation uses an
exhaustive truth table. In this truth table, the state and strength of
the gate output is specified for each possible gate input state. The
ttme required for forming the index from the gate inputs is linear
with the number of inputs. Each gate input can take on three pos-
sible states ( logic 0, logic 1, and unknown) and is encoded using
two bits. The size of the table, therefore, grows as O (4*), where
« is the number of inputs. Only gates with a maximum of 4
mputs are modeled in this way. For gates with more than 4
mputs, evaluation is performed using the Coded Personality
Marrix (CPM) method described in [8]. This method uses a
binary encoding of the products in the pull-up and the pull-down
functions. The CPM method is modified so that each product is
amssociated with both a logic state and strength. A gate is now
evaluated by encoding the logic state of the inputs and traversing
the product lists to determine if there is a match. Each time the
mput states match a product, the gate output is updated with the
state and strength information of that product. Since the entire
product list is traversed, the evaluation time is linear with the
number of products in the product list. The size of this list usu-
ally far exceeds the number of gate inputs.

The evaluation method for consistent gates is faster and
requires less storage space than those for inconsistent gates.
However, inconsistent gates occur infrequent in most circuit
designs. For the tested circuits, less then 1.0 % of all detected
gates were strength inconsistent. The overall performance of the
simulation was, therefore, not seriously affected by the more time
intensive modeling of these gates.

S. Performance Results

The proposed algorithms were implemented in the C-
language and executed on Sun-4 work stations. The program was
tested on several large circuit descriptions, including the circuit
description of a large microprocessor. All tested circuits were
hierarchically defined and were simulated with the CHAMP (9]
simulator. To ensure the correctness of the gate abstraction pro-
cess, the microprocessor was simulated both with and without
gate abstraction for over 20,000 clock cycles. The produced sig-
nals of the processor outputs and internal busses were then com-
pared. Both the state and strength of all signals were identical for
the two simulations.

Table 1 shows the performance results of the gate abstrac-
ton. The column labeled perc ge of transistors replaced
refers to the percentage of transistors substituted with gate
descriptors in the flat circuit description. As can be seen, this per-
centage varies for different types of circuits. The column labeled
size down refers to the reduction in the hierarchical description

circuit number % trans. size simulation

of trans. | replaced | down speed-up
decoder 6604 100% 747 2.06
alu 1468 86.8% 1.77 1.90
random logic 385 88.3% 1.51 1.94
register file 1542 93.8% 1.29 3.16
microproc 38,479 85.1% 1.57 1.81

Table 1. Performance results of the gate abstraction algorithm.

size. The simulation speed-up observed when performing gate
abstraction varied from 1.81 to0 3.16. The simulation speed of the
microprocessor increased by a factor of 1.81.

The execution time of the proposed gate abstractor is
roughly equal to the time required for parsing the circuit descrip-
tion. Since the simulation time is several orders of magnitude
greater than this and the gate abstraction is only performed once
per simulation, the added computational cost is insignificant.
Rather, the saving in simulation time greatly outweighs the added
computational cost. ’

6. Conclusions

In conclusion, the proposed algorithm presents an efficient
and accurate means of increasing the simulation speed of switch-
level simulation. It was shown that for logic gates, most switch-
level phenomena camnot occur and modeling these structures is
greatly simplified. An algorithm was presented to detect logic
gates irrespective of their design style or circuit layout. Logic
gates were then classified as strength consistent or strength incon-
sistent and, for each class, efficient evaluation routines were
presented. The algorithms were implemented and tested on
several large circuits, including a large microprocessor. For this
microprocessor, the gate abstraction algorithm replaced 85% of
all wransistors with gate descriptors which increased the simula-
tion speed by a factor of 1.81. Since logic gates are conceptually
and computationally much simpler than their transistor imple-
mentations, significant benefit can be had from the gate abstrac-
tion process.
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