AUTOMATIC CLASSIFICATION OF NODE TYPES IN SWITCH-LEVEL DESCRIPTIONS *

David T. Blaauw, P. Banerjee

Center for Reliable an High Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Urbana, IL 61801, U.S.A.

ABSTRACT:

In switch-level simulation, nodes carry a charge on their
parasitic capacitance from one evaluation to the next, which gives
them a memory quality. A node is classified as temporary if its
memory aspect is lost and cannot affect the circuit operation,
whereas a node is classified as a memory node, if the memory of
the node is maintained and can affect the circuit operation. Accu-
rate classification of nodes into temporary and memory nodes
increases the performance of compiled simulators and high-level
model generators. We introduce a new approach for reliable
automatic classification nodes in a switch-level description. Both
an exhaustive, exponential-time algorithm and a polynomial-time
heuristic are presented. The heuristic was implemented and
tested for several large circuits, including a commercial micropro-
cessor. For this processor, the proposed heuristics identified an
average of 92% of all nodes as temporary nodes. The heuristic
was applied in a high-level model generator and significantly
increased its performance.

1. Introduction

In a switch-level description, the parasitic capacitance of a
circuit connection is modeled by an implicit capacitor connecting
the circuit node to ground. The so-called node size is an abstract
measure of the size of this capacitance. Since every node in the
circuit has a finite node size, every node carries a signal value
from one evaluation to the next and has, therefore, a memory
quality.

This memory quality of a node greatly complicates the
evaluation of a circuit. Each circuit node can potentially affect
the future evaluation and must be explicitly evaluated and stored.
However, if the stored signal charge is immediately overridden
by a different signal in the circuit, the retained signal is destroyed.
Furthermore, if it can be shown that this occurs for all possible
circuit states, the retained signal is always destroyed and cannot
affect the circuit operation. The memory quality of such a node is
thus inconsequential to the circuit operation, and the node is
called a temporary node. Conversely, a node which retains a sig-
nal value that can potentially affect the circuit operation is called
a memory node. A simple example of a temporary node is the
output of a static CMOS gate. The output of a static gate always

+ This research was supported in part by Semiconductor Research
Corporation Contract 89-DP-142, and in part by Motorola, Inc. Austin,
TX.

CH2909-0/90/0000/0175%$01.00 © 1990 IEEE

Jacob A. Abraham

Department of Electrical and
Computer Engineering
University of Texas at Austin
Austin, TX 78712, US.A.

has a driven strength and is only a function of the gate inputs.
The retained output state is always overridden by the new gate
output signal which is independent of its previous logic state.
Therefore, the output state need not be saved between evalua-
tions, and the node classifies as a temporary node.

Detection of temporary nodes can be used to increase the
performance of compiled simulators [1,2]. These programs use
path tracing algorithms to generate evaluation code for dc-
connected components in a circuit. For each node, a Boolean
equation is produced to calculate the new node state given the
states of the boundary nodes of the dc-connected component.
Each node is thus explicitly evaluated. If, however, a node is
identified as a temporary node, it is only important in how it
affects the overall circuit evaluation and is not explicitly
evaluated. By classifying the nodes as temporary and memory
nodes, the evaluation can be restricted to only memory and boun-
dary nodes. The storage requirement is also reduced with the
identification of temporary nodes. A signal at a memory node
must be saved from one evaluation to the next. A temporary node
functions much like a temporary variable in a software function
which is initialized at each execution. Since the temporary vari-
able is re-initialized, its previous value is irrelevant and is not
saved. Similarly, the state and strength of temporary nodes need
not be saved between evaluations. If the percentage of temporary
nodes in a circuit is high, a significant reduction in the simulation
time and storage requirement can be achieved.

The concept of temporary and memory nodes has also
been used in the generation of high-level models from switch-
level descriptions [3,4]. These methods extract from the circuit
description a high-level model of the circuit behavior. Since tem-
porary nodes affect only the current circuit evaluation, they are
freely abstracted away and eliminated from the high-level model.
However, memory nodes contribute memory to the circuit which
must be incorporated in the generated model. Therefore, the
high-level model generator handles memory nodes differently
from temporary nodes to preserve the memory of a circuit in the
abstraction process. Memory nodes thus complicate the model
generation process and reduce the speed of the generated models.
Accurate identification of temporary nodes, therefore, decreases
the model generation time and increases the efficiency of the gen-
erated models.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work and outlines the approach used for
identifying temporary nodes. Section 3 presents an exhaustive
method for identifying temporary nodes, while Section 4

describes an efficient heuristic based on the exhaustive method.
Finally, Section 5 discusses the results obtained with the pro-
posed methods and offers some concluding remarks.

2. Related Work

Currently, no systematic approach for automatic
classification of nodes is known. One approach is to assume all
nodes in the circuit to be temporary, unless they are manually
flagged as memory nodes [3]. However, as the above discussion
shows, all nodes are potentially memory nodes. Manual flagging
easily overlooks a memory node which results in compromising
the accuracy of the circuit simulation. A more appropriate
assumption for switch-level descriptions is to assume that all
nodes are memory nodes, unless they are specifically shown to be
temporary nodes. This assumption might yield conservative
results, but it guarantees the accuracy of the circuit evaluation.
Furthermore, identification of temporary nodes should not rely on
manual flagging, which is time consuming and error prone, but
should be performed automatically.

A limited amount of node classification is performed in the
COSMOS simulator [2]. The simulator eliminates the evaluation
of certain nodes when not necessary for the overall circuit evalua-
tion. The process of identifying nodes that are eliminated
involves classification of nodes as memory and temporary nodes.
However, the classification is embedded in and specific to the
overall circuit analysis performed by the simulator. Therefore, it
is difficult to determine how exhaustive the used method is and to
use it independent from the simulator.

In this paper, we propose a new procedure for exhaustive
identification of temporary nodes. Our approach uses a logic gate
extractor to identify static logic gates in the circuit. The
identification of temporary nodes is then performed by tracing all
possible paths from a node to permanent signal sources. Per-
manent signal sources are power nodes, such as ‘vdd’ and ‘gnd’,
and outputs of static gates. If it is shown for an examined node
that there exists a path to a permanent signal source for all possi-
ble circuit states, the node classifies as a temporary node. Since
the number of paths in a circuit grows exponentially with the size
of the circuit, the exhaustive identification procedure has an
exponential time-complexity. Therefore, we additionally propose
a heuristic based on this exhaustive procedure. This heuristic is
effective in identifying temporary nodes and is only of polyno-
mial time-complexity with the number of nodes in the circuit.

3. Exhaustive Identification of Temporary Nodes

In a switch-level description, signal strengths form the fol-
lowing ordered set [5]:

A<k <K< <Kpor <P << -

The strength x; refers 1o a charged signal strength from a node
with node size i and is overruled by any signal with a stronger
charge strength (¥;,1, .., Knax) OF with a driving (y;) or input (@)
strength. In turn, a driving strength y; is overruled by a signal
with a stronger driving strength (.1, ..., Yme) OF With an input
strength (@). It can be seen that a retained signal on node » will
have strength k;, where i is the nodes size of n. This retained sig-
nal is thus overruled by any signal of strength { x;,,, ... ® }; any
signal with driving or input strength, or a charged signal from a
node with a nodes size greater than i, will overrule the retained
signal on n.

176

A temporary node is characterized by a retained signal that
is always destroyed. Therefore, it must be shown that the
retained signal on n is overruled by a stronger signal for all possi-
ble circuit states. To determine this, we introduce the function
F over(m, n) which returns a boolean function of the control signals
in the circuit. Node n is the node that is examined and node m is
an adjacent node that is dc-connected to » through one transistor.
The function F,,,(m,n) is defined such that if the condition
Fover(m,n)=1 is satisfied, node » is overruled by node m. If
G(m,n)=g is defined as the gate node of the transistor cormect-
ing m and n, F ,.,() is expressed as follows:

if{ nodeSize (m)>nodeSize(n) |

G(m,n) misa gate output [
F oyerim, n) = m is an input or power node) (1)
0 otherwise

If F oy, n) retums G =g, node m overrules node » if the condi-
tion g=1 is satisfied. In other words, if the transistor connecting n
and m conducts, the state retained on node n is destroyed. On the
other hand, if node m can not overrule node m, F,,,(m,n)
returns 0 and the condition F,,.(m,n)= 1 can not be satisfied.

Equation (1) examines only nodes immediately adjacent to
node n. However, nodes further removed from » must also be
considered in the classification of n. Equation (1) is therefore
expanded to examine nodes a distance d removed from n. Func-
tion F,,, 4(m,n) is defined such that if the condition
F over,a(m,n)=1 is satisfied, node r is overruled by a node d-1
transistors removed from m. If /; is a node dc-connected to node
m and l; #n, F ., 4() is described recursively as follows:

if{ nodeSize (m)>nodeSize (n) |/
G(m,n) misagate output ||
F over,1(m, n) =9 m is an input or power node) (2)
0 otherwise
if(nodeSize (m)>nodeSize (n) |
G(m,n) misa gate oulput ||
Foyer,am,n) =) m is an inpwt or power node) 3)
G(m,n) 3 (F over, a-1;, m)) otherwise
1

F oyer,a(m, n) is thus a boolean function of the gate nodes of dc-
connected transistors a distance d—1 removed from m. It should
be noted that this resembles the justification problem encountered
in test generation.

The boolean function generated by (3) is not fully com-
plete since, no account is taken of the relationship between con-
trol signals of the circuit. The circuit is expressed as a mixture of
gates and transistors and the gates nodes G (r, m) are often related
by a simple boolean function. However, in (3), all gate nodes are
assumed to be unrelated. A function Back(g) is, therefore, defined
to perform the conditional back-tracing step of test generation. If
the gate g of the transistor connecting » and m is the output of a
single logic gate, g is replaced with the boolean function of the
gate inputs nodes. This process is recursively repeated, until no
further back-tracing can be performed. If gates in a circuit are
assumed to be only AND, OR, and INVERTER gates, the func-
tion Back(g) is expressed as follows:

3 (Back(k;)) if(g is output of an OR with inputs k;)
L
T1Back(k)) ift g is output of an AND with inputs k;)
Back(g) =1 _ PR L
i if g is output of an INV with input k;)

otherwise

\
If the control signal g is connected to multiple gate outputs or to
the channel of one or more transistors, the relationship between g
and other control signals cannot be expressed with a simple
Boolean equation. In this case, the back-tracing of g is ter-
minated. In equation (3), function G(m,n) is now replaced by
Back(G (m,n)).

The classification of node » is now determined by setting
the distance d to the maximum non-cyclic path length in the cir-
cuit (dmex) and taking the sum S of (3) for all nodes m; adjacent to
n. If S simplifies such that § = 1, the retained state of node » is
overruled independent of the circuit state. Node » is thus a tem-
porary node. However, if S simplifies to something different than
boolean 1, the retained state on node » is only overruled for cir-
cuit states that satisfy S = 1. In this case » is not overruled for all
circuit states and n remains a memory node. Below, the function
Class (n) is shown, which determines the classification of node n.

temporary ifl S =1),8 = X(F over, 4., (m;, 7))
Class(n) = (5)

memory otherwise

4. Heuristic Method

Because (3) is recursive in nature, its time requirement is
exponential with the number of nodes in a dc-connected com-
ponent. Evaluation of the function Class(n) is further compli-
cated by the fact that, in order to show the identity § = 1 complete
removal of the redundancies in the equation produced by

DUF over, dp i, 1)) 1 required. This involves the tautology prob-
lem examined in [6] which is NP-complete in nature.

To avoid excessive analysis time, we proposed a heuristic
with a polynomial-time requirement with the number of nodes in
a de-connected component. First, function Back(g) is changed
such that back-tracing is only performed for strings of inverters.
This way the variable expansion is avoided, while simple inver-
sion relationships between control signals are still detected.
Secondly, we eliminate the recursive nature of (3) by setting
dmx=1. We now define G(m; n) as the boolean equation
describing the conductance of the transistor ; connecting n and

mj.

1 if{ transistor 1; is permanently on)
0 if{ transistor t; is permanenily off)
G(mi,n) =Y Back(g;) iff transistor ; is an N-type)

Back(g;) iff transistor t; is a P-type)

In order to take account of previously classified nodes, each node
n is assigned an overruling strength, Over(n), which indicates its
minimum permanent overruling signal strength. If Over(n)=2, n
is a memory node. If Over (n) > A, n is temporary node and has a
overruling strength of Over (z). Initially the overruling strength of
all nodes is set to A. Function P (m, ») is defined as the overrul-
ing strength of n, if there is a path from m to n. If 5,, and s, are
the node size of respectively m and n, P(m,n) is defined as

17

follows.

¥ if (m is a gate output |/
_ m s a circuit input or power node)
P(m,n) = K5 ‘f(K:m >K,r")

Over(m) if{ Over(m) > K_,n)
A

otherwise
The function Class (n) is now defined as follows:
Min(P (m;, n)) f(S=1)

Class (n) =
A

©)

otherwise

where §= (G (m;, n) - (P(m;, n) #A))

It can be seen that S is a simple sum-of-product notation. Since
P(m; n)#\ is either boolean 1 or 0, the notation immediately
reduces to a simple sum with terms from the set {n; ;,0,1},
where n; denotes a node in the circuit and #; denotes its comple-
ment. The simple nature of these terms allows exhaustive remo-
val of redundancies in polynomial-time. The following set of
simplifications is sufficient for complete reduction of the nota-
tion:

(1) Gl+G2=Gz ifGl=0
(2) Gl+62=1 ifGl=]
3B) G1+G,=1 ifG,=G,

Simplifications (1) and (2) are performed with a linear examina-
tion of the terms, and simplification (3) is performed with an
O (n?) search process. The overall simplification process has a
polynomial-time requirement of the second order.

Setting d,,,=1 limits the procedure to examining only
nodes that are immediately adjacent to node n. To expand the
exchange of information, the function Class () is executed repeat-
edly. Each iteration of function Class() takes into account the
overruling strength of nodes that are set temporary in previous
iterations. An iteration of the function Class() will set a certain
number of nodes to temporary, which provides new information
for subsequent iterations. When no additional nodes are set to
temporary in an iteration, no new information is available for
further iterations and the classification process is terminated.

In the worst case scenario, the number of needed iterations
is equal to the number of transistors in the largest dc-connected
component. Since the search process has a complexity of 0(n?),
the worst case scenario would require an overall computational
time of O(n3), where n is the number of nodes in the circuit.
However, in practice the number of iterations is small. For the
tested circuits, which included a large barrel shifter, the max-
imum iteration count never exceeded 4.

The example shown in Figure 1 illustrates how repeated
application of the function Class() allows information to be
exchanged across multiple transistors. The circuit consists of an
inverter, implemented with transistors, feeding an input of a two
input decoder. In the first iteration of function Class () nodes
NO,N1,N2,N3,N5 N6, N7 are immediately set to temporary with
an overruling strength of y, since they are gate outputs, power
nodes, or circuit input nodes. For transistors 7’1 and T2 condi-
tional back-tracing of the gate node is performed. G(N4,N2)

N5
NI N2
_G{ T N6
NO N4 3 |
| N8
e oL

Figure 1. Exchange of information in a circuit.

evaluates to NO, while G (¥4, N3) evaluates to NO. For node N4,
S becomes ‘NO+N0’, which simplifies to boolean 1. The condi-
tion for a temporary node is satisfied and node N4 is classified as
such. In the first iteration, equation S for node N8 is simply ‘N5’.
However, in the second evaluation of Class() node N4 is set to
temporary and S changes to ‘N5+N5° for node N8. This
simplifies to § =1 and node N8 is thus also set to temporary. The
two applications of Class() has propagated the effect of power
nodes N2 and N3 to node N8, so that it is set to temporary. The
third iteration of Class () produces no further temporary nodes and
terminates the classification process.

5. Node Identification Results and Conclusion

The presented heuristic was implemented on Sun4 work-
stations and tested on several circuit descriptions. Table 1 shows
the results of the classification process. The percentage of nodes
identified as temporary nodes ranges from 80% to 100% for the
different types of circuit blocks. Table 1 also shows the average
number of iterations needed to perform the classification process.
The 8-input multiplexor shows the highest average number of
iterations. This is caused by the long chains of pass-transistors
used in this circuit. The maximum number of iterations needed in
any of the tested circuits never exceeded 4. Due to the low aver-
age iteration count, the execution time of the heuristic was very
low. For the tested circuits, the classification process required an
order of magnitude less time than the parsing of the circuit. Since
the classification process is only performed once in the simulation
process, its added overhead is negligible compared to the overall
simulation time.

The heuristic was used in the high-level model generator
presented in [4]. The accurate identification of temporary nodes

— number number | nodes set number
circuit . . .
transistor | nodes temporary | iterations

latch 8 14 100% 1.00
xor 16 27 100% 1.00
alu unit 20 20 100% 1.50
rand 28 25 80% 1.50
mux 36 38 100% 2.50
proc 20,920 8,337 92% 1.55

Table 1. Results of the classification process.

178

circuit evaluation time (msec)
name trans. nodes without | with speedup
class. class.
latch 8 14 1,370 930 15
xorr 16 27 1,700 1,300 1.3
alu unit 20 20 1,410 720 20
rand 28 25 2,290 1,780 13
mux 36 38 5,820 3,000 1.9
proc 20,920 | 8,337 | 147,320 | 113,680 13

Table 2. Simulation with and without node classification.

proved vital to the generation of efficient high-level models. Per-
formance of the generated models, with and without node
classification, is shown in Table 2. The evaluation speed of the
models increased between 1.3 and 2.0 times with the use of the
node classification method.

In conclusion, an accurate and efficient method for identi-
fying temporary nodes in a switch-level description has been
presented. The identification process is based on showing that the
stored charge on a node is overridden by a stronger charge source
for all possible circuit states. The process uses a logic gate
extractor as a preprocessing step. An exhaustive algorithm was
presented which requires exponential evaluation time with the
size of the circuit. Additionally, an effective heuristic with a
polynomial time requirement was proposed. The heuristic was
implemented and tested for several large circuits, including a
commercial microprocessor. For these processors, the proposed
heuristics identified 92% of all nodes as temporary nodes. With
the node classification process, a significant increase in the per-
formance of generated high-level models was obtained.

REFERENCES

IN. Hajj and D.G. Saab, *‘Symbolic Logic Simulation of
MOS Circuits,” Proc. International Symposium on
Circuits and Systems, pp. 246-249, 1983.

R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T.
Scheffler, *‘COSMOS: A Compiled Simulator for MOS
Circuits,” Proc. IEEE International Design Automation
Conference, pp.9-16, 1987.

R. H. Lathrop, R. J. Hall, G. Duffy, K. M. Alexander, and
R. S. Kirk, ‘‘Advances in Functional Abstraction from
Structure,” Proc. 25th IEEE Design Automation
Conference, pp. 708-711, 1988.

D.T. Blaauw, P. Banerjee, and J. A. Abraham, ‘‘SNEL: A
Switch-Level Simulator Using Multiple Levels of
Functional Abstraction,”” Submitted: IEEE International
Conference on Computer Aided Design, 1990.

R.E. Bryant, “‘A Switch-Level Model and Simulator for
MOS Digital Systems,”” [EEE Transactions on
Computers, vol. C-33,No.2, pp. 160-177, Feb. 1984.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli, Logic Minimization Algorithms
Jor VLSI Synthesis. Boston: Kluwer Academic Publishers,
1984.

1

(2]

(31

(4]

(3]

(6]

