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ABSTRACT

Fault simulation is an integral part of developing high quality
tests for integrated circuits. Due to its high time and memory require-
ments the size of systems that can be simulated cost-effectively is limited.
This paper discusses a fault simulation approach that can be used to fault
grade large digital designs on engineering workstations. The hierarchical
approach reduces memory requirements drastically by storing the struc-
ture of common repeated subcircuits only once and allows flexible mul-
tilevel simulation. The simulation algorithms are at the switch level so
that general MOS digital designs with bidirectional signal flow can be
handled, and both stuck-at and transistor faults are treated accurately. Our
fault simulation algorithms have been implemented as a prototype that
was used to fault grade a model of the Motorola 68000 microprocessor on
SUN Microsystems workstations.

1. Introduction

Integrated circuits are being fabricated with increased complexity
allowing the implemention of large system on a single chip. This increase
in the level of integration has exceeded the capability of current Computer
Aided Design (CAD) tools which are crucial for the design and
verification of large systems. In particular, the effort spent on simulation
has grown sharply. Simulation tools are employed both to help verify the
functionality of a design (logic simulation) and to evaluate the quality of a
set of test pattemns (fault simulation).

Fault simulation has traditionally been performed at the gate level
[1] where failures are approximated using the stuck-at-fault model [2].
For Metal Oxide Semiconductor (MOS) technology this is an inappropri-
ate level of abstraction. MOS circuits may contain ratioed logic and pass
transistors exhibiting bidirectional signal flow and charge sharing effects.
Furthermore, the gate level stuck-at fault model does not model realistic
physical failures in MOS circuits adequately [3).

Switch-level fault simulators{4] are effective in simulating transis-
tor level effects and failures; however, they tend to require large amounts
of memory when the circuits are represented at the flat level and the cir-
cuit hierarchy is not utilized. This memory requirement becomes a limit-
ing factor of the performance of switch level logic and fault simulators
when large circuits are considered. The limitations are due to the severe
performance penalties of paging in a virtual memory environment. There-
fore, to effectively perform logic and fault simulation in a reasonable
amount of time and with acceptable memory requirements, circuit regu-
larity and hierarchy must be exploited.

From the point of view of simulation, a hierarchical circuit
description offers many advantages over a flat description. A hierarchical
description allows compact representation of the circuit by exposing
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repetitive’;- used blocks. Consider, for example, an N-bit binary adder; it
can be rc; :sented as the interconnection of N identical submodules each
consisting of a full adder which, in tum, consists of an interconnection of
elementary logic gates. This contrasts sharply with a flat description,
where the whole N-bit adder is given at the gate level. The difference in
the size of the description becomes even more visible when the lowest
level of the circuit is at least in part described in terms of transistor net-
works, as is the case for MOS designs. This reduction in memory
requirement is pivotal for dealing with large circuits, where paging
activity during simulation degrades performance and makes analysis of a
complete system practically impossible.

A hierarchical description can also be used to speed up the simu-
lation. It facilitates the replacement of complex modules with function-
ally equivalent but computationally cheaper modules. For instance, a col-
lection of gates can be emulated by one software function. Also, for
blocks of moderate size, one has the option of constructing a table by car-
rying out an exhaustive low-level simulation or generating logic expres-
sions [5-7], or generating a behavioral description [8] to replace the block
and expedite its evaluation while maintaining its function.

Hierarchical logic and fault simulation was first impl in
the program CHIEFS [9]. CHIEFS uses a gate-level description at the
lowest level, and thus cannot model transistor-level effects. Moreover,
gate level simulation requires unidirectional signal flow across subcircuit
boundaries. This is insufficient for MOS design. Similarly, multilevel
simulation has typically been performed from the gate level upwards.

q

1. ais paper, an approach is given for hierarchical multilevel fault
simulation. The approach is based on representing the circuit in a
hierarchical fashion where the lowest level primitives consist of transistor
interconnections. A key point of this work is in its application to large
systems. The approach has been implemented as a prototype fault simula-
tor, F_CHAMP, which has the following features:

(1) It is switch level based. Hence g 1 MOS designs are handled

Transistor level stuck-open/stuck-close faults can are modeled in
addition to the classical gate level faults.

) It allows mixed mode simulation: parts of the circuit can be simu-
lated faster at a behavioral level by supplying a high level
software description.

The simulator has been used to fault grade the MC68000 [10]
microprocessor design obtained from Motorola Inc., Austin. This is the
first program that can perform fault simulation for large systems with rea-
sonable requirements of CPU time and memory.

The remainder of the paper is organized as follows: Section 2
describes the data structures necessary for hierarchical simulation. Section
3 details the various stages of the simulation algorithm. Section 4 out-
lines our implementation and presents results and observations from our
experimemts. Section § offers conclusions and gives directions for future
research.



2. Circuit description and data structures
2.1. Circuit description

The circuit is described in a hierarchical format as an interconnec-
tion of building blocks. A building block can be an interconnection of
other building blocks or as an interconnection of primitives.

Two type of primitives are used in our framework: behavioral
models (also called functional models) and transistor networks. A
behavioral model explicitly specifies the input/output relationship of a
piece of circuitry. The behavioral description is specified in a high-level
software function (also referred to as C-function, since the C program-
ming language is used for implementation); it is either generated automat-
ically using compiled simulation techniques[8] or supplied by the user. A
behavioral model may contain just a logic gate (for example using table
lookup or bit manipulation functions), a collection of gates or a whole
functional block (see for instance [8] ). Note that a behavioral model can
appear at any level of the hierarchy. In particular, a complete block that
was previously described in terms of subcells can be replaced by a
software function.

The second type of primitive consists of a network of transistors.
A transistor network is given as a netlist of MOS transistors. A transistor
is modeled as a three node device (source, gate, and drain). All transistors
act as voltage-controlled switches which can be in one of three states: on
(high conductance), off (open circuit), and undefined (on or off or inter-
mediate). The nodes of the circuit may assume one of three values: high
(1), low (0), or undefined (X). An nMOS (pMOS) transistor is on (off)
when its gate is high, off{on) when its gate is low, and undefined when its
gate is undefined. All transistors are bidirectional elements (i.e., no dis-
tinction is made between the source and the drain). Using switch-level
transistor models, the circuit is represented by an undirected vertex-
weighted, edge-weighted switch graph G(V.E) similar to the graphs
described in [7,11]. Switch-level simulation techniques are applied to the
switch graph [7] to evaluate the corresponding transistor network.

2.2. Hierarchical data structures and operations

Storing a circuit description hierarchically demands more
involved data structures than a flat representation: besides avoiding the
replication of structural information one need to be able to traverse the
hierarchy top-down and bottom-up to propagate signal changes. In this
section we outline the basic data structures.

A daia structure for the circuit description must essentially have
two components: one that is concemed with the circuit topology (describ-
ing the recursive macro composition of the circuit) and the other main-
taining the state of the circuit during the simulation. As discussed earlier,
repeated structures need to be stored only once and may be referenced
many times. However, different references of one structure will be con-
nected to different parent cells in the hierarchy. Thus, there is intercon-
nection information that is specific to each reference. Clearly, the state
(the current set of signal values) is also specific to each reference. There-
fore, we distinguish two types of data structure: a base structure, or class,
which carries the structure of a module, its fault information etc. and an
instantiation structure, or instance, which holds information specific to
each reference of a base structure, such as current state and fault lists.

The base structure is implemented through the two data structures
cell and node given in pseudo C code in Figure 2.1.

In cell, pin_count and node_count store the number of electrical
nodes on the boundary of the cell and the total number of electrical nodes
in the cell respectively; nodes is an array of electrical nodes containing
the boundary nodes first followed by the intemal nodes. The distinction
is necessary because in order to reevaluate a certain block of the circuit
one needs to load a new set of signal values (also called environment) into
the input pins on the boundary of the block; similarly new output values
need to be passed upwards in the hierarchy through the output pins. In
contrast, intemal nodes are recomputed using the standard switch-level
operation of selecting the signal value corresponding to the least upper
bound of all paths feeding into the node (also called the consensus opera-
tion here).
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struct cell

{
string name;
integer pin_count;
integer node_count;
node_vector nodes;
integer subcell_count;
cell_vector subcells;
function c_function;
transistor_pointer transistor_net;
integer fault_count;
fault_descriptor local_faults;

}

struct node

{
integer fanout_count;
integer fanin_count;
integer_vector fanouts;
integer_vector fanins;
integer_vector fanin_nodes;
char type;

}

Figure 2.1. Data structures cell and node.

The field subcell_count contains the number of children cells and
subcells is an array of pointers to the subcells. This corresponds to the
down links in a hierarchical representation. Primitives need to have either
a reference to a software function or to a transistor network (fields
c_function and transistor_net).

For fault simulation one needs to keep track of the number of
faults that can occur in the cell (fault count). Fault_descriptor is a
pointer to an array of fault descriptors each containing bit encoded infor-
mation about the local faults in the cell (i.e. the pin number and the signal
value under fault).

Node is a substructure of cell and represents electrical nodes at
different 1~vels of the hierarchy. Fanin_count (fanout_count) stores the
number « f .anins (fanouts) to the node. Fanins and fanouts are arrays of
cell indices; fanin_nodes store the indices of the fanin nodes relative to
the fanin cells. Fanins and fanin_nodes are used to perform the con-
sensus operation for a node after all instances feeding into it have been
evaluated.

Furthermore, the structure node contains a type field. In addition
to the conventional input/output data types for signals (denoted INPUT,
OUTPUT) entering a subcircuit, we introduce a bidirectional type
(denoted IOPUT). This captures the notion of bidirectional signal flow
and is used to represent nodes on the boundary of a subcircuit that can
both receive a value from the outside and be modified by the operations
inside the subcircuit.

The instantiation structure insfance is shown in Figure 2.3. Base
is the base structure after which the instance is patterned. The state of the

struct instance

{
cell base;
state_vector state;
bit_vector activity;
instance_pointer parent;
instance_pointer children;
integer_vector contacts;
integer time;
integer rank;
integer fault_offset;
fault_list propagated_faults;
fault_list local_faults;

Figure 2.3 Instance structure.



nodes of the instance are kept in the state vector stafe. The state of a node
consists of its logical value (’0’, '1°, or 'X") and strength information
(conductance of the path driving the node). In addition, the array of bits
activity keeps track of whether a new consensus needs to be computed for
a node: this is the case when output signal values of instances connected
to the node change. The arrays state and activity have node_count ele-
ments.

The pointers parent and children provide up and down links
between instances in the tree representation of the hierarchy. Each boun-
dary node of the instance is connected to a node in the parent of the
instance. The array contacts keeps the index of the connection in the
parent of each boundary node of the instance. It is needed for loading a
new environment into the instance whenever it is scheduled for evalua-
tion. The environment is loaded from the parent as will be explained in
the next section.

Each instance keeps track of the time of its last evaluation in the
field time. This helps avoiding ry luations. Rank gives the
level of the instance at the respective level of hierarchy computed by per-
forming a topological sort.

For fault simulation, different copies of the same cell will receive
individual fault identification numbers (called fault ids). The first fault id
is stored in the field fawlt_offset. For each instance we maintain two lists
of fault records, one holding faults local to the instance (local_faults) and
the other holding faults that have been propagated to the instance
(propagated_faults).

Each fault record contains the respective fault id and the
corresponding sfate and activity information. We note therefore that the
size of fault records critically depends on the number of nodes at the par-
ticular level of hierarchy and can become very large towards higher levels
in the hierarchy.

3. Evaluation algorithm

The benefits of hierarchical fault simulation come at the cost of
increased complexity of the event scheduler. Scheduling, retrieving, and
propagating events become non trivial when an event must travel up and
down the hierarchy in order to propagate to all the affected modules. The
difficulties are due to the following:

(6)) Event propagation: The propagation of events is not limited to a
single level of the hierarchy.

) State variables: In the presense of faults proper updating of
nodes is very crucial to insure correct fault effect at higher levels.

3) Delays: Delayed events resulting from faulty and fault-free cir-
cuit need to be processed differently at different levels.

(©)) Consistency: Checks are needed to insure consistency across lev-

els for node description (delays, node type etc.).

In this section we describe the hierarchical evaluation algorithm
that is at the heart of F_CHAMP. The evaluation algorithm operates on a
single stack. A stack element consists of an instance needing evaluation
and flag indicating the direction of the evaluation (top-down or bottom-
up). The algorithm uses the following operations:

[¢)} push (instance, flag) to push an instance-flag pair on the stack,

(2)  pop (instance, flag) to pop from the top of the stack an instance-
flag pair

top (instance, flag) to get a copy of the instance-flag pair currently
on the top of the stack.

3.1. Algorithm

The evaluation procedure is outlined in Figure 3.1. It starts by
updating the state of delayed elements. This involves changing node
states and propagating their effect to the respective next higher level in
the hierarchy and to the rest of the circuit ( process_delay ). Faulty
delayed signals are processed before the corresponding fault free signals,
since the previous fault free machine is a reference for all faulty
machines, supplying the necessary state variables After the delayed signal
have been processed, the instance fop_instance, which corresponds to the
root instance of the hierarchy, is pushed on the stack and procedure

3)
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eval_top
(

process_delay (current_time);
push (top_instance, top_down);
eval_inst ();

Figure 3.1. Procedure eval_top.

eval_inst is called to evaluate the effect of a new input pattern.

Procedure eval_inst is shown in Figure 3.2. Initially, instance
fop_instc v : is placed on the stack (in eval top) and the evaluation flag is
set 10 to, - .own. Eval_inst first evaluates all primitives found on the top
of the stack (if any) by either calling the switch-level evaluation pro-
cedure if the primitive is described at the transistor level or the associated
behavioral C-function. Next, the evaluation flag for i inst on top
of the stack is tested to determine in which direction the evaluation is to
proceed. If the direction of evaluation is top-down, the environment is
loaded in Procedure load_environment, which copies the value of all sig-
nals connected to the boundary. If the environment is being loaded for
fault free evaluation, then all faulty copies of inst are evaluated to com-
pute the next state of inst in the presence of each of the faults. After the
procedure load_environment the direction flag associated with inst is
switched to bottom-up, if the new environment is different from the previ-
ous one. (In case of the top instance the environment is given by the new
set of primary inputs; else it consists of all signals on the boundary of the
instance). To propagate the changed signals downward in the hierarchy
all affected subblocks (children instances) are pushed on the stack. Their
children in tum are pushed if signals on their boundary have changed, and
so forth until the primitive instances are reached.

If the evaluation, on the other hand, is bottom-up, the state of the
nodes in inst are updated due to changes coming from the next lower
level; this step is accomplisshed by a call to procedure sense_children
which computes the new state of nodes in inst resulting from a change in
node states at the Jower level. In case the new state of a node differs from
its old sta*= all instances the node fans out to need to reevaluated and are
pushed « 1 .he stack. If the modified node lies on the boundary of the
instance e contact node in the parent is notified. If no new events are
caused in sense_children , the instance inst on top of the stack is popped.
The procedure then examine inst to see if it was evaluated due to fault
free events. In this case, faults local to children of inst are considered for
injection,} The fault injection is accomplished in the procedure

eval_inst )

while (! empty (stack)) {
top (inst, flag);
while (type (inst) == primitive) {
pop (inst, flag);
eval_lowest_level (inst);
top (inst, flag);

}
if (flag == bottom_up) {
event_count = sense_children (inst, fault_id);
if (event_count == 0)
pop (inst, flag);
if (fault_free)
inject_faults (inst);
}
else {
event_count = load_environment (inst, fid)
if (event_count == ()
pop (inst, flag);
else
set_stack_flag of_inst (bottom_up);

Figure 3.2. Procedure eval_inst.



inject_faults. The effect of inject_faults is the activation of faults local to
children of inst that were evaluated with the fault free machine. In addi-
tion, inject_faults propagates the effects of faults that have been activated
at lower levels.

4. Implementation and Application
4.1. Programming environment

The algorithms described in this paper have been implemented in
a prototype software program in the C programming language. The pro-
gram comprises a total of about 15000 lines of code and runs under UNIX
on SUN Microsystems SUN 3 and SUN 4 workstations. The simulator
accepts a simple hierarchical description language in which the user
specifies circuits by defining primitives and building macros from them
hierarchically. A primitive consists of either an interconnection of
transistors or the name of a software function. Other description
languages are supported through front end translators. The good machine
simulation of F_CHAMP was validated by simulating an entire micropro-
cessor with around 250000 input vectors and comparing the outputs with
those of a commercial software simulator. We verified the fault simula-
tion by *hardwiring’ selected faults and checking that the ones flagged as
detected by the simulator cause corresponding errors and check that faults
that are not detected by the simulator do not cause any errors at the output
pins of the circuit.

4.2, Performance Experiments

In this section, we describe experiments performed with small to
medium sized circuits. In particular, we are interested in how some per-
formance parameters vary as we scale the circuits up.

In Table I, a summary is given which contains the statistics of
simulations for typical MOS designs. The circuits were simulated on a
SUN3 workstation. Circuit 1 is a four phase clock generator which con-
tains 100 transistors. Circuits 2 to 5 are 4-, 8-, 16-, and 32-bit full adders
respectively. This table show that the CPU time and memory requirement
do not grow exponentially with circuit size.

# # # fit CPU #
Circuit | elmnt | fits | test | cvrg sec Pgs
CKT1 | 100 144 | 310 | 84% 5840 | 158
CKT2 | 176 80 8 100% 5.40 126
CKT3 | 352 160 8 100% 7.76 138
CKT 4 704 320 8 100% 14.06 148
CKTS5 | 1408 | 640 8 100% | 5174 | 176
CKT6 | 2300 | 1620 | 70 | 84.6% | 700.74 | 323
TABLEL

4.3. Fault grading of a Microprocessor

The main objective of this work is to provide tools for logic and
fault simulation that are capable of handling large designs but also have a
reasonable cost/performance ratio. We chose engineering workstations as
a platform for the following reasons: They typically deliver minicomputer
performance at very competitive cost, in widespread use, straightforward
to run simulation in a distributed manner, and we would like to demon-
strate that complex designs can be handled without the use of main frame
computers.

In this section, we discuss the application of our simulation sys-
tem to a large circuit, a commercially available microprocessor. To our
knowledge, the fault grading of a complete microprocessor chip of this
size using switch-level simulation has not been accomplished previously.
The chip we consider is Motorola’s MC68000 microprocessor [10]. The
complete circuit description is given as a mixture of gates and MOS
transistors. Beside the microprocessor, the description contains 'glue
logic’, notably a set of RAMs holding the machine code that constitutes a
functional test of the microprocessor. Thus, the test pattemn is immedi-
ately given by the hex-dump of an assembled program and only a small
set of external signals needs to be supplied to the simulator (typically:
clock enable, interrupts, and bus control signals).
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14 our setup, we initially injected sets of around 2000 faults into
the circuit for each simulation run of around 80000 vectors; it required
around 24 hours of CPU time on a SUN 4. Memory requirements for the
simulation of the MC68000 typically peaked at around 25-35 mega-bytes
for the first one hundred clock cycles and then tapered off to about 8-12
mega-bytes. We have currently simulated the circuit with all stuck-at
faults for several hundred thousand vectors.

5. Conclusions

In this paper we introduced an approach for the cost-effective and
accurate fault simulation of very large digital designs. Itis based on stor-
ing and processing the circuit in a hierarchical manner. This way,
memory requiments are reduced and faster behavioral descriptions can
replace subcircuits at any level of the hierarchy.

After pointing out shortcomings of previous work we described
the data structures used and explained the essential steps of the simulation
algorithms in Sections 2 and 3 respectively. In Section 4, we presented
some experimental results; in particular, we demonstrated the usefulness
of the methods by fault grading an entire microprocessor on engineering
workstations.

Current and future work concentrates on the use of efficient high
level func*inns, integrating test generation algorithms into the fault simu-
lator, an« . distributed implementation.
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