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ABSTRACT: This paper presents a new algorithm for deriving
the direction of signal flow in MOS circuits. The algorithm
detects so-called unidirectional transistors. In a unidirectional
transistor, signal flow is restricted to one direction during switch-
level simulation, without compromising the simulation results.
The algorithm uses a static analysis of the switch-level charac-
teristics of the circuit, such as the transistor strengths and node
capacitor sizes. It was implemented and used in the simulation of
a large, commercial microprocessor. For this processor, 98.5% of
the transistors were determined to be unidirectional by the algo-
rithm. The simulation time for this processor decreased
significantly when unidirectional transistors were detected.

1. Introduction

Switch-level simulation has become a widely used tool for
circuit verification [1,2]. In switch-level simulation, a transistor
is modeled as a bidirectional switch in series with a resistor.
Although signals can propagate through this switch in two direc-
tions, in practice only a small percentage of transistors exhibit
bidirectional signal flow. For most transistors, signal flow can be
restricted to one direction. Detection of unidirectional signal flow
through transistors simplifies their simulation and therefore
increases the performance of the overall simulation.

Erroneously restricting signal flow through a transistor can
hide design errors. In directional derivation care must be taken so
that a transistor is set unidirectional only if it exhibits unidirec-
tional signal flow under all possible circuit states. Therefore, the
algorithm proposed in this paper performs a pattern-independent,
or static, analysis of the circuit. The algorithm inspects the
switch-level properties of circuitry surrounding a particular
wransistor to determine if it can be restricted to unidirectional sig-
nal flow.

The benefit of signal flow derivation for event-driven
simulation and for compiled simulation is discussed in Section 2.
Section 3 presents previous work in this area and criteria for reli-
able direction derivation for switch-level simulation and the algo-
rithm is explained in Section 4. The performance of the algo-
rithm when used for a large, commercial microprocessor is given
in Section 5, as well as some concluding remarks.
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2. Direction Derivation in Simulation

Currently, most switch-level simulators assume that all
transistors are bidirectional. This ensures that no bidirectional
transistors are restricted in their signal flow, thereby guaranteeing
the integrity of the simulation. However, this assumption is very
conservative; in practice only a very few transistors are actually
bidirectional. The potential gain in simulation speed from detec-
tion of unidirectional devices is lost.

Both event-driven simulation and compiled simulation
speeds are increased with the identification of unidirectional
transistors. In event-driven simulation, a transistor is evaluated
by propagating signals across its channel in both directions. Two
unidirectional evaluations are therefore required. If, however, a
transistor is determined to be unidirectional, only one such
evaluation is required and the evaluation cost of the transistor is
reduced by 50%. The detection of unidirectional transistors
further decreases the simulation time by eliminating the
occurrence of false events which are due to propagation of signals
across unidirectional transistors in the wrong direction. The exact
performance increase obtained from detecting unidirectional
transistors will depend on the simulation algorithm, the number
of explicit transistors in the circuit description, and the percentage
of transistors that are unidirectional.

Compiled simulation is also improved with the
identification of unidirectional transistors. Compiled simulation
relies largely on path finding algorithms and identification of uni-
directional transistors reduces the number of possible paths to be
traced [3]. For instance, in the algorithm used by the SLS simula-
tor [4,5] transistors are evaluated with a sequence of unidirec-
tional evaluations. A bidirectional transistor requires two evalua-
tions in this sequence whereas a unidirectional transistor requires
only one. A large percentage of unidirectional transistors will
therefore drastically reduce the evaluation cost.

3. Previous Work in Direction Derivation

Until recently, direction derivation relied mostly on
manual flagging of the unidirectional transistors [6]. This
approach has several serious disadvantages. If all transistors are
assumed to be bidirectional unless explicitly flagged, the designer
must go through the laborious and error prone task of identifying
all  unidirectional transistors. This slows down the
design/simulation cycle and requires that a person familiar with
the design be involved in the simulation. Most importantly, uni-
directional evaluation of a bidirectional device can hide a design




error from the simulator. An error in flagging compromises the
accuracy of the simulation and allows important design errors to
be undetected. Reliable direction derivation must therefore be
performed automatically by reliable algorithms.

Significant work in direction derivation has been per-
formed in the area of timing analysis [ 7,8]. These timing
analysis programs use static, local analysis of transistors to detect
unidirectional devices. The identification of unidirectional
transistors reduces the number of possible paths and eliminates
the identification of false critical paths. Signal flow identification
for timing analysis differs from that of switch-level simulation in
that timing analysis assumes that the logic operation of the circuit
is correct. For instance, for a two input decoder, activation of the
decoder inputs is mutually exclusive under correct logic opera-
tion. Therefore, only one input path conducts at any one time and
signal flow through the transistors is unidirectional. However,
due to a design error or an injected fault during fault simulation,
the two input paths can become conducting simultaneously. In
this case, it is possible for signal flow to propagate forward
through one input and backward through another. Figure 1 shows
how signals can flow forward and backward through transistors
T1 and T2 when the gate of T2 is struck-at-1. Since the transis-
tors now conduct bidirectional signal flow, they can no longer be
marked as unidirectional.

A transistor that behaves unidirectionally in a logically
correct circuit state can, therefore, behave bidirectionally in an
incorrect circuit state. In switch-level simulation, such a circuit
state could easily occur due to a design error or injected fault and
must be accurately modeled. Static direction derivation for
switch-level simulation must, therefore, ensure that a transistor be
set only unidirectional if it behaves unidirectional under all possi-
ble circuit states.

4. The Direction Derivation Algorithm

To perform reliable direction derivation for switch-level
simulation, a new algorithm was developed. The analysis of the
transistors is static or pattern independent. This has the advan-
tage that the algorithm is performed as a preprocessing step and
can be easily used with already existing CAD tools. The algo-
rithm accepts a circuit description in terms of both MOS transis-
tors and simple gates. The detection of unidirectional transistors
is based on an analysis of the signal strengths of the circuit com-
ponents and the capacitance of circuit nodes.
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Figure 1. Signal flow through a decoder under fault.

A transistor is restricted to unidirectional signal flow for
one of two reasons: either signal flow through the transistor in
one direction does not occur at all or signal flow in that direction
occurs, but can be ignored. The first situation occurs when the
circuit environment of the transistor is such that signals through
the transistors can flow only in one direction. Figure 2 shows two
small circuits with this situation. In Figure 2(a), a transistor is
shown between two inverters, where the size of the transistors is
proportional to their driving strength. Since the driving strength
of inverter JA is stronger than that of B, signal fiow through T'1
will always be directed from /A to /B . In Figure 2(b) transistor
T 1 is shown driving the gate of transistor T2. Suppose also that
node N 2 has a smaller capacitance than node N 1. A signal can
flow from node N2 to node N1 only when T0 is tumned off.
However, since the node capacitance of node N 2 is smaller than
that of node N 1, it is impossible for a signal from node N2 to
override the signal on node N1. Transistor T1, therefore,
displays signal flow in only one direction and can be set unidirec-
tional in the direction from N1to N2.

The second reason for setting a transistor unidirectional
occurs when signal flow in one direction through the transistor
has no effect on the operation of the circuit. The transistor con-
ducts signal flow in both directions, but one of these does not
affect the circuit operation and is ignored. This is the case when
signal flow in that direction can never reach the gate of a transis-
tor. Figure 3 shows an example of such a situation. The driving
strength of the transistors is indicated after their labels. Since the
driving strength of T2 is greater than that of 70 it overrides 70
and can thus force a signal through T1 from N1 w0 NO.
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Figure 2. Example circuits with unidirectional signal flow
through a transistor.
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Figure 3. A circuit where signal flow in one direction can be ignored.
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Transistor T'1 therefore displays bidirectional signal flow. How-
ever, since N () is connected to a permanent signal source (T 0), a
signal forced from N 1 to N2 cannot persist after T1 has been
tumed off. Therefore, it can never propagate back to N1 at a
later time and affect the circuit operation. Since there are no
transistor gates connected to N 0 to the left of T'1, the signal can
also not affect the operation of the circuit to the left of 71 and
can be ignored. Although T 1 has bidirectional signal flow, it can
be evaluated unidirectional without compromising the simulation
accuracy.

The direction derivation algorithm consists of three
phases. The first phase, called the build phase, constructs a
directed, labeled graph. The second phase, called the mark phase,
traverses the graph and marks unidirectional transistors. The
third phase, the implication phase, examines the orientation of
transistors globally and detects the remaining unidirectional dev-
ices. The three phases of the algorithm are each explained in
more detail below.

4.1. Building the Graph

A graph of the circuit is constructed such that a node in the
circuit is represented by a vertex in the graph and a device in the
circuit is represented by two edges: one directed from the source
terminal of the transistor to the drain terminal and one set in the
opposite dirsction. Power supply and circuit input nodes con-
nected to multiple elements of a channel-connected component
are regarded as independent vertices in the graph. The edges in
the graph are labeled with the four attributes of signal strength,
signal quality, circuit capacitance, and observability. During
the build phase of the algorithm these attributes are propagated
along the graph so that each transistor is aware of the information
surrounding it. The graph building algoritim is based on a
depth-first search of the dc-connected components in a circuit. It
starts from each power node or circuit input node and propagates
the edge attributes to internal nodes. During this search, the new
signal strength, signal quality, node capacitance, and observabil-
ity for each edge is calculated. The graph attributes are explained
below:

Signal Strength
The signal strength of an edge indicates the maximum
strength of a signal flowing through the device in the direc-
tion of the edge. In a switch-level description, signal
strengths form the following ordered set [1]:

0<xX1< " <Kmax<Wi < **- < Ymax < ©

The strength X; refers to a charged signal strength from a
node with node size i. The strength y; is the driving
strength through a transistor of size  and @ refers to the
strength of a circuit input or power node. The signal
strength of an edge is determined by the maximum signal
strength of signals flowing into the edge from other devices
and is limited by the transistor size. Power and input lines
supply signals with an @ strength. A signal is then reduced
in strength when traveling through a transistor. For an edge
from node v to node w the signal strength can be expressed
as follows:

streng (v —w )= min { max {streng (W —v), %; }, TranSize },

where i =nodeSize (v)
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Signal Quality

The signal quality describes the persistence of a signal. It is
said to be permanent if a signal always flows through a par-
ticular device. For example, the output of a gate, depletion
mode pull-up transistors, and power nodes each have edges
with a permanent signal quality. A signal is Intermittent if
the signal sometimes goes through the device and sometimes
does not, as is the case with a pass transistor.

Circuit Capacitance
The circuit capacitance describes the size of the circuit nodes
in either side of a transistor. The circuit capacitance for an
edge v—w indicates the maximum node size on the v size
of the transistor. The circuit capacitance attribute is calcu-
lated as follows:

cap (v—w) = max { nodeSize (v), max {cap(u—v)} }

Observation

The observation attribute indicates if there is a transistor gate
sensing the signal. The observation attribute originates from
either a gate input, transistor gate, or a circuit output. An
edge directed from such an observation point is labeled with
the observation attribute. The attribute is then propagated
along the graph. The observation attribute is important since
signal evaluation toward this point is required even if the
signal path to this point is weak.

Figure 4 shows an example of a transistor circuit and its
corresponding graph constructed in the build phase. The node
and transistor sizes are indicated after their labels. Each edge in
the graph is labeled with a four attributes indicating, respectively,
the signal strength, signal quality (I = intermittent, P = per-
manent), circuit capacitance, and the observability (O = observa-
tion, N = no observation) attributes. Power nodes, circuit inputs,

Figure 4. Example of a circuit and its associated graph.




and nodes that are gate inputs and outputs have an additional edge
directed from ‘NULL’ to that node.

4.2. Marking the Transistor

After the build phase constructs the graph and propagates
the attributes along its edges, the mark phase inspects the graph
locally to a transistor to determine whether a transistor is uni-
directional or not. Each transistor is examined twice, once in
each direction. The following four rules define when a transistor
(T), with channel terminals v and w, is set unidirectional in the
direction from v —w. The rules fall in two sets.

Set 1: There is one or more edges ¥ —Vv, where ¥ #w, such that
edge(u—v).qual == permanent and edge(u —v).strength >
edge(v —w ).circCap.

Rule 1: (v —w ).obs == FALSE.
Since there is a permanent signal incident on v that over-
rules any stored charge on the node v side of T, a signal
propagated from w to v will not persist. Furthermore, since
such a signal is not sensed on the node v side of T, it can
not affect the circuit operation and T can be set unidirec-
tional in the direction v —»w.

Rule 2: Max{(u—»v ).str } > Max {(x >w).str},
where x#v, u#w and (¥ —v).qual=perm. In this case,
there is a permanent signal incident on v that is stronger
than the strongest signal incident on w. A potential signal
from w to v is thus overridden and the transistor can be set
unidirectional from v tow.

Set 2: There is no edge u—v, where u#w, such that
edge(u —v).qual == permanent and edge(u —»Vv).strength >
edge(v —»w ).circCap.

Rule 3: (v —w ).obs == TRUE and (w -V ).str < nodeSize(v).
Since there is an observation attribute from v to w, signals
propagated across T from w to v can affect the operation of
the circuit. However, since the strength from w to v cannot
change the state of node v, node w can never affect node v.
Transistor T can thus be set unidirectional in the direction
vVow.

Rule 4: (v 5w ).obs == FALSE and {(w —V ).str < nodeSize(v)
or (v &w ).cap < nodeSize(w)}.
In this case, signals propagated from w to v cannot be
sensed by a transistor gate on the v side of T and must,
therefore, be propagated back from v to w to affect the cir-
cuit operation. The signal must be propagated from w to v,
stored at the node v size of T and, at a later time, pro-
pagated back from v to w. This can only occur when the
signal from w to v can change the charged signal on v
(edge(w —>v ).strength 2 nodeSize(v)) and the circuit capa-
citance on the node v size of T is larger or equal than the
size of node w (edge(v —w ).cap = nodeSize(w ) ). If these
conditions are not true, T can be set unidirectional from v to
w which, by Demorgan’s rule, is if edge(w —Vv).strength <
nodeSize(V) or edge(v —w ).cap < nodeSize(w ).

Figure 5 shows the graph of Figure 4 after the mark phase has
been executed. Only transistor T 1 is left bidirectional. Transis-
tors T0 and T3 are set unidirectional by rule 1, transistor 72 is
set by rule 4, and transistor T4 is set by rule 3. Inspection of the
circuit shows that 71 must remain bidirectional, since a signal
can be propagated from N2 to N3, stored at N3, and, at a later
time, be propagated back to N 2.
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Figure 5. Identification of unidirectional transistors.

4.3. Implication phase

The first two phases of the algorithm discover a large per-
centage of all unidirectional transistors. In some situations, how-
ever, it is possible that a unidirectional transistor is not detected
by the algorithm and is left bidirectional. If the circuit in Figure
4(a) is modified to that of Figure 6, transistor T'3 will no longer
be marked as unidirectional since node N S no longer has a per-
manent signal strength incident on it. Transistor T 3 is, however,
part of a contiguous chain of uniformly directed transistors.
Since T'5 and T6 are directed toward N5, and T2 is directed
from N4 to N 3, propagation through 73 from N4 1o N 5 cannot
affect the circuit operation. Transistor T3 can thus be set uni-
directional from N 3 to N4. In other words, if all transistors on
the left of a transistor T are unidirectional in the direction toward
it, and all transistors on its right are unidirectional in the direction
away from it, T must also be unidirectional in the direction from
left to right. Such a transistor is said to be forced unidirectional
by implication. Since this situation depends on transistors that
are already set unidirectional, it can only be detected after the
build and mark phases have been completed. In the implication
phase a single or chain of bidirectional transistors that is embed-
ded in a chain of unidirectional transistors is detected and set uni-
directional in the direction of the chain. The algorithm is
described in pseudo C-code in Figure 7.

Figure 6 Circuit of Figure 4(a) modified so implication is necessary.
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imply(u, v)

resolv=(u, v);
if (labeljv] == 0) (
label[v] = 1;
for (all transistors q with channel { w, v },
where w # u) {
start(v, w, q);
| imply(v, w);

}
}

start(v, w, qQ)
if (IstackEmpty && q is bidirectional)

push(q); L
else if (stackEmpty && q is bidirectional &&
all transistors with channel { x, v },
wherex # w are toward v) {
dir = FORWARD; push(q);

} else if (stackEmpty && q is bidirectional &&
all transistors with channel { x, v },
where x # w are away from v) {

| dir = BACKWARD; push(q);

}

resolve(u, v)

if (IstackEmpty) {
if (all transistors with channel { x, v },
where x # u, are away from v and dir == FORWARD) {
while(!stackEmpty)
-stack-and-set(direction u — v);
} els?i? (all transistors with channel { x,v },
where x # u, are toward v and dir == BACKWARD) {
while(IstackEmpty)
pop-suck-and‘-)cet(dimcvim v—u);
} else if (only one transistor with channel { x, v },
where x # u and
that transistor is bidirectional ) {
continue;

} else
while(!stackEmpty) pop-stack;

Figure 7. Directional implication algorithm.

5. Results and Conclusions

The proposed algorithms were implemented in the C-
language and executed on Sun-4 work stations. The program was
tested on the circuit description of a large microprocessor. The
circuit description of the processor is hierarchical and has as
primitives both gates and MOS transistors. It contains approxi-
mately 40,000 transistors. With the proposed algorithm, 98.5%
of all transistors were detected as unidirectional transistors.

The execution time of the proposed algorithm is roughly
equal to the time required for parsing the circuit description.
Since the simulation time is several orders of magnitude greater
that this and the direction derivation is only performed once per
simulation, the added computational cost is insignificant. Rather,
the saving in simulation time outweighs the added computational
cost. The processor was simulated using the CHAMP [9] simula-
tor, which is a hierarchical event-driven simulator. The speedup
achieved using directional analysis varied for different circuit
blocks. For circuit blocks containing dense transistor constructs,
the achieved speedup was approximately 2.1 times. For hierarch-
ically defined circuit blocks containing both gates and transistors,

the achieved speedup was smaller. After directional derivation
was performed for the entire processor, the overall simulation
speed increased by over 1.3 times.

To ensure the accuracy of the algorithm, the processor was
simulated both when transistors were set unidirectional and when
all transistors were left bidirectional. The simulation results were
then compared to ensure that the produced results were identical
in both signal state and signal strength.

In conclusion, the proposed algorithm presents an efficient
and accurate means of identifying unidirectional transistors in a
circuit. Both event-driven and compiled simulation can model
unidirectional transistors simpler and faster than bidirectional
transistors. In directional derivation for switch-level simulation,
signal flow through a transistor must be considered both under
logically correct and incorrect circuit operation. The algorithm
was tested on a large microprocessor. For this processor, 98.5%
of all transistors were set unidirectional. Since unidirectional
transistors are conceptually and computationally much simpler,
significant benefit can be had from this process.
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