CHAMP: Concurrent Hierarchical And Multilevel Program for Simulation

of VLSI Circuits t

Daniel G. Saab, Robert B. Mueller-Thuns, David Blaauw, Jacob A. Abraham

Computer Systems Group
Coordinated Science Laboratory
University of Illinois
Urbana, IL 61801

ABSTRACT

This paper discusses the design and implementation of a hierarchical
switch-level simulator for complex digital circuits. The hierarchy is
exploited to reduce the memory requirements of the simulation, thus
allowing the simulation of circuits that are too large to simulate at the flat
level. The algorithm used in the simulator operates directly on the
hierarchical circuit description. Speedup is obtained through the use of
high level models. The simulator is implemented on a SUN workstation
and has been used to simulate a switch level description of the Motorola
68000 microprocessor.

1. Introduction

Advances in Very Large Scale Integration (VLSI) technology have
made possible the implementation of large and increasingly complex sys-
tems on a single integrated circuit chip. This has led to the need for
efficient simulation tools capable of handling complex designs. These are
necessary for both conventional logic simulation (to verify the correctness
of a design) and fault simulation (to grade the quality of a set of test pat-
terns).

Logic simulation has traditionally been performed at the gate level
[11. For Metal Oxide Semiconductor (MOS) technology this is an inap-
propriate level of abstraction. MOS circuits may contain ratioed logic and
pass transistors exhibiting bidirectional signal flow and charge sharing
effects. Furthermore, the associated gate level stuck-at fault model does
not model realistic physical failures in MOS circuits adequately [2-5].

Switch level simulation, introduced by Bryant [6], is a practical
alternative; it handles bidirectional signal flow in transistor networks and
models signal strengths without incurring the overhead of a detailed electr-
ical simulation. Also, transistor level fault modeling can be easily incor-
porated. However, when simulating a large design, the memory require-
ments for storing and operating on a ’'flat’ transistor level description
become a limiting factor of simulator performance. Hence, in order to per-
form simulation using limited memory and computation time, circuit regu-
larity and hierarchy must be exploited. Using hierarchy, the structure of
commonly used subcircuits needs to be stored only once and can be refer-
enced when needed. Furthermore, parts of the circuit can be substituted by
higher level software descriptions for faster evaluation.

Existing switch level simulators [7-9] do not exploit a hierarchical
circuit representation. A hierarchical logic and fault simulator was intro-
duced in [10]. It is, however, limited to circuits described at the gate
level. Similarly, multilevel simulation has typically been performed from
the gate level upwards (sec e.g. [11}). It is relatively easy to incorporate
and exploit hierarchy in a simulator where primitives are unidirectional
with well defined input and output ports. However, when switches or
transistors are allowed as primitives, the difficult problems of bidirectional
signal flow and charge sharing need to be considered. Hitherto, the prob-
lems of incorporating such effects in a hierarchical simulator have not been
addressed.

+ This work was supported in pant by Motorola, Inc. Austin, TX, and in part by the
Semiconductor Research Corporation Contract 87-DP-109.

CH2657-5/88/0000/0246$01.00 © 1988 IEEE

246

and Joseph T. Rahmeh

Department of Electrical and
Computer Engineering
University of Texas at Austin
Austin, TX 78712

This paper reports on the development, implementation and applica-
tion of a hierarchical switch level simulator that operates directly on a
hierarchical circuit description. We address the issue of bidirectional sig-
nal flow between circuit blocks, which arises when treating switch level
simulation in a hierarchical framework. The simulator handles general
MOS circuits and has the following features.

(1) It allows bidirectional signal flow inside circuit blocks that are
represented as transistor networks, as well as across the boundaries
of higher level blocks. Thus, no restrictive conditions are placed on
the circuit description.

(2) It allows mixed mode simulation: parts of the circuit can be simu-
lated faster at a behavioral level by supplying a high level software
description.

(3) At any level of the hierarchy, the circuit can be described as a mix-
ture of transistor networks, gates, and high level functions.

4) It allows assignable delays to primitives or subfunctions.

(5) It provides automatic generation of high level descriptions (C-

functions) of primitives.

A key objective in our work is the application to large circuits. The
simulator we implemented has successfully simulated a switch level
description of the Motorola MC68000 [12] microprocessor on a SUN
Microsystems workstation.

2. Circuit Model

The circuit is considered to be a collection of functional blocks
interconnected through boundary nodes. Each functional block can be
either an interconnection of other functional blocks or an interconnection
of primitives. A primitive is either a network of MOS transistors or a
higher level behavioral descriptions.

A boundary node is one of three types: Input, Output and
Input/Output (Ioput), with the following properties.

(1) TInput nodes provide strong signals to a block and their logic
behavior is not affected by the internal changes of other nodes in the
block.

Output nodes do not provide signals to any other nodes in a block.
Their logic behavior is affected by internal changes in the block.

()
(3) Bidirectional nodes act either as Input or as Output nodes, depending
on the logical behavior of other nodes in the block. Ioput nodes are
created when functional blocks are interconnected by pass transis-
tors.

As an illustration, consider the primitive block shown in Figure 1.
Note that nodes A, B, C, and D are Input nodes, while Out is Input/Output
node.

Out

Fig. 1. Primitive Block

A primitive, as mentioned above, is either a functional block
described in the C programming language {13] or an interconnection of
MOS transistors. The first type of primitive is simply a program that
describes the input/output behavior of the block. The C program
corresponding to a block is either provided by the user or automatically
generated by the program using compiled simulation techniques [1]. The
second type of primitive is formed by the interconnection of MOS (both
nMOS and pMOS) transistors. A transistor is modeled as a device with
three nodes (source, drain, and gate). All transistors act as voltage-
controlled switches which can be in one of three states: on (high conduc-
tance), off (open circuit), and undefined (on or off or intermediate). The
nodes of the circuit may assume one of three values: high (1), low (0), or
undefined (X). An nMOS transistor is on when its gate is high, off when
its gate is low, and undefined when its gate is undefined. A pMOS
transistor assumes the opposite state of an nMOS transistor under the same
gate state. All transistors are bidirectional elements (i.e., no distinction is
made between the source and the drain). Using switch-level transistor
models the circuit is represented by an undirected vertex-weighted, edge-
weighted *switch’ graph G(V,E) similar to the graphs described in [6, 14).
Switch-level simulation techniques are applied switch graph [6,14-15] to
find the steady-state of the corresponding primitive blocks.

Although only MOS transistors have been mentioned in this paper,
this simulator is not limited in its scope to this particular technology. In
fact, other technologies such as Bipolar Emitter Coupled Logic (ECL),
Emitter Function Logic (EFL), and Current Mode Logic (CML) can be
simulated using the switch graph techniques [16].

3. Data Structure Representation

To exploit the modularity and regularity of the circuit, the structure
of every functional block is stored just once. The state of the nodes
belonging to the block are duplicated every time the functional block is
used. The data structures are defined as follows.

O]

A CELL is a structure which contains connectivity information such
as node names, node types, and node fanouts.
Al By Y 22 A3 By

; BT H]
PO Rppe i g i

< ¥ g sV . sV
)

XOR TRANS MAJ TRANS

Fig. 1.2. Three-bit Adder Circuit

247

An INSTANCE is a structure which contains the state of an instance
of a CELL.

The state of a node N at any level is encoded in a triplet <t,8,A>,
where *t’ indicates whether the path to N originates at an input or storage
node, i.e. whether the signal at N is driven or floating; 8 gives the strength
of the path driving N; A represents the logic state of N and can take the
values °0’, °1’, "X’. This compact encoding allows the computation of
states by simple comparisons of strengths and bit operations.

Figure 2 shows a circuit implementation of a three-bit full adder and
demonstrates how the data structure is constructed. Note that the dashed
lines point to CELL structures, while the solid lines represent electrical
connections.

€))

4. Simulation Algorithm

The simulation algorithm starts at the highest level. The states of
Input nodes are propagated down to lower level primitives where the logi-
cal behavior of Output and Ioput nodes is computed and propagated up to
higher levels. At every level, for every Output and Ioput node, the result of
an evaluation is reduced to a single edge with appropriate strength (i.e. a
conductance), in series with an independent input signal source. Hence,
the evaluation produces the logical Thevenin’s equivalent circuit of the
biock as seen from the output. The evaluation algorithm is illustrated by
procedure EVAL_INSTANCE shown in Figure 3. This procedure
operates on a single stack. Each entry of the stack contains an instance
*INST’ and a flag "UP’. The flag UP indicates whether the evaluation is
top-down or bottom-up. Initially the stack contains the top instance with
UP being FALSE indicating top-down evaluation. The procedure starts by
testing the cell corresponding to the instance to determine if it is a primi-
tive cell. If so, procedure EVAL_PRIMITIVE is called to deduce the logi-
cal behavior of the instance. EVAL_PRIMITIVE is invoked repeatedly
until the top of the stack contains a non-primitive instance. When a noa-
primitive instance occurs, the flag UP is examined to find the direction of
the evaluation. If the evaluation is top-down, then the instance environ-
ment is loaded by calling procedure LOAD_ENVIRONMENT; here all
instances in the fanout list of nodes that have changed state are pushed on
the stack. The changes propagate to the rest of the circuit through evalua-
tion of these fanouts. In case the evaluation is bottom-up, the new
environment is computed by a call to procedure IMPORT_STATE. This
procedure imports the state from the lower level to the current level; it
may, in turn, cause new events which are pushed on the stack and are
evaluated as outlined above.

It should be noted that the evaluation should not proceed in arbitrary
order for the following two reasons:

(1) A block should be evaluated once all blocks feeding signals into it
have reached their steady state (feedback paths are cut arbitrarly).
This leads to a reduction in the number of evaluations.

procedure EVAL_INSTANCE(stack)
while stack is not empty
while TOP(stack) is primitive
EVAL_PRIMITIVE(TOP(stack));
POP(stack);
end while
if evlaution is top-down
LOAD_ENVIRONMENT(TOP(stack)) ;
if no activities resulted from loading
the new environment
POP(stack) ;
else
IMPORT_STATE(TOP(stack));
if no activities resulted from importing new state
POP(stack) ;
end while
end procedure

Fig. 3. Top Level Hierarchical Simulation Procedure

(2) In the presence of latching elements, evaluation with an intermediate
state can lead to a wrong result as the following example illustrates
(Figure 4). Assuming zero-delay simulation, if gate B is evaluated
before the change in the output value of inverter A has occurred, the
following transistor gate receives an intermediate enable signal and

latches in a new value b.

Hence, in a preprocessing step, the entire circuit is levelized. In the
hierarchical setting this can be done conveniently in a recursive fashion,
thus also avoiding very large adjacency lists as in the case of a non-
hierarchical flat circuit description.

4.1. Evaluation of Bidirectional Nodes

Allowing the use of bidirectional pins on the boundary of cells adds
difficulty to the simulation problem but gives more flexibility in the way a
circuit is partitioned into cells. A bidirectional node on the boundary of a
cell can function as both Input or Output, depending on whether its current
state is determined by a path leading to it from the outside or the inside of

the given cell. Hence, for proper event scheduling, it is necessary to insert -

it into both the fanin and fanout lists of the node it is connected to at the
next higher level. Furthermore, one must ensure that the proper environ-
ment is passed to a bidirectional pin. Consider the situation in Figure 5.
Note that one cannot pass the current upper level state at N to the bidirec-
tional pin P for evaluation, because the state may have been produced

ab

0,1
0,1

Fig. 4. A simple logic circuit

— 03

Fig. 5. Circuit configuration with bidirectional node

previously by a path from within block B passing through P. The path
may no longer exist and hence one would 'reimport’ a fictitious state.
Instead, one has to compute the combined state at N of all paths excluding
the one passing through P. Then, if there is a stronger path from within B
it will dominate and produce the next state at N; otherwise, P functions as
an input to B.

Consider the circuit shown in Figure 6 for an illustration of the steps
in the evaluation. This circuit consists of two instances 'z’ and 'w’ of the
same cell. The two instances are connected through node *O1°. Also note
that both z.01’ and 'w.01” are Ioput nodes. An extra transistor is added to
the cell with source at "o1” (i.e. at *z.0ol” and *w.o1’ respectively) and with
drain floating. This is done to import driving signals to the lower level.

Assume that zA =zB =1, z.C = 0, while w.A =1, wB =0, and
w.C = 1. When the evaluation starts, the state of O1 is set to <F,50,X>.
(Here the ordering of conductances is: & < §; if i < j). When importing
the state of O1, the gate of the extra transistor is set to zero in both
instances because the strength of O1 is "F’. Due to the changes in the
environment, instances *z’, and 'w’ need to be evaluated together. After
the evaluation of instances 'z’ and 'w’, the resulting states are:

248

zil =<D, §, 1>,2.01 =< D, §, 1>
w.il =< D, &, 0>, w.ol =<D, &, 0>

After the two instances are evaluated, the state of O1 is determined
by comparing state(z.ol) to state(w.ol) which results in
state(01)=<D,8,,1>. This change is propagated back down to instance *w’
by switching on the extra transistor and by setting the strength of its drain
to Input and its conductance to &. Therefore, when evaluating instance

w’ with these conditions, the states become:

w.il =< D, 8, 1>, w.0l =<D, &, 1>,

which is a steady state solution.

vdd zxd wxd vad
B8 zxg w.xg wB,52
zil zol i
LA,&) = ‘“]l. A wil
z.c81 w.C O
gnd olb" gnd

Fig. 6. Illustrating Input/Output Evaluation
5. Implementation and Application

The algorithms outlined above have been implemented in C on a
SUN Microsystems workstation. The simulator accepts a hierarchical C-
like description language.

As mentioned, the simulator supports multilevel evaluation. We
conducted experiments that demonstrate the speedup one obtains when
going from a low level to a high level description. The results are given in
Table I for adder circuits ranging from 4-bit to 32-bit, described in terms
of transistors, gates, and some in terms of 1-bit C-functions. Other results
are given for a PLA with 19 inputs, 17 outputs and is roughly 290
equivalent gates. One observes speedups of around 5 and 6 in the case of
the adder and around 25 and 36 for the PLA. It should be noted that the
gate level description is automatically generated by CHAMP in a prepro-
cessing step. This generation process can be skipped if so desired by the
user.

Table 1. Simulation results

Circuit | Level | #Elements | #test | CPU time(sec)
4 bit Trans 184 512 114
Gates 12 512 2.5
8 bit | Trans 368 2048 100.8
Gates 24 2048 14.5
16 bit | Trans 736 4096 170.2
Gates 48 4096 30.8
32 bit { Trans 1472 352 249.740
Gates 96 352 48.540
1-bit 32 352 37.200
PLA Trans 4280 1000 804.220
Gates 290 1000 568.380
Func 1 1000 22.320

Figure 7 graphically illustrates the gains made when using high level

representations as a function of circuit complexity.

A key objective of our work is to be able to handle large designs on
engineering workstations. We simulated a switch level model of the
Motorola MC68000 microprocessor including some surrounding ’glue
logic’. The circuit is described as a mixture of gates (given as transistor

networks) and pass transistors. Its size amounts to the equivalent of
roughly 80,000 MOS transistors. The hierarchical description of the cir-
cuit fits into 0.5 MBytes of memory; at run time, the program uses 7
MBytes. 16,000 clock phases were simulated and verified against the out-
put supplied by Motorola Inc. An unoptimized version of the simulator
took around 8 CPU seconds on a SUN microsystems 3/280 computer to
simulate one clock phase without the use of any high level constructs. A
major speedup may be obtained when replacing PLAs and other

250
— transistor level

C 200}
P === gate level
u
(150 ... C-function
s
e 100
c
) sop -~ L a--

16
Adder size in bits
Fig. 7. Computation time as a function of circuit complexity

submodules by high level C-functions.

6. Conclusions

In this paper, techniques have been presented for hierarchical switch
level simulation of VLSI circuits. Data structures and evaluation algo-
rithms were outlined. Experiments with the use of high level descriptions
showed promising speedup. The application to a large example - the com-
plete switch level model of a microprocessor - demonstrated the usefulness
and efficiency of our methods and their implementation.

Current work focuses on the extension of the simulator for fault
simulation and the derivation of efficient high-level descriptions.

7. Acknowledgements

We wish to thank Motorola Inc., for providing the circuit model, and
Wayne Vineyard, Jim Hamilton, and Ken Rosilier of the Semiconductor
Products Group, Motorola Inc, Austin, TX, for technical discussions and
support.

8. References

1 M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design
of Digital System. Potomac, MD: Computer Science Press, 1976.
P. Banerjee and J. A. Abraham, ‘‘Fault characterization of VLSI
MOS circuits,”” in Proceedings of the IEEE International
Conference on Circuits and Computers, New York, New York, pp.
564-568, September 1983.

1. N. Hajj and D. G. Saab, ‘‘Fault modeling and logic simulation of
MOS VLSI circuits based on logic expression extraction,” in
Proceedings of the IEEE International Conference on Computer-
Aided Design, Santa Clara, CA, pp. 99-100, September 1983.

Y. M. El-Zig, “Failure analysis and test generation for VLSI
physical effects,”” in 1983 Custom Integrated Circuit Conference,
Rochester, N. Y., pp. 300-303, May 1983.

R. E. Bryant and M. D. Schuster, “‘Fault simulation of MOS
digital circuits,”” VLSI Design, pp. 24-30, October 1983.

(2]

3]

[4]

[51

249

[6]

7

(8]

9]

(10}

[

[12]

[13]

(141

(15]
[16]

R. E. Bryant, “‘A switch-Level model and simulator for MOS
digital systems,”” IEEE Transactions on Computers, vol. C-33, pp.
160-177, 1984.

RE. Bryant , D. Beatty, K. Brace, K. Cho, and T. Scheffler,
“COSMOS: A Compiled Simulator for MOS Circuits,”
Proceedings of the 24th ACMIEEE Design Automation
Conference, pp. 9-16, 1987.

R. E. Bryant, “MOSSIM: A switch-level simulator for MOS LSI,””
in 18th ACMIIEEE Design Automation Conf., Nashville, TN, pp.
786-790., June 29-July 1.

C. J. Terman, “RSIM - A logic-level timing simulator,” in
Proceedings of the IEEE International Conference on Computer
Design, New York, pp. 437-440, November 1983.

William A. Rogers and Jacob A. Abraham, ‘‘CHIEFS: A
concurrent, hierarchical -and extensible fault simulator,” in
Proceedings of the International Test Conference, Philadelphia,
PA, pp. 710-716., November 1985.

DD. Hill and WM. Van Cleemput, ‘“‘SABLE: Multilevel
Simulation for hierarchical design,”” in Proc. IEEE Int. Symp.
Circuits and Systems, Houston, TX, pp. 361-365, Apr. 1980.

Motorola Corporation, MC68000 Programmer's Reference Manual.
Englewood Cliffs, N.J.: Prentice-Hall, 1986.

B.W. Kernighan and D.M. Ritchie, The C Programming Language.
Englewood Cliffs, N.J.: Prentice-Hall, 1978.

R. H. Byrd, G. D. Hachtel, M. R. Lightner, and M. H. Heydemann,
“Switch level simulation: models, theory, and algorithms,” in
Ad in Computer-Aided Engineering Design, ed., A. L.
Sangiovanni-Vincentelli. JAI Press Inc., pp. 93-148, 1985.

LN. Hajj and D. Saab, *“‘Symbolic logic representation and logic
and fault simulation of MOS circuits,”” submitted for publication.
l?. G Saab,. A T. Yang, and IN.Hajj , “Delay modeling and
%ﬁgg‘g digital bipolar circuits,”” in Proceedings of the 25th
E Design Automation Conference, Anaheim, Ca., -
288-293, 1988. T PR

