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ABSTRACT 
This paper presents a new library compatible approach to gate-
level timing characterization in the presence of RLC interconnect 
loads.  We describe a two-ramp model based on transmission line 
theory that accurately predicts both the 50% delay and waveform 
shape (slew rate) at the driver output when inductive effects are 
significant. The approach does not rely on piecewise linear 
Thevenin voltage sources. It is compatible with existing library 
characterization methods and is computationally efficient.  Results 
are compared with SPICE and demonstrate typical errors under 
10% for both delay and slew rate. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids  

General Terms 
Performance, Design 

1. INTRODUCTION 
With higher clocking frequencies, longer and wider global 
interconnects and faster signal rise times, on-chip inductive 
effects are becoming more significant in today’s high-performance 
deep-submicron designs. These inductive effects are concerns for 
signal integrity and overall interconnect performance and must be 
accounted for in interconnect timing analysis. 

Existing gate-level static timing analyzers break down the path 
delay into gate delay and interconnect delay. Gate delays are pre-
characterized in terms of input transition time and output load 
capacitance using detailed circuit simulators such as SPICE. The 
inherent incompatibility that exists between pre-characterized 
look-up tables and RC/RLC loads is resolved by finding an 
effective capacitive loading. This requires synthesizing a reduced 
order driving point model, which is then mapped to an “effective 
capacitance” value. O’Brien and Savarino [9] synthesized a pi-
model for RC loads by matching the first three moments of the 
driving point admittance and Pillage et al. [11] presented an 

effective capacitance model for this pi-load. It has been shown 
that, with the introduction of inductance, the pi model cannot be 
synthesized [6]. A ladder type model is presented in [6], which 
assures the realizability of a reduced order circuit by introducing a 
realizability parameter k. However, no physical explanation is 
given for k and also there is no approach to map this model to an 
effective capacitance.  

Another issue with inductance is that the driver output waveform 
may be non-monotonic and exhibits inflection points. 
Traditionally, static timing analysis tools compute delay and rise 
time at the output of a gate and approximate it with a saturated 
ramp. This ramp is then used to derive the far end response of the 
interconnect.  While this approach usually works well for RC 
lines, it fails for RLC lines because the output waveform of the 
driving gate cannot always be well modeled by a single ramp [7].  

In this paper, these issues are addressed by proposing an 
approach, which computes the effective capacitance for RLC 
interconnects by using their driving point admittance moments. 
The idea of using driving point admittance moments was 
introduced in [1]. However, unlike their approach, our 
methodology is compatible with existing cell characterizations 
and does not require modeling of cells with piecewise linear 
Thevenin voltage sources. Also, our approach models the driver 
output waveform directly as compared to the approach in [1], 
which requires a SPICE or PRIMA run  (with a piecewise linear 
Thevenin voltage and series resistance driving an RLC line) to 
compute the response at the driver output. We also show that with 
dominant inductive effects, a single ramp cannot model the entire 
driving point waveform accurately and at least two ramps should 
be computed to capture both the delay and slew. It must be noted 
here that with significant resistive shielding, even RC line cannot 
be modeled as single ramp and a gate resistor model is used to 
capture its long exponential tail [11]. However, the case with 
inductance is different because the output waveform of the driver 
exhibits a kink (and sometimes a flat plateau) due to transmission 
line effects. This kink, which causes a clear slope change, occurs 
in all inductively dominated lines and can be captured by 
proposed two-ramp model based on transmission line theory. We 
synthesize this two-ramp waveform by finding two effective 
capacitances. In the process, we propose a new method for 
evaluating the importance of on-chip inductance. Our method 
compares rise time at the driver output with the time of flight 
instead of simply taking the rise time at the input to the driver [5]. 

The paper is organized as follows. We begin by reviewing some 
basic properties of the inductive lines and the transmission line 
theory in the following section.  Sections 3 and 4 present our 
modeling approach to capture the inductive waveforms at the 
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driver output. Section 5 summarizes our modeling flow. Section 6 
shows the experimental results and we conclude in section 7. 

2. DRIVER OUTPUT WAVEFORM WITH 
INDUCTANCE 
We know that with significant inductance, the driver output 
waveform is no longer smooth as in RC cases, exhibiting 
inflection points. Figure 1 shows the driver output waveforms of 
an RLC line driven by different sized inverters. The figure shows 
that the waveforms rise sharply to a voltage level and then flatten 
out, changing the slope of the transition. 

This behavior of the waveforms can be explained by transmission 
line theory. We know that for fast drivers, transmission line 
effects become significant since the rise time of the signal is less 
than or comparable to the signal time of flight delay. The ratio of 
signal rise time to time of flight delay can be related to the ratio of 
the source resistance of the driver to the characteristic impedance 
of the line [2]. It is shown in [2] that when the source impedance 
of the driver is less than or comparable to the characteristic line 
impedance, reflections and other transmission line phenomena 
become important. 

At the driver end the transmission line can be modeled as a source 
resistance in series with characteristic line impedance. In this 
case, we have a simple voltage divider and the ratio of the source 
resistance to the line impedance determines the size of the initial 
step generated on the line. It also determines the number of round 
trips required for the output to reach its final value. For weak 
drivers, the driver resistance is much larger than the line 
impedance, the initial step is small, and many trips are required. 
In fact, in this case the reflections may come back to the source 
end before the output has risen to the initial step. Thus the 
waveform resembles an RC line and the transmission line 
properties are hidden in the staircase-like waveform. However, for 
fast drivers, the initial step is high and a clear kink is seen in the 
waveform. For very fast drivers, the waveform rises to the initial 
step and flattens out while waiting for the reflection to come back. 
In these cases, a plateau is observed in the waveforms. 
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Figure 1. Driver output waveforms of a 5 mm RLC line driven 

by 50x and 75x inverters1 

                                                                 
1 Driver size 50x means width of NMOS in the inverter is 50 

times the minimum width (=2*Lmin=0.36µ). PMOS is twice as 
wide as NMOS. 

From the above discussion, it is clear that modeling the driver 
output waveform as a single ramp or even an exponential wave 
can lead to serious errors in delay and slew prediction at the near 
as well as far end. When the wires are driven by strong buffers 
and the inductive effects are significant, the waveforms are non 
monotonic and exhibit inflection points and a better model of the 
driver output waveform is necessary for accurate timing analysis. 

3. MODELING DRIVER OUTPUT 
WAVEFORM 
Ideally, non-monotonic driver output waveforms should be 
modeled as multi-piecewise linear waveforms. In order to model 
the plateau accurately, one would assume that the waveforms 
should be modeled as a linear ramp, then a flat step, followed by 
another linear ramp. However, we have seen that the plateau can 
be far from flat and often it smears out so it is almost 
unnoticeable. This leads us to conclude that the driver output can 
be modeled accurately by two ramps. These two ramps can be 
chosen to give a good fit for the entire transition. Modeling this 
waveform with more pieces may be more accurate but adds to the 
computational cost and does not achieve noticeably better 
accuracy  at the far end of the line. However, as mentioned earlier, 
in cases with weak drivers and insignificant inductive effects, a 
single ramp may be sufficient for the entire transition.  

Some important considerations in two-ramp modeling are 
choosing the slopes of the ramps and finding the breakpoint 
during the transition. The breakpoint is defined as the point at 
which the first ramp ends and the second ramp starts. The slopes 
can be found by an effective capacitance based approach 
discussed later in this paper and the breakpoint can be obtained by 
using a transmission line interpretation of the driver output 
waveform. As discussed in section 2, the driver output waveform 
has an initial step and then flattens; the slope of the waveform 
after this point is different than for the first part of the transition. 
We model this initial step by a first ramp and model the remaining 
transition as second ramp. The height of the initial step and hence 
the breakpoint is obtained by modeling the driver end as a source 
resistance in series with characteristic line impedance. This 
voltage divider circuit determines the initial step (or the 
breakpoint) at the driver output. 

If the driver resistance is Rs and the line impedance is Z0, then the 
height of the initial step during transition is obtained by following 
expression 

fVBreakpoint DD.= , where
SRZ

Z
f

+
=

0

0                                    (1) 

Here VDD is the supply voltage. With this breakpoint, the driver 
output can be modeled as a two-ramp waveform shown in Figure 
2. The slope of the first ramp is (VDD/Tr1) and the slope of the 
second ramp is (VDD/Tr2). The two-ramp expression is given by 
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Figure 2. Two-ramp model of driver output waveform 

 

We use the above driver output model in this paper. Our modeling 
approach is summarized below. The details are discussed in the 
following sections. 

1. Find breakpoint using equation 1. 

2. Find two effective capacitances (one for each portion of the 
transition). 

3. Model driver output with two-ramp (first effective 
capacitance models first ramp and second effective 
capacitance models second ramp). 

4. Replace the driver with a voltage source consisting of two-
ramps and then convolve the ramps with the transfer function 
to get far-end response. 

The above flow is compatible with existing pre-characterized cell 
tables, which store only 50% delay and output transition time for 
each input slew and output capacitive load. Our model uses only 
this information and obtains the double-ramp waveforms at the 
driver output. The next section discusses the computation of the 
effective capacitances and the two-ramp modeling in detail. 

4. EFFECTIVE CAPACITANCE(S) 
The underlying principle of our effective capacitance 
methodology is similar to the approach described in [11]. We 
calculate effective capacitance by equating the charge transfer 
required by a single capacitance to that required by the original 
RLC load. It has been shown in [11] that equating the charge up 
to 50% point captures delay accurately, but fails in modeling the 
tail portion of the transition. We have found that in RLC loads   
with dominant inductive effects, we see a flattened second half 
(long tail) regularly. Thus integrating up to the 50% point is 
always inaccurate because it gives unacceptably large errors in 
slew (although it may model delay well). Also, equating the 
charge over the entire region of the transition will not address this 
problem, since this approach yields an averaged curve where both 
the delay and slew may be inaccurate. Figure 3 shows how 
equating charge up to the 50% or 100% point can cause 
significant errors in modeling driver output waveforms. The 
equations used to calculate the effective capacitance in this figure 
are derived later in the section.  

This leads us to conclude that a single effective capacitance 
cannot model the entire transition accurately. The key idea we use 
in our approach is to model driver output as a two-ramp waveform  
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Figure 3. Driver output waveform and Ceff approximations 

 

as described in section 3.  We then find two effective 
capacitances, where the first effective capacitance models the first 
ramp and is obtained by equating average charge during the 
transition of the first ramp.  The second effective capacitance 
models the second ramp and is calculated by equating average 
charge during the interval when the second ramp is in transition. 

The driving point RLC interconnect is modeled as reduced order 
approximation, obtained from matching the moments of the input 
admittance of the interconnect. We model the driving point 
admittance as the following rational function: 
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The above expression is similar to the admittance of a RLC Π 
load. The coefficients in equation 3 can be easily obtained by 
matching first five moments of the driving point admittance.  

4.1 Ceff1 Calculation 
For the first ramp of the two-ramp waveform described in 
Equation 2: 
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We define Ceff1 to be the capacitance that requires the same charge 
transfer as that required by the RLC moments during the interval 
when the first ramp is in transition. From Figure 2 we know that 
the first ramp is in transition from t=0 to t=fTr1, where f can be 
calculated from equation 1. Charge transferred to the moments 
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can be calculated by integrating I(t) from 0 to fTr1. Also, the 
charge transfer associated with charging the effective capacitance 
for this interval is given by Ceff1fVDD. 

∫ =
1

0 1)(
rfT

DDeff fVCdttI  

Solving the above equation for Ceff1 
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Ceff1 can be obtained by iterating on Tr1. We start with an initial 
guess of Ceff1=total capacitance and iteratively improve effective 
capacitance until the value converges. Tr1 at each step can be 
obtained from pre-characterized cell information and Tr1 
corresponding to the final Ceff1 is used to model the first ramp. We 
now need to derive expressions for Ceff2 to completely model the 
driving point waveform. 

4.2 Ceff2 Calculation 
For the second part of the two-ramp waveform described in 
equation 2: 
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We define Ceff2 to be the capacitance that requires the same charge 
transfer as that required by RLC moments during the interval 
when the second ramp is in transition. From Figure 2 we see that 
the second ramp is transitioning from t=fTr1 to t=fTr1+(1-f)Tr2. 
The charge transfer for charging the effective capacitance for this 
interval is given by Ceff2(1-f)VDD. 
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By using a similar approach as Ceff1 and considering the case of 
real and imaginary roots separately, we have: 
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For imaginary roots, 
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Ceff2 is obtained by iterating on Tr2. Final value of Tr2 
corresponding to the converged Ceff2 is then used to model the 
second ramp. However, this value of Tr2 should be modified to 
capture the plateau effect. The plateau is hard to model because it 
is not flat, and hence the intuitive approach of modeling driver 
output by linear ramp, flat step, then another ramp, is often 
inaccurate.  We incorporate the effect of plateau by modifying the 
second ramp as shown in Figure 4. The point where the second 
ramp meets VDD is shifted by the plateau time and a new ramp is 
fitted as shown in the figure. The new Tr2 can be obtained by 
equation 8. 

)1(

2 1
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TT rf
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+=            (8) 

In this equation, tf is the time of flight and 2tf-Tr1 is the duration of 
the plateau. The idea behind this approach is that there is no 
charge transfer during plateau time (2tf-Tr1).  Hence when we 
calculate Ceff2 by equating the charge during the second portion of 
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transition, we consider charge transfer after plateau but we fail to 
capture the delay due to the plateau effect. One solution to 
account for this effect is to have a flat plateau step for time 2tf-Tr1 
between the two ramps. Another solution is to modify Tr2 as 
equation 8, where plateau delay is accounted for by shifting the 
second ramp by the plateau time. The first solution is more 
accurate when a clear flat plateau exists and the second solution 
works better when plateau is not flat and it smears out so much 
that it is almost unnoticeable. Experimentally, we have found that 
the second case occurs more often than flat case and hence 
modifying Tr2 works better for most cases.  

5. MODELING FLOW 
The two-ramp modeling of the driver output waveform requires 
finding the breakpoint (equation 1) and computing two effective 
capacitances, one for each portion of transition. Tr1 (Ceff1) gives 
the slope of the initial ramp and Tr2_new (Ceff2) gives the slope of 
the transition after reflection has come back to the output of the 
driver. In order to model the breakpoint, we need to find the on-
resistance Rs of the driver. We model on-resistance by a similar 
approach as adopted by Thevenin models [3]. We observe the 
delay between 50% and 90% points of the output waveform and 
fit an exponential between these points. The on-resistance 
calculated in this way depends on the load capacitance. Ideally, 
one should find an effective capacitance and then calculate on-
resistance of the driver for this value of the load capacitance. 
However, we have seen that the resistance value and more 
importantly, the breakpoint, do not change significantly by using 
total capacitance instead of the effective capacitance. Since using 
the effective capacitance makes this an iterative process, we use 
total capacitance to find on-resistance of the driver without loss of 
accuracy.  

When the inductive effects are insignificant; the driver output 
waveform looks like an RC waveform. In this case, one effective 
capacitance is sufficient to model the entire transition accurately. 
This effective capacitance can be calculated by equating the 
charge over the entire region of transition. We have already 
derived equations to calculate Ceff1; the same equations can be 
used with f = 1 to calculate this single effective capacitance. 
Usually a single ramp obtained by this capacitance can model 
such waveforms very well but if there is significant resistive 
shielding, then the gate resistor model [11] can be used to model 
the exponential tail of the transition. 

We use the following criteria from [4], [5] to determine the 
significance of inductive effects: 
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Here R and C are line resistance and capacitance per unit length, l 
is line length, CL is load capacitance (contributed by fan-out input 
capacitance), Tr is the rise time at the output of the driver, and tf is 
the time of flight. If the above criteria are satisfied, then the 
inductive effects are significant and we use the two-ramp 
modeling approach. Otherwise, a single effective capacitance is 
used to model the driving point waveform.  

The criterion in equation 9 is the same as that in [4] but with an 
extra condition, which compares rise time with the time of flight. 
This condition is important for screening short lines. These lines 
rarely exhibit inductive behavior because their time of flight is 
normally smaller than their transition time. Reference [5] 
considers this by comparing rise time with the time of flight but it 
uses transition time at the input of the driver. Inductance effects 
have little dependence on the input transition times but are heavily 
dependent on driver’s output transition times [8]. Hence we use 
output transition times in our criteria. We have seen that with 
inductive effects, the driver output waveform rises sharply to a 
certain level and then flattens before meeting the reflections. 
While comparing the rise time with the time of flight, it is the 
initial ramp that is important. We compute this initial ramp (Tr1) 
using Ceff1 iterations and use it in our inductance criteria.  

The outline for our modeling flow is as follows: 

Given the following information: 

1. Line parasitics (R,L,C).  

2. The characterized output delay table for the driver. 

Perform these steps for driver output modeling: 

1. Find driving point admittance moments and compute a1 a2 a3 
b1 b2. 

2. Find driver on-resistance (Rs) and compute breakpoint (f) 
using equation (1). 

3. Perform Ceff1 iterations using equation (4) or (5) and 
compute Tr1. 

4. Check inductance criteria using equation (9). 

If inductance is significant: 

• Perform Ceff2 iterations using equation (6) or (7) and 
compute Tr2. 

• Modify Tr2 to Tr2_new using equation (8). 

• Use Tr1, Tr2_new and breakpoint to model driver output as 
two ramp. 

       If inductance is non-significant: 

• Perform Ceff iterations using equation (4) or (5) with f=1 
and compute Tr. 

• Model output as single ramp. If significant resistive 
shielding, then model exponential tail using approach in 
[11]. 

6. RESULTS 
We tested the new two-ramp approach for varying line lengths, 
widths, and driver strengths. All the experiments were performed 
using a commercial 1.8V 0.18µm CMOS technology.  

First, we compare the driving point waveforms obtained by our 
model with HSPICE simulations. Figure 5 shows two such 
comparisons for RLC lines driven by inverters. The inputs to the 
inverters are ramp signals having 100ps and 75ps transition times 
respectively. Although the two-ramp model cannot capture all 
inductive behavior (such as oscillations after the breakpoint), the 
overall shape, including the breakpoint and key delay points, 
matches well with SPICE. 
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Figure 5. HSPICE and two-ramp model of driver output 

 

Next, we compare the waveforms of a 4mm line driven by a 25x 
inverter (Figure 6). In this case, driver resistance was much higher 
than the line impedance. Inductance criteria (equation 9) were not 
satisfied and a single Ceff model was used. We see that single 
ramp is sufficient to model the entire transition in this case. 

We also observed the far-end waveforms by applying the modeled 
two-ramp input waveform to an RLC line within HSPICE. These 
waveforms were compared with the actual far-end response. A 
good match was seen at the far end waveforms (Figure 7), thus 
validating the two-ramp assumption at the near end2. 

We tested the new model by sweeping line lengths from 1mm to 
7mm and line widths from 0.8µm to 3.5µm. Driver strengths were 
also swept from 25x to 125x. Input transition was varied from 
50ps to 200ps. The line parasitics were extracted using Raphael. 
With 0.18µm technology, we found that inductive effects were 
particularly significant in long (≥ 3mm) and wider wires (≥ 
1.6µm) driven by fast inverters (75x and larger). When inductive 
effects were dominant, the single ramp assumption was highly 
inaccurate and the two-ramp model provided good results. The 
two-ramp model results for 165 inductive cases are shown in 
Figure 8. The average error in the delay was 6% and the average 
error in the slew, times was 11.1%.  For delay, 48% of the cases 
had less than 5% error and 83% of the cases had less than 10% 
error. For slew rate, 31% of the cases showed less than 5% error 
and 61% of the cases showed less than 10% error.  Table 1 shows 

                                                                 
2 The far-end waveforms from the model show higher overshoot 

due to the ramp approximation at the near end. 
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Figure 6. HSPICE and one-ramp model of driver output 

 

0 75 150 225 300 375

0.0

0.3

0.6

0.9

1.2

1.5

1.8

Line length = 4 mm Width = 0.8um
(R=108.9 ohms L=4.42 nH C=704 fF)
Driver 75x Input Slew=50 ps

V
ol

ta
ge

 (V
)

Time (ps)

 HSPICE (near)
 HSPICE (far)
 Model (near)
 Model (far)

 
Figure 7. Near and far-end response with HSPICE and two-

ramp model of driver output  
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 Figure 8. Two-ramp model results compared to HSPICE 

 

a sample of cases with significant inductive effects. HSPICE delay 
and slew numbers are compared with the single ramp and two-
ramp modeling results. It is clear from the table that, as line width 
increases, inductive effects become more and more significant, 
and the delay values from one ramp assumption become more 
inaccurate. The slew numbers for one ramp modeling exhibits 
substantial error since it cannot capture the long tail of the 
inductive waveform. 

7. CONCLUSIONS 
In this paper, we presented a new approach to model the driving 
point waveform in the presence of RLC interconnect loads. Our 
approach is compatible with existing pre-characterized cell delay  
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Table 1. HSPICE, one-ramp and two-ramp model comparison results 

Delay (ps) Slew (ps) Len/Wid 

mm/µm  

Line Parasitics 

R(Ω)/L(nH)/C(pF) 

Driver 

Size 

Input 

Slew (ps) HSPICE 2 ramp 
(%error)  

1 ramp 
(%error) 

HSPICE 2 ramp 
(%error) 

1 ramp 
(%error) 

3/0.8 81.8/3.3/0.52 75x 50 25.01 24.2 (-3.2%) 41.3 (65.1%) 124.1 129.9 (4.6%) 61.5 (-50.4%) 

3/1.2 56.3/3.2/0.59 75x 50 26.44 25.6 (-3.1%) 56.3 (112.9%) 128.9 141.1 (9.4%) 91.8 (-28.7%) 

3/1.6 43.5/3.1/0.66 75x 50 32.15 29.9 (-6.9%) 66.1 (105.5%) 135.4 148.8 (9.8%) 112.1 (-17.2%) 

4/0.8 108.9/4.4/0.7 75x 50 25.02 25.7 (2.7%) 39.1 (56.2%) 157.3 163.1 (3.6%) 57.3 (-63.5%) 

4/1.2 75/4.2/0.8 75x 50 26.51 27.7 (4.4%) 59.1 (122.9%) 164.4 179.0 (8.8%) 97.6 (-40.6%) 

4/1.6 58/4.1/0.88 75x 50 32.69 30.2 (-7.6%) 74.9 (129.1%) 175.0 196.0 (12.0%) 130.5 (-25.3%) 

5/1.2 93.7/5.3/1 100x 100 36.43 35.6 (-2.2%) 46.4 (27.3%) 192.8 173.7 (-9.9%) 60.0 (-68.8%) 

5/1.6 72.4/5.1/1.11 100x 100 39.56 37.7 (-4.7%) 53.0 (33.9%) 200.3 204.0 (1.85%) 71.8 (-64.1%) 

5/2.0 59.7/5/1.22 100x 100 42.53 39.5 (-7.1%) 63.1 (48.3%) 207.6 226.3 (9.0%) 90.9 (-56.2%) 

5/2.5 49.5/4.8/1.31 100x 100 45.26 42.4 (-6.3%) 78.2 (72.7%) 212.2 231.8 (9.2%) 121.1 (-42.9%) 

6/1.2 112.4/6.3/1.19 100x 100 36.44 37.0 (1.5%) 46.5 (27.6%) 222.7 203.7 (-8.5%) 60.1 (-73.0%) 

6/1.6 86.9/6.2/1.33 100x 100 39.58 39.3 (-0.7%) 52.4 (32.3%) 232.0 235.5 (1.5%) 70.7 (-69.5%) 

6/2.0 71.6/6/1.46 100x 100 42.55 41.4 (-2.7%) 60.8 (42.8%) 240.9 254.7 (5.7%) 86.4 (-64.1%) 

6/2.5 59.3/5.8/1.58 100x 100 45.29 45.9 (1.3%) 75.1 (65.9%) 246.3 276.9 (12.4%) 114.2 (-53.6%) 

6/3.0 51.2/5.6/1.80 100x 100 49.41 47.8 (-3.2%) 101.4 (105.2%) 261.7 299.1 (14.2%) 168.4 (-35.6%) 

 

tables. We proposed a two-ramp model based on transmission line 
theory that accurately predicts delay and slew at the driver output 
when inductive effects are significant. Results show that our two-
ramp model significantly reduces the error incurred due to a 
simple one-ramp assumption. 
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