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Abstract

In this paper, we present an efficient method for computing
switching windows in the presence of delay noise. In static timing
analysis, delay noise has traditionally been modeled using a simple
switch-factor based noise model and the computation of switching
windows is performed using an iterative algorithm where timing
window propagation and switch factor updates are computed repeat-
edly until convergence. It was shown that the worst-case number of
iterations required for convergence is O(n), where n is the number

of gates in the circuit, resulting in an overall run time of O(n2). It
was also shown that the iterations converge to different solutions,
depending on the initial assumptions, making it unclear which solu-
tion is correct. In this paper, we show that the iterative nature of the
problem is due to the switching-factor noise model and the order in
which events are evaluated. Based on superposition model, we pro-
pose a time-sort based algorithm to compute the impact of delay
noise on timing windows. We prove that the proposed algorithm has
a run time that is linear with the circuit size. Since the algorithm is
non-iterative and does not require initial assumptions, it eliminates
the multiple solution problem. We tested the algorithm on a number
of designs and show that it achieves significant speedup over the
iterative approach.

Categories and Subject Descriptions: B.7.2 [Integrated Cir-
cuits]: Design Aids - Verification.

General Terms: Algorithms,Theory, Verification.

1 INTRODUCTION
With increased clock frequencies and larger aspect ratios of the

wires due to technology scaling, noise from cross-coupling capaci-
tance between neighboring nets has become a dominant factor in
static timing analysis[1][2]. In noise analysis, the net under consid-
eration is referred to as the victim net, and the neighboring nets that
inject noise on the victim net are referred to as aggressor nets. Noise
is broadly classified into two types. Functional noise occurs when a
victim net is intended to be at a stable state and results in an
unwanted noise pulse on the net. Delay noise, which is the topic of
this paper, occurs when noise is injected on a victim net when the
victim transitions. Delay noise can cause the delay of the victim net
to increase, if the aggressor and victim nets switch in opposite direc-
tions, or can cause it to decrease, if they switch in the same direc-
tion. For performance analysis of high-speed designs, it is therefore
critical that delay noise is accurately accounted for. In order to
reduce the pessimism of noise analysis, timing windows[3][4] and
logic correlations[5][6] are often computed to determine which agg-
-ressor nets can switch simultaneously with the victim net. If an ag-
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-gressor net cannot switch at the same time as a victim net, the noise
from that aggressor net is excluded from the analysis, thereby
increasing the accuracy of the analysis. However, the computation
of timing windows in the presence of delay noise exhibits a well
know “chicken and egg” problem [7]. The delay noise depends on
the overlap of victim and aggressor timing windows and the timing
windows depend on the delay of the circuit, which, in turn, is
impacted by the delay noise. An iterative approach has been used to
solve this problem. Initially, timing windows are computed without
coupling noise using arrival time propagation in topological order.
These arrival times are then updated with delay noise and re-propa-
gated in multiple iterations until convergence.

To evaluate the impact of noise on delay, typically a so-called
switch factor model is used. For both victim and aggressor nets, the
coupling capacitance is replaced with a grounded capacitance,
where the value of the grounded capacitance is equal to the coupling
capacitance, multiplied by a constant k, referred to as the switch fac-
tor. If the aggressor and victim nets have the same signal transition
time, the switch factor is 2 when the nets switch in opposite direc-
tions (for late arrival times) and 0 when they switch in the same
direction (for early arrival times). Switching factors for nets with
unequal transition times have also been proposed [8][9].

The iterative approach of the timing window computation prob-
lem is most clearly explained through illustration. We consider two
coupled nets as shown in Figure 1(a) and their initial timing win-

dows, computed without coupling noise and a switch factor of 1. If,
after this initial window computation, aggressor and victim timing
windows overlap, as shown in Figure 1(b), the switch factor for the
computation of the leading (early) edge of window m is set to 0 and
that for the computation of the trailing (late) edge of l to 2. This has
the effect of increasing the size of the windows, which can cause
other nets in the circuit, which initially did not have overlapping
windows, to have overlapping windows. Multiple iterations are
therefore needed to reach convergence. Also, an individual pair of
nets may require multiple iterations, since with each iteration, the
region of overlap between the two nets increases, allowing coupling
between later transitions in the windows, as shown in Figure 1(c).

It was shown in [10] that an iterative computation of timing win-
dows is guaranteed to converge and that the maximum number of

Figure 1. Coupled net and timing window computation. Arrows
show change in window size in iteration as numbered.
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iterations is O(n), where n is the number of circuit elements, leading

to a worst-case run time complexity of O(n2). In [11], different
scheduling methods are explored to reduce the run time. In practice,
the number of iterations is typically less, but can still reach 5 - 10 for
circuits with significant coupling, therefore still substantially increas-
ing the run time of static timing analysis. Also, as coupling noise
increases with technology scaling, the number of required iterations
is expected to grow. It was later shown in [12] that the solution of the
iterative computation depends on the assumption used to compute
the initial windows. If the initial windows are computed in the
absence of delay noise (assuming all windows do not overlap), verses
with delay noise (assuming all windows overlap), the iterative
approach will converge to different solutions, corresponding to dif-
ferent fixed-points in a lattice representation of the problem. For
instance, in Figure 1(d) two windows are shown that do not overlap
in the absence of delay noise, whereas they could overlap if the initial
windows were computed assuming the presence of delay noise,
therefore converging on different solutions. It is unclear what
assumption results in an analysis that matches the delay of the actual
circuit.

In this paper, we present a new approach for computing circuit
performance in the presence of coupling noise, which differs from
the existing approach in two fundamental ways.

• Instead of using a switch factor based model for delay noise com-
putation, we use a superposition based model. Superposition has
been used extensively in functional noise computation and has
also been proposed for delay noise computation [11][13][14][16].
In superposition, the victim and aggressor drivers are represented
by linear models and are simulated individually, summing their
response to obtain the final waveforms at the victim node. In the
switch factor based model, delay noise is a function of the timing
windows at the victim and aggressor nodes themselves, creating
a cyclical dependency. In the superposition based model, delay
noise is a function of the timing windows at the driver inputs of
the victim and aggressor nets, thereby removing this cyclical
dependency and allowing for a more efficient solution to the
problem.

• Instead of traversing the timing graph in topological order based
on the structure of the circuit, we use a time sort based algorithm
where, early and late window events are scheduled separately
and processed in non-decreasing order of their event times. Each
time an event is processed, new events are scheduled for the
fanout nodes and coupled nets of these fanout nodes.

In general, time progresses in monotone increasing fashion in the
proposed algorithm. Each event is therefore processed exactly once
and is final when processed. However, in certain coupling situations,
it is possible that new events require time to be rolled back requiring
some events to be reprocessed. However, we will show that time roll-
back can occur only once for an event at a particular node and
requires only a fixed number of event reprocessing. Therefore, the
worst-case run time is linear with the circuit size. Also, since the pro-
posed algorithm is non-iterative and does not require initial timing
window assumptions, it eliminates the problem with multiple solu-
tions present in the current approach and removes the ambiguity of
delay noise computation. To our knowledge, this is the first solution
that is linear in run time and that eliminates the multiple solution
problem. We implemented the proposed algorithm and show results
on large circuit blocks. We show that, in practice, time roll-back is
very rare and that the time sort algorithm achieves speedups of up to
5X over the iterative approach.

The remainder of this paper is organized as follows. Section 2 dis-
cusses the superposition approach for delay noise computation and
the delay model assumptions and properties. Section 3 presents the
time sort algorithm and shows its linear run time complexity. Section
4 contains the experimental results and Section 5 our conclusions.

2 DELAY MODEL AND PROPERTIES
Given a victim net and a set of capacitively coupled aggressor

nets, referred to as a noise cluster, we construct linear Thevenin mod-
els for the victim and aggressor driver gates consisting of a Thevenin
resistance in series with a linear voltage ramp [15][16]. Using super-
position, each of the voltage sources is simulated in turn, while the
other voltage sources are shorted. The voltage waveforms observed
at the receiver gate input from all simulations are then added together
using superposition to obtain the combined waveform. Figure 2(a)

shows the noiseless transition, when only the victim driver voltage
source is simulated, the noise pulses obtained by simulating each of
the aggressor drivers, the composite noise pulse obtained by adding
the individual noise pulses, and the noisy transition, obtained by add-
ing the composite pulse to the noiseless transition. Linear driver
models have the advantage that a reduced-order model of the linear
network can be created only once with methods such as PRIMA [17],
after which it can be reused in all different driver simulations. Also,
the use of linear superposition allows the noise waveform induced by
each aggressor to be shifted to search for the worst-case alignment
with respect to the noiseless transition without requiring re-simula-
tion of the network.

We first consider a noiseless transition at the victim driver node

and define an early event ve = (tv
e, sv

e) and late event vl = (tv
l, sv

l),

where tv
e and tv

l are early and late arrival times, and sv
e and sv

l are
the early and late transition times. An arrival time is the point in time
where the noiseless transition crosses the so-called switching voltage
vsw and the transition time is the time interval between the 20% and
80% Vdd crossing times of the transition. In order to ensure that all
gate delays are positive, we use separate switching voltages for rising
and falling transitions. We set the switching voltage for a rising tran-
sition vsw,r = Vtn and the switching voltage for a falling transition vsw,f
= Vdd - Vtp, where Vtn and Vtp are the NMOS and PMOS threshold
voltages. Referencing the switching voltages to the threshold voltage
ensures that the output transition of a gate starts after the input transi-
tion reaches vsw and hence all gate delays are positive. Given the

early event ve = (tv
e, sv

e) and late event vl = (tv
l, sv

l) at a node, the tim-

ing window at that node is given by the time interval [tv
e, tv

l].
When one or more noise pulses are present on a net, we need to

compute so-called noisy early and late events vne and vnl, which are
a function of the alignment of the noise pulses relative to the noise-
less victim transition. In [13], it was shown that under reasonable
noise pulse assumptions, the interconnect delay is maximized by
aligning all aggressor noise pulses such that their peaks coincide. The
peak of this composite noise pulse is then placed at the point where,
for a late event computation, the noiseless victim transition reaches
vsw + vn, where vn is the height of the composite noise pulse. Simi-
larly, for early events, the peak of the composite noise pulse is
aligned at the point where the noiseless victim transition reaches vsw
- vn. The optimal alignment for a late event is shown in Figure 2(a). If
the alignment of the noise pulses is constrained by timing windows at
the aggressor inputs, an optimal alignment may not be possible,

Figure 2. Victim waveform computation and alignment.
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thereby reducing the impact of noise on the arrival time. Also, if the
noise pulse height exceeds Vdd - vsw for a late event, the alignment is
no longer well defined since vsw + vn > Vdd. In this case, we align the
peak of the composite noise pulse at the end of the noiseless victim
transition when it reaches Vdd, which is the alignment for a noise
pulse with height vn = Vdd - vsw. Similarly, for an early event, we align
a noise pulse that exceeds vsw at the start of the noiseless victim tran-
sition.

Given a late event vl = (tv
l, sv

l) for a noiseless victim transition at
node n, and the alignment of one or more noise pulses, we compute

the noisy victim event vnl = (tvn
l, svn

l) by setting tvn
l equal to the time

point where the noisy transition crosses vsw and by setting svn
l = sv

l

As illustrated in Figure 2(b), we have effectively shifted the ramp
approximation of the noiseless victim transition to the point where
the noisy victim transition crosses the switching voltage, while keep-
ing its transition time constant. A noisy early event is computed simi-
larly. Although a number of other models for abstracting the arrival
time and transition time from the noisy transition are possible, the
described model is a common model that is conservative for typical
noise pulse shapes and has useful properties for timing window com-
putation.

In general, the superposition approach for computing delay noise
is more accurate than the switch-factor based approach, since it cor-
rectly models victim and aggressor transition times, their interconnect
resistances, and the possibility of suboptimal noise pulse alignments.
The noisy victim transition, and hence the impact of noise on delay, is
a function of the alignment of the noise pulses relative to the noise-
less victim transition. It is important to note that this alignment is
constrained by the timing windows at the input of the aggressor and
victim drivers. Unlike the switch factor noise model, delay noise is

not a function of the noisy timing window [tvn
e, tvn

l] at the aggressor
and victim nodes themselves, thereby breaking the cyclical depen-
dency between delay noise computation at a victim node on the tim-
ing window at that same node. Instead, the early and late events at a
victim node are completely determined by the model of the intercon-
nect and drivers of the noise clusters, and the timing windows at the
inputs of the aggressor and victim drivers.

We present the following properties, based on the proposed noise
alignment and noisy event computation:

Property 1. The arrival time tvi at the victim driver input node is

earlier than the noiseless arrival time tv at a victim driver output

node: tvi < tv

Property 2. The arrival time tai at an aggressor driver input is ear-

lier than the time tn, which is the start of the noise pulse induced by

the aggressor: tai < tn
Both Property 1 and Property 2 follow directly from the use of sepa-
rate switching voltages vsw,r and vsw,f for rising and falling transitions

and from setting these voltages such that the output transition of a
gate starts after the input transition reaches the switching voltage.
Figure 2(b) illustrates Property 1 and Property 2 for a late event. Both
properties hold for early and late events.

Property 3. Given a victim transition with an optimally aligned
noise pulse, the noisy arrival time tvn at the victim node is later

than the aggressor driver input arrival time tai that induced the

noise pulse: tai < tvn

This property follows from Property 2 which states that a noise pulse
starts after the aggressor input arrival time and from the fact that the
noisy victim arrival time is equal to the point in time where the noisy
transition reaches the switching voltage, as shown in Figure 2(b).
Again, Property 3 holds for both early and late events.

Next, we examine which of the victim input transition times that

fall in its event window must be considered to obtain the worst-case
noisy arrival time at the victim node. In Figure 3(a), we have shown a

victim and aggressor input time window. The time topt
l is the transi-

tion time at the aggressor input that results in optimal noise pulse

alignment for the latest victim input transition tvi
l. Since topt

l falls
beyond the aggressor input window, an optimal noise alignment is not
possible for the victim input transition at tvi

l and the impact of noise
on the delay at the victim node is reduced. We also consider an earlier
victim input transition time tvi

i, which has a more optimal noise align-
ment and therefore has a larger impact of the noise on its delay. This
raises the question if, due to its larger delay noise, the earlier victim
input transition at tvi

i will result in a later noisy arrival time at the vic-

tim node than the victim input transition at tvi
l. In Figure 3(b), we

show the noiseless and noisy victim node transitions corresponding to

the victim input transition time tvi
l and tvi

i. Note that the position of

the noise pulse is fixed, since it is constrained by tai
l. From Figure

3(b) it is clear that tvi
l will have a later noisy arrival time at the victim

node than tvi
i, as expressed in the following property:

Property 4. Consider two victim input events vii and vij, one or

more noise pulses constrained by timing windows and the result-
ing noisy late events vni and vnj at the victim node. If tvi,i > tvi,j

then tvn,i > tvn,j.

A similar property holds for early victim events. Based on this prop-
erty, only the start and end of timing window need to be propagated,
thereby substantially reducing the complexity of timing window
computation.

3 TIME SORT ALGORITHM
In the proposed algorithm, events are processed ordered by non-

decreasing arrival times. We refer to the time t for which events are
being processed at a particular point in the algorithm as the current
time. All events with arrival time t are retrieved and processed result-
ing in scheduling of new events. We will only schedule and process
noisy events, i.e. events for which the impact of noise from aggressor
nets has been considered. We will also compute noiseless events
which are not scheduled and are only used to compute noisy events.
Based on Property 4, we restrict our computation to the early and late
events of a victim node, which correspond to the start and end points
of its timing window.

Initially, we restrict our discussion to nets with a single aggressor
net and then show how to extend the analysis to nets with multiple
aggressors in Section 3.2. Figure 1(a) shows the victim net l with
aggressor net m. The victim net has a victim driver gate with one or
more input nets n and the aggressor net has an aggressor driver with
one or more inputs k. However, for clarity, we will restrict our expla-
nation to aggressor drivers with a single input since the extension to
aggressor drivers with multiple inputs is straightforward. An event at
the input of the victim driver is referred to as a victim input event vi
and the resulting noiseless event at the victim driver node as the vic-
tim node event v. Similarly, an event at the aggressor driver input is

Figure 3. Delay noise for non-extreme points in the victim window.
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referred to as an aggressor input event ai.
The basic operation of the algorithm is to process early and late

events at victim driver input node n and aggressor driver input node
k and compute a new noisy event at the victim driver output l. A key
property of the algorithm is that events of coupled nets l and m do
not interact directly and are fully determined by the events of their
driver inputs. An event at node n is first considered as a victim input
event, resulting in a new event at its driver output l, and is then con-
sidered as an aggressor input event resulting in a possible change of
the arrival time of the early and late events at net m.

The overall algorithm is shown in Figure 4 and consists of 5 event
processing steps. We first illustrate the general approach of the algo-
rithm and then discuss each procession step in detail in Section 3.1.
First, all early and late events are processed as victim input events in
functions victim_early_event() and victim_late_event(). For a victim
input event vi at node n, the noiseless event v at the victim node l is
first computed. If the early event ai at aggressor input k is defined
(i.e. it has an early event time tai

e < t = tvi), we compute the optimal

alignment time tai
opt at input k for this aggressor m, as illustrated in

Figure 5 for early and late events. Note that this is the arrival time for

the input of the aggressor driver k such that the noise from the
aggressor driver output m is aligned optimally. If the optimal align-

ment time tai
opt t, we superimpose the noise from aggressor m

on the noiseless event v at node l and a new noisy event vn at l is
computed and scheduled. During the computation, the noise align-
ment is constrained by the timing window at node k. On the other

hand, if the optimal aggressor alignment time tai
opt > t, there exists

ambiguity as to whether the aggressor can transition at the optimal

time, since the time window at k could end before tai
opt. In this case,

we schedule a so-called check point event cp with check point time
tcp > t, when the ambiguity is resolved. The early and late check
point events are scheduled much like regular events and are pro-
cessed by functions cp_early_event() and cp_late_event().

We consider the impact of noise from aggressor m on node l only
if the aggressor input k has a defined early event at time t. If the early

event at aggressor input k is later than the victim input event vi at

node n (i.e. tai
e > tvi), we initially schedule event vn without consid-

ering the noise from aggressor m and then later update event vn, if

necessary, when processing the early event aie at aggressor input
node k in the function aggressor_early_event().

During the algorithm, early and late events at a node may update
multiple times, due to processing of new aggressor early events

when tai
e > tvi. However, we will show that the worst-case number of

event updates is limited by the number of aggressor nets that couple
to a victim net and is independent of the circuit size. Also, the sort-
ing and scheduling of new events can be performed in constant
time by discretizing time, , where is the time step and
integer i is used as an array index, thereby avoiding the O(nlog(n))
complexity of sorting. If is chosen sufficiently small, such as 1ps
or 0.1ps, the error incurred due to discretization is negligible.

The objective of the algorithm is to process only one early and
late event at a node. Hence, we introduce the following conditions:

• Condition 1: When scheduling a new event, the arrival time tvn
of this event vn falls after the current time t: tvn > t.

• Condition 2: When scheduling a new event vn, an existing event
of that type has not already been processed at that node.

Condition 1 ensures that newly scheduled events fall in the future
and do not require a roll-back of the current time in the algorithm.
Condition 2 ensures that a new event is not scheduled after a previ-
ous event of the same type has already been processed for a node. In
other words, when an event is processed for a node, it is the final
event of that type for that node. It is clear that satisfying Condition 1
and Condition 2 is a sufficient criteria for guaranteeing that only one
event of each type is processed at each node.

In Section 3.1, we will show that in all but two cases, the two con-
ditions are satisfied in the proposed algorithm. However, under cer-
tain timing window alignments, it is possible that in function
victim_early_event() Condition 1 is not met, and in function
aggressor_early_event() Condition 2 is not met. In these cases, the
current time t of the algorithm is rolled back and the event in ques-
tion, as well as other processed events that depended on it, must be
reprocessed. We will show, however, that for a particular circuit
node, time roll-back can occur only once for each of the two types of
events. Also, in each case of time roll-back, the number of repro-
cessed events is fixed based on the topology of the circuit and is not
a function of the circuit size. Hence, the worst-case run time of the

algorithm is linear with the circuit size as opposed to O(n2) for the
worst case run time using the existing iterative approach. Also, we
found that time roll-back and event reprocessing are extremely rare
in actual circuits while the number of iterations required in the exist-
ing approach is often quite significant. Finally, since the algorithm is
non-iterative and does not operate using an initial overlapping or
non-overlapping timing window assumption, it does not exhibit the
multiple solution problem of the iterative approach. Our results show
that, depending on the initial assumption, the timing results obtained
with the iterative approach can either over- or under-estimate the
results obtained with the proposed approach. The proposed approach
therefore also improves the accuracy of the analysis.

3.1 Event Processing and Scheduling
In this Section, we present the 5 event processing steps and also

discuss their adherence to Condition 1 and Condition 2.

3.1.1 Victim Early Event
In this scheduling step, we consider the response of the victim

node l due to an early event at one of its driver inputs n, as shown in
Figure 6. Node l may already have an early event scheduled, due to
one of the other driver inputs of l. We first compute the noiseless vic-

1 schedule early and late events for primary inputs
2 for (t = 0; scheduled events left; t++) {
3 while (events left at time t) {
4 select event e at node n from queue at time t;

5 for (all fanout nodes l of n) {
6 if (e is an early event) victim_early_event(e);
7 else if (e is a late event &&
8 for all fanin nodes n of l a late event is defined)
9 victim_late_event(e);
10 for (all nets m coupled to l)
11 if (e is early event) aggressor_early_event(e);
12 }
13 select check point event cp at time t;
14 if (cp is an early cp event) cp_early_event(cp);
15 else if (cp is a late cp event) cp_late_event(cp);
16 }
17 }

Figure 4. Time sort algorithm for computing timing windows.

Figure 5. Early and late victim input event scheduling.
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tim event v at l due to event vie at n, as illustrated in Figure 5(a). We
then consider the aggressor m and its driver input k. If the early event

time tai
e is defined (i.e. tai

e < t), we determine the noise pulse

injected from node m on node l and find the switching time tai
opt at

node k that will result in the optimal alignment of this noise pulse
with respect to the noiseless transition on node l (line 3 and 6). If
tai

opt < t, as shown in Figure 5(a), we compute the earliest noisy

event vn, constrained by the switching window [tai
e, tai

l] at node k
(lines 8-10) and compare its arrival time tvn with the current early
event time tvp (line 11). If tvn < tvp we remove the existing event vp

and schedule the new event vn. If tai
opt > t, we check if the event

window at aggressor input k has ended. If it has, we align the noise

based on the latest point in the aggressor input window tai
l. Other-

wise, there is ambiguity whether the optimal alignment can occur
(since it falls in the future) and we schedule a check point event for
node l at time tvn (line 17), which is processed in function
cp_early_event(). Note that if the early event on k is not defined, we
ignore this aggressor driver input and compute its effect on node l in
function aggressor_early_event(). Note also that aggressor m may
have multiple driver inputs, in which case, the procedure is repeated
for each aggressor driver input.

We only schedule event vn if a previously scheduled event vp has
an event time tvp > tvn and has not been processed, which satisfies
Condition 2. Also, if the noise height is less than switching voltage
vsw, it is clear that noisy victim node transition time tvn must fall after
the victim input early event time tvi and hence, Condition 1 is met.
However, if the noise pulse is larger than the switching voltage vsw, it

is possible that tvn < t, if tai
e < tvi

e and Condition 1 is not met. This
means that the victim node early event time tvn occurs before the vic-

tim input early event time tvi
e = t. In this case, events with arrival

times in the window [tvn, tvi
e], that were already processed and that

depend directly or indirectly on the transition at node l must be re-
processed. We examine all events at fanout nodes of net l or coupled
to the fanout nodes of net l and reschedule any that fall in the time

window [tvn, tvi
e]. We apply this procedure recursively as shown in

Figure 7. We now show the following important properties of this
reprocessing step:

1. An early event vn at a victim node will be rescheduled only once.
Since the victim input early event vie with arrival time tvi

e lies in

the rescheduling window [tvn, tvi
e], event vie will be rescheduled

if node n depends on node l. When vie is processed the second
time, the question arises whether the resulting victim node early
event vn,2, will have an event time tvn,2 < tvn such that it must be
rescheduled again, leading to the possibility of multiple itera-
tions. Note that if tvn,2 > tvn, vn,2 will not be scheduled, due to
line 11 in Figure 6, terminating the iteration. From delay model
Property 3, if follows that in order for tvn,2 < tvn, event vn must
cause one or more aggressors inputs of l to have a new early
event time tai,2

e < tvn,2. However, delay model Property 1 and
Property 3 also indicates that any impact of vn on an aggressor is

such that tai,2
e > tvn and hence it follows that tvn,2 > tvn, meaning

that only one rescheduling iteration can occur. Intuitive, we can
see that for vn to be further decreased in further iterations, vn
would need to cause one of the aggressors of l to become earlier
than itself which contradicts delay model Property 3.

2. Since our method of alignment dictates that the noise peak must
occur at or after the start of the victim noiseless transition, the

size of the rescheduling window [tvn, tvi
e] is bounded by the tran-

sition time of the leading edge of the noise. This is a quantity that
is a function of technology and routing and is independent of cir-
cuit size. Therefore, from the point of view of run time complex-
ity, we can consider the window size to be a constant. The
number of events that need to be scheduled for a fixed window
size depends on the number of fanouts of node l and the number
of nets coupled to these fanouts which is independent of circuit
size, ensuring the linear run time of the algorithm. Furthermore,
the rescheduling window was found to be very small in practice
and requiring no more than two events to be rescheduled.

3.1.2 Victim Early Check Point Event
In this scheduling step, we process early check points that were

previously scheduled by early victim input events as shown in Figure
8. The current time t is equal to the noisy victim event time under
optimal alignment time of noise from node k computed in

victim_early_event(). We first check if the latest event time tai
l on

victim_early_event(vie)

1 compute noiseless victim event v with time tv at fanout node l

2 find current early event vp at l with event time tvp(set tvp to +inf if unde

3 compute noise from aggressor m with aggressor input k

4 find early and late event time tai
e and tai

l of k (set tai
l to t if undef)

5 if (early event time tai
e is defined) {

6 compute optimal switching time tai
opt at k resulting in noisy event tv

7 if (tai
opt t) {

8 if (tai
e tai

opt tai
l)

9 compute event vn at l, with optimal noise alignment

10 else compute event vn at l, with nearest alignment in [tai
e, tai

l]

11 if (tvn < tvp) remove vp and schedule vn

12 } else {

13 if (tai
l is defined) {

14 compute noisy event vn at l, with noise aligned at tai
l

15 if (tvn < tvp) remove vp and schedule vn

16 } else
17 if (tvn < tvp) remove vp and schedule check point event cp at t

18 else {
19 schedule event v
20 }

Figure 6. Victim early event processing.

≤
≤ ≤

reschedule_events(l, tvn, tvi
e)

1 for (all nets p, fanout of net l or coupled to fanout of net l) {
2 if (p was not already visited for rescheduling) {
3 find event e with event time te at node p, initiated by node l

4 if (tvn < te < tvi
e) reschedule event e at node p

5 reschedule_events(p, tvn, tvi
e)

6 }
7 }

Figure 7. Event rescheduling procedure.

cp_early_event(cp)

1 find current early event vp at l with event time tvp (set tvp to +inf if undef)

2 compute optimal switching time tai
opt at aggressor input k

3 find late event time tai
l of aggressor input k

4 talign = min(tai
l, tai

opt)

5 compute noisy early event vn at l, with aggressor input k aligned at talign

6 if (tvn < tvp) remove vp and schedule vn

Figure 8. Early check point event procedure.
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aggressor input m has occurred and set the alignment time talign to

the minimum of tai
opt (for optimal alignment) and tai

l (for latest pos-
sible alignment). We then compute the new early victim node event
vn and schedule it if there is no previous event vp with an earlier
arrival time.

To satisfy Condition 1, we first consider the case where talign =

tai
opt. In this case, the noise is optimally aligned and tvn = t. In the

case where talign = tai
l, a suboptimal alignment of the noise occurs,

since tai
l < tai

opt and the impact of the noise on the circuit delay will
be reduced. Therefore, the victim event time tvn in this case will be
later than the event time in the previous case, and hence tvn > t,
which satisfies Condition 1. To satisfy Condition 2, we again note
that event vn is only scheduled if tvn < tvp, which guarantees that vp
was not already processed.

3.1.3 Victim Late Event
In this scheduling step, we consider the response of the victim

node l due to a late event at one of its driver inputs n. The computa-
tion is analogous to victim_early_event(), and is shown in Figure 9.

Again, we compute the optimal alignment time for the noiseless vic-
tim event v, due to an aggressor input k with a defined early aggres-

sor input event. If the optimal alignment tai
opt t, as is illustrated

in Figure 5(b), we compute the noise on node l at the optimal align-

ment, constrained by the switching window of [tai
e, tai

l] of k. If tai
opt

> t and the switching window of k has not yet ended at time t, there is
again ambiguity about whether the optimal alignment can occur and
we schedule a check point for a future point in time to determine if
the optimal alignment is possible. However, contrary to the early
event time computation, the check point is scheduled at the noisy

victim late event time t’vn, computed with the aggressor aligned at

time t at node k (line 14,15). This computed t’vn is a lower bound on
the final tvn when the actual alignment occurs.

It is important to note that a late event at the victim input n is not
processed, unless the late event at all of its driver fanin nodes has
been processed, as shown in line 8 in Figure 4. This is necessary to
ensure that Condition 2 is met. Also, since this situation means that
at least one driver input of n has not completed its event window at

time t, it ensures that the latest event on l will lie after the current
time t, based on delay model Property 1.

Based on delay model Property 1, the noiseless victim event time
tv at node l falls after t. Since the impact of noise on node l will only
increase the late arrival time, the noisy late event time tvn > t, satisfy-
ing Condition 1. To satisfy condition 2, we must show that the event
time tvp of all removed events vp is greater than t. Such previously
scheduled events vp would be scheduled by another victim driver
input nx of node l (see Figure 1(a)), such that tvp < tvi. However, this
means that event vp at node l would be processed before event vi at
node n and therefore will be skipped in line 8 in Figure 4. This
ensures that Condition 2 is satisfied.

3.1.4 Victim Late Check Point Event
In this scheduling step, we consider a check point that was previ-

ously scheduled by the algorithm. We again check the optimal align-

ment time and if tai
opt < t, we compute the final noisy late event at

node l and schedule it. If, however, the optimal alignment time tai
opt

> t, there is ambiguity on whether the optimal alignment time can
occur, and we schedule another check point. It is therefore possible
that multiple check points are scheduled for a particular victim late
event. However, it is easy to show that the transition time of the lead-
ing edge of the noise pulse is a lower bound on the amount of time
by which the check point progresses forward in each iteration. Also,

the first check point is initiated when t = tvi
l at node n and the latest

check point must occur before the end of the victim transition at
node l. Since the window of time that a late check point can span and
the minimum distance between check points are comparable, typi-
cally very few, if any, iterations are necessary. Also, the number of
required check points is a function of the gate delay and signal slopes
and is independent of the circuit size and can be considered a con-
stant for run time analysis. The event processing code for a late
check point is identical to the code for victim late events, except that
the if statement on line 4 of Figure 9 is not needed.

To show that the processing of a late check point event adheres to
Condition 1, we need to show that tvn > t. The current time t = t’vn,

where t’vn is the noisy victim event time computed when the check
point was scheduled in victim_late_event() or in a previous iteration

of cp_late_event() (line 14 and 15, Figure 9). Since t’vn was com-
puted using a less optimal noise alignment than tvn, if follows that tvn

> t’vn, and hence, Condition 1 is satisfied. To satisfy Condition 2, we
note that function victim_late_event() and cp_late_event() will
schedule either a checkpoint or a victim late event and only one
event is scheduled for a victim node at any point in time. Therefore,
a victim late event cannot occur before a check point event, which
satisfies Condition 2.

3.1.5 Aggressor Early Event
In this step we compute the impact of an aggressor early event on

early and late victim events as shown in Figure 10. We only process
an aggressor early event if the victim event has already been pro-
cessed (condition tvi

e < t on line 4 and 13). If the victim input early
event has not been processed, the impact of the aggressor is
accounted for in the function victim_early_event() and
victim_late_event(). When an aggressor early event is processed, the

current time t = tai
e, as illustrated in Figure 10. We first compute the

optimal alignment time tai
opt at the aggressor input node n. If tai

opt <
t, we compute the new victim event vn and schedule it (lines 9,18
and 19). If the optimal alignment time falls after the current time,
there is again ambiguity on whether the optimal alignment can occur
and we again schedule a check point (lines 11,21 and 22), in similar
fashion to function victim_early_event() and victim_late_event().

victim_late_event(vil)

1 compute noiseless victim event v with event time tv at node l

2 compute noise from aggressor m with aggressor input k

3 find early and late event time tai
e and tai

l of k (set tai
l to t if undefined)

4 if (early event time tai
e is defined) {

5 compute switching time tai
opt at k for optimal noise alignment

6 if (tai
opt t) {

7 compute vn at l, with noise at nearest alignment in [tai
e, tai

l]

8 schedule vn
9 } else {

10 if (tai
l is defined) {

11 compute noisy event vn at l, with noise aligned at tai
l

12 schedule vn
13 } else {

14 compute late event vn’ at l, with noise aligned at t

15 schedule check point event cp at time t’vn for node l

16 }
17 }
18 }else{
19 schedule event v
20 }

Figure 9. Victim late event processing.
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Condition 1 is again satisfied for both the noisy early and late
event computation by delay model Property 3, since the aggressor

input transition time tai
e = t must fall before the victim noisy event

time tvn. For the computation of the noisy victim early event, Condi-
tion 2 is satisfied by the fact that we only schedule event vn if tvn <
tvp. However, Condition 2 is not met for the computation of the vic-
tim late event in lines 13 - 24, meaning that a previously scheduled
late event vp at the victim node m may have arrival time tvp < t and is
already processed. We therefore need to reschedule the victim late
event vp at node m, as well as any events dependent on it with event

times in the window [tvp, tai
e]. We again perform this task using the

re-scheduling routine reschedule_events(), shown in Figure 7. Note
that as events are reprocessed, erroneously scheduled events are
automatically removed and replaced by correct events. We again
show two important properties of the rescheduling process:

1. The victim late event at node m will be rescheduled only once.
Since the instigating aggressor event aie falls in the window [tvp,

tai
e], it is also recomputed, giving rise to a new event aie’, if node

n is in some way dependent on node m. When event aie’ is pro-
cessed, it will produce a new victim late event vn’ at node m, rais-
ing the possibility of cyclical dependence and the need for
multiple iterations. However, we show that tvn’ < tvn, meaning
vn’ is not scheduled, terminating the loop after the first iteration.

First, we note that since aie is an early event a new event aie’ can

occur only if tai’
e < tai

e. Second, we note that since tai
e > tv it fol-

lows that the noise pulse induced by aggressor l starts after the
victim noiseless event time tn > tv. From this it is clear that the
noise pulse can affect the victim noiseless transition only if it has
a slope steeper than the slope of the victim noiseless transition.

Since the new event aie’ is earlier than aie, it follows that a noise
alignment at time tai

e’ is suboptimal and produces a victim noisy

event time tvn
’ which is earlier than tvn, meaning that it will not

be scheduled.

2. The size of the reprocessing window [tvp, tai
e] is bounded by the

size of the noiseless victim transition at node m. Similar to victim
early events, we can therefore show that the number of dependent

events that fall in the window [tvp, tai
e] is not a function of the

circuit size and is small in practice, as demonstrated in our exper-
imental results.

3.2 Multiple aggressors
In practice, each victim net may have multiple aggressors. We

therefore present the following extension of the time sort algorithm
for victim nodes with multiple aggressor nets. The main scheduling
loop in Figure 4 remains unchanged. The event processing steps are

changed in that the optimal alignment time computation tai
opt must

consider multiple aggressors. We show the code for computing the
optimal alignment time for multiple aggressors in Figure 11. Given a

set of aggressor nets mi each with input ki, we first construct a set of
aggressor nets Sa that have defined aggressor input early event times

tai,i
e at their aggressor input ki (line 3). We then compute the noise

pulse from each of the aggressors mi in Sa as well as the sum of their
noise pulse heights, nh (line 4). We compute the optimal alignment of
the composite pulse and, based on the delay of each of the aggressor
drivers, the optimal alignment time at the aggressor drivers inputs

tai,i
opt (lines 5,6). From among these optimal aggressor input align-

ment times we select the latest, tai
max,opt. The processing of events is

now identical to that in the single aggressor case, except that tai
opt is

replaced with tai
max,opt.

aggressor_early_event(aie)

1 for (all victim driver inputs k) {
2 find current early and late event vp and check point event cp at m
3 compute noise from aggressor l on victim m with aggressor input n

4 if (early victim input event vie with event time tvi
e < t) {

5 compute noiseless victim event v with event time tv at fanout node m

6 compute switching time tai
opt at n with optimal noise alignment

7 if (tai
opt t) {

8 compute early event vn at m, with aggressor input n aligned at t
9 if (tvn < tvp) remove vp and schedule vn

10 } else

11 if (tai
opt < tvp) schedule check point event cp at time tai

opt

12 }

13 if (late victim input event vil with event time tvi
l < t) {

14 compute noiseless victim event v with event time tv at fanout node m

15 compute switching time tai
opt at n with optimal noise alignment

16 compute late event vn at m, with aggressor input n aligned at t

17 if (tai
opt t) {

18 if (tvn > tvp) remove vp and schedule vn

19 else if(tvn > tcp) remove cp and schedule vn

20 }else {
21 if(tvn > tvp) remove vp and schedule check point event cp at tvn

22 if(tvn > tcp) remove cp and schedule check point event cp at tvn

23 }
24 }
25 }

≤

≤

Figure 10. Aggressor early event procedure

Figure 10. Early aggressor event processing for (a) early victim events
and (b) late victim events.
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Table 1. Benchmark Circuit Information

Circuit #Nets # Gates
Total #

couplings
% Nets with

coupling
Average # of

couplings per net

c432 218 181 445 81.65 4
c499 582 540 1100 82.47 4
c880 431 370 245 32.01 3
c1355 626 584 1072 90.57 3
c1908 506 472 682 90.11 2
c2670 1118 884 1749 78.35 3
c3540 1069 1018 3529 94.76 6
c5315 1876 1697 3920 62.95 6
c6288 2450 2417 11210 93.06 10
c7552 2449 2241 10940 91.42 9
alu64 1935 1803 9085 93.17 10

1 compute noiseless victim event v with event time tv at node l

2 find early and late event time tai,i
e and tai,i

l of ki (set tai,i
l to t if undef)

3 construct set Sa of aggressors mi with defined early event time tai,i
e

4 computed noise height nh = sum of noise heights from aggressors in Sa

5 compute alignment of composite noise pulse with noise height nh

6 compute optimal alignment tai,i
opt for aggressor inputs ki of mi in Sa

7 compute maximum alignment tai
max,opt = max(tai,i

opt) for mi in Sa

Figure 11. Optimal alignment computation for multiple aggressors.
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We note that delay model Property 3 applies not only to a single
aggressor but also to multiple aggressors. In other words, the noisy
arrival time tvn due to multiple optimally aligned noise pulses is later
than all aggressor driver input arrival times tai,i that induced the

noise pulse. Hence, it follows that tvn > tai
max,opt, from which it can

be shown that the run time of the algorithm is also linear for nets
with multiple aggressor couplings.

4 RESULTS
The proposed time-sort algorithm was implemented and tested

for the ISCAS85 benchmark circuits and a 64-bit ALU, which were
synthesized using Synopsys Design Compiler. The characteristics of
these circuits are shown in Table 1. Coupling capacitance was gener-
ated randomly between nodes in the circuit. Table 1 shows the per-
centage of nets with one or more couplings and the average number
of coupling capacitances per net. For the larger circuits, an average
number of couplings per net of 10 was used, which corresponds to
the number of expected couplings for nets in high performance
designs [4]. Delay and slope computation was performed using pre-
characterized library models for a TSMC 0.18 library.

The traditional iterative approach was also implemented and
Table 2 compares the results from the two methods. The reported
run times are on a Pentium IV 1.8GHz PC running Linux. For the
iterative method, the number of iterations needed for convergence
ranged between 3 and 11. The improvement in run-time ranged from
2.31x to 5.01x and increased with circuit size and the number of
couplings in a circuit. Roll-back occurred only for circuit c7552,
causing recomputation of two events for both cases of roll-back.
This demonstrates that time roll back is extremely rare and that in
practice each net is processed only once. Table 2 also shows the
average number of check points per net, which ranged between 0.57
and 1.36. Note that a check point does not represent multiple pro-
cessing of an event, but only multiple updates to an event time
before the event is processed.

Finally, we compared the timing analysis results for the two
methods. The iterative method converged to different solutions
depending on the initial overlap assumption in all of the 11 circuits,
with 4 of them more significantly so. As expected, we found that the
proposed time sort algorithm obtained a result that fell between
these two solutions. The proposed approach therefore increases run
time efficiency, as well as analysis accuracy.

5 CONCLUSIONS
We have presented a new timing window computation method for

static timing analysis in the presence of cross-coupling noise. The
proposed method is based on delay noise computation using linear
superposition and early and late event processing ordered by arrival
times. We have shown that the proposed algorithm has linear run
time with circuit size as opposed to the O(n2) worst-case complexity
of the traditional iterative approach. Since the algorithm is non-itera-
tive and does not use an initial coupling assumption for timing win-
dow computation it eliminated the multiple solution problem present
in the iterative approach. We demonstrated the proposed method on
benchmark circuits with extensive capacitive coupling and show
that it obtains significant speedup over an iterative method.
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Table 2. Results for ISCAS85 combinational Circuits

Circuit

Iterative
Approach

Proposed Time Sort Approach

speed
upRun

Time
(sec)

#
Iterat
ions

Run
Time
(sec)

% Check
Point

Events

Avg #
check
points

# Roll
Backs

# Events
reprocessed

c432 0.08 5 0.02 18.05 0.62 0 0 3.89

c499 0.33 5 0.12 19.54 0.57 0 0 2.71

c880 0.17 3 0.03 21.91 0.69 0 0 4.67

c1355 0.34 5 0.15 27.19 0.89 0 0 2.31

c1908 0.31 6 0.08 26.64 0.93 0 0 3.59

c2670 0.65 7 0.19 21.83 0.62 0 0 3.27

c3540 1.37 6 0.52 31.30 1.36 0 0 2.63

c5315 1.43 5 0.45 30.52 1.01 0 0 3.18

c6288 4.9 11 0.98 25.89 1.12 0 0 5.01

c7552 2.81 6 0.93 27.13 1.16 2 4 2.99

alu64 3.65 6 0.73 31.14 1.29 0 0 4.98
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