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Statistical Clock Skew Analysis Considering
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Abstract—With shrinking cycle times, clock skew has become
an increasingly difficult and important problem for high per-
formance designs. Traditionally, clock skew has been analyzed
using case-files which cannot model intradie-process variations
and hence result in a very optimistic skew analysis. In this paper,
we present a statistical skew analysis method to model intradie
process variations. We first present a formal model of the statis-
tical clock-skew problem and then propose an algorithm based on
propagation of joint probability density functions in a bottom-up
fashion in a clock tree. The analysis accounts for topological
correlations between path delays and has linear runtime with
the size of the clock tree. The proposed method was tested on
several large clock-tree circuits, including a clock tree from a
large industrial high-performance microprocessor. The results are
compared with Monte Carlo simulation for accuracy comparison
and demonstrate the need for statistical analysis of clock skew.

Index Terms—Clock skew, probability, process variation, statis-
tical analysis.

1. INTRODUCTION

LOCK SKEW results from the unequal propagation delay
C of clock paths from the source of the clock tree to the var-
ious sink nodes at the latch points and directly impacts the per-
formance of a design. With rapidly increasing clock frequencies,
the allowable clock skew is increasingly constrained, making
clock skew a critical concern for high-performance processors.
Clock skew can be introduced either at design time, during fab-
rication of the design, or during its operation. During the design
phase, clock skew can arise due to unbalanced clock-path delays
resulting from unexpected changes in the capacitive loading at
the clock sinks and routing constraints. To address this, exten-
sive work has been performed on automatic sizing and routing
of clock trees to minimize skew during design time [1]-[8].
However, even if clock-skew constraints are met at design time,
process variations can introduce unwanted clock skew during
the fabrication of the chip, thereby compromising the obtainable
performance. Also, environmental fluctuations, such as power-
supply variations and coupling noise can introduce clock skew
during the operation of the design and a number of methods for
analyzing such sources of clock skew have been presented in [9]
and [10].
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In this paper, we propose a statistical method to analyze the
impact of process variations on clock skew. Process variations
result in uncertainty in the device and interconnect characteris-
tics, such as effective gate length, doping concentrations, oxide
thickness, and ILD thickness, and are a source of significant
clock skew. In general, process variations can be divided into
interdie and intradie variations. Interdie variations represent dif-
ferences in device characteristics from one die to the next, while
intradie variations represent differences in device characteristics
within a single die. Intradie variations can either be systematic
or random. The systematic component is deterministic in nature
due to topological dependencies of device processing, such as
CMP effects and optical proximity effects [11]-[13]. In some
cases, such topological dependencies are directly accounted for
in the analysis of clock skew, thereby reducing the statistical
variations [14]-[16], whereas in other cases, such variations are
treated as random. Furthermore, random variations can either be
spatially correlated, meaning that devices close to each other are
more likely to have similar characteristics than those spaced far
apart, or completely independent. Causes of spatially correlated
variations are equipment-related effects, such as lens aberration
and exposure time, whereas doping fluctuations cause indepen-
dent random variations.

Traditionally, clock skew is computed using case analysis,
where all devices are assumed to have identical best-case, nom-
inal, or worst-case characteristics. Such analysis is appropriate
for interdie process variations. However, it cannot model in-
tradie variations where devices have different characteristics on
the same die. Case analysis, therefore, results in an optimistic
skew estimate, as the mismatch between the devices in a clock
tree is ignored. With continuous shrinking of process dimen-
sions, intradie variations are becoming increasingly prominent
and case-analysis is no longer valid. It is, therefore, critical that
a statistical analysis of the clock skew is performed to deter-
mine the expected distribution of the skew across the manufac-
tured die. Once the skew distribution is computed, the expected
number of die meeting a specific skew can be determined. Sta-
tistical analysis of clock skew is also useful during the design
of a clock tree to reduce its sensitivity to process variations and
increase its robustness. Hence, the target application for a sta-
tistical analysis could either be in the synthesis flow or during
physical verification.

Recently, a method for statistical clock-skew analysis based
on Monte Carlo simulation was proposed [17]. However, Monte
Carlo-based approaches have very high runtimes, especially
for large clock designs. A probabilistic approach to clock-skew
analysis was proposed in [18] and [19], and has an efficient
runtime. However, the proposed analysis is restricted to binary
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clock trees and also uses a Gaussian distribution to approximate
the maximum and minimum of two Gaussian random variables,
which may compromise the accuracy of the analysis.

In this paper, we therefore propose a new approach to
clock-skew analysis, which accurately models intradie-process
variations and has a linear runtime complexity with circuit
size. Our analysis is focused on random variations, meaning
that topological dependencies are either removed prior to the
analysis or are treated as random variations. We provide a
formal definition of the statistical clock skew problem from
which we derive our proposed analysis method. Statistical
clock skew analysis is complicated by the correlation between
the minimum and maximum path delays in a clock tree. The
approach proposed in this paper uses joint probability density
functions (JPDFs) that preserve this correlation between min-
imum and maximum delays in an efficient manner. The JPDFs
are propagated in a bottom up fashion along the clock tree in a
single pass, and we present efficient methods for merging and
propagating JPDFs during the traversal. The proposed method
computes the skew distribution for the entire clock tree as well
as the skew distribution of all subtrees simultaneously and
therefore allows the designer to identify which portions of the
clock tree are most prone to process variations. The presented
methods were implemented and tested on a number of clock
tree circuits, including a large clock structure from an industrial
high-performance microprocessor design. Comparison of
results with Monte Carlo simulation confirms the correctness
of the approach and demonstrates its efficiency. A comparison
with traditional case analysis shows the importance of statistical
clock-skew analysis.

The remainder of this paper is organized as follows. In Sec-
tion I, we present the problem definition and modeling assump-
tions. In Section III, we discuss our approach and implementa-
tion for statistical clock skew computation. In Section IV, we
show experimental results and comparisons with Monte Carlo
simulation. Finally, in Section V, we draw our conclusions.

II. PROBLEM DEFINITION AND MODELING ASSUMPTIONS

In this section, we define the statistical clock-skew problem
and discuss our modeling assumptions. We consider clock
networks as composed of driver gates, such as buffers, in-
verters, and distributed resistance—inductance—capacitance
interconnects. In this paper, we restrict our analysis to clock
networks that have a tree topology, meaning that the circuit does
not have reconvergent fanout. Some very high-performance
clock-tree designs are constructed using multidriven meshes
and can only be represented by directed acyclic graphs (DAGs).
While such DAG clock networks cannot be modeled with our
proposed approach, a number of clock networks, especially
those in application specific integrated circuit design, have a
tree topology. Also, in most cases, DAG clock networks are
composed of clock-tree-driven meshes. In these cases, we can
analyze the clock tree up to driven meshes. It would require
an extension of our approach to analyze the mesh networks
themselves.

We represent a clock tree with a so-called timing tree, which is
similar to the well-known timing graph, except that its topology
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is restricted to a tree. The root of the tree is the primary clock
driver and the lowest level gates of the clock hierarchy are the
sink nodes that drive the latches in the design. An example of
a clock tree and its corresponding timing-tree representation is
shown in Fig. 1. Each edge in the timing tree represents the delay
from a driver-gate input to an interconnect sink point and, there-
fore, represents the sum of gate and interconnect delays. For
most clock trees, the dominant factor in delay variation is the
driver delay uncertainty, due to variability of process parame-
ters, such as gate length [20]. In this paper, we therefore focus
on driver-delay variation, although the analysis can be easily ex-
tended to incorporate interconnect-delay variability, using vari-
ational interconnect modeling methods such as those discussed
in [16]. Also, as shown in [22], the impact of these variations
can be assumed to be linear, for small variabilities. Hence, these
variabilities can be handled in the presented framework by rep-
resenting them as additional edges in the timing tree.

Since timing trees are a special case of timing graphs, they
inherit all common attributes of timing graphs, such as the def-
inition of path delay, arrival times, critical paths, etc.

A deterministic timing tree (DTT) is defined as a timing tree
where each edge has a fixed delay. The skew of a DTT is defined
in terms of the minimum and maximum path delay in the timing
tree, as stated below:

Definition 1: The minimum delay of a DTT is the minimum
of all path delays d,, ; from the root node to any of the sink nodes
{S1,82,...,5.}

dmin = HliIl(dp’l7 dp72 cey dpm)' (1)

Definition 2: The maximum delay of a DTT is the maximum
of all path delays d,, ; from the root node to any of the sink nodes

dmax = max(d, 1,dp2...,dpy). 2)
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Definition 3: Clock skew for a DTT can be defined as the
difference between the maximum delay and minimum delay of
a DTT

s = dmax - dmin~ (3)
Clock skew, therefore, is the maximum arrival time difference
between any pair of sink nodes.

Typically, the aim of the designer is to create a clock tree
with zero skew, referred to as a zero-skew clock tree. How-
ever, in high-performance design, clock skew is sometimes in-
tentionally introduced by the designer to accommodate unbal-
anced combinational logic delays in the circuit, referred to as a
nonzero skew clock tree. By setting nonzero clock skew targets
the designer effectively enables cycle stealing or time borrowing
which can improve the performance of the design. However, any
deviation of the skew from their intended targets in a nonzero
skew clock tree will degrade the performance of the design in the
same manner as it does for a zero-skew clock tree. For clarity,
we derive our analysis in this paper for a zero-skew clock tree,
noting that the analysis can be easily extended to nonzero skew
clock trees with intentional skew targets. Also, we define clock
skew as the maximum arrival time difference between any pair
of sink nodes. As skew is meaningful only between sink nodes
corresponding to adjacent pairs of latches, considering skew be-
tween any pair of sink nodes is conservative. If necessary, how-
ever, it is straightforward to restrict our analysis to only a par-
ticular set of sink node pairs to reduce this pessimism.

At design time, process variations create uncertainty in the
gate delays of the clock tree. Hence, we define a so-called prob-
abilistic timing tree (PTT), T,, where the delay of edge e is mod-
eled with random variable D.. Each random variable D, is char-
acterized by its probability density function (PDF) p.(D.). Al-
though we formulate the clock skew problem using continuous
PDFs, we use discretized versions of these functions in our im-
plementation, similar to those discussed in [21].

For the purpose of our analysis, we assume that edge delays
are independent random variables. However, certain device pa-
rameters, such as gate length, will exhibit spatial correlation,
meaning that drivers that are closely spaced together are more
likely to have similar device parameters than those spaced fur-
ther apart. Such spatial correlations will introduce dependen-
cies between the edge delay random variables in the PTT. How-
ever, in typical process technologies, spatial correlation is re-
ported to drop off sharply for distances greater than 100-300
pm [31]. The driver gates in a clock tree are typically spaced rel-
atively far apart, as they are distributed evenly in the die, with
separation typically greater than 300 pm. This, therefore, di-
minishes the impact of spatial correlation for typical clock-tree
designs. However, for situations where spatial correlation does
impact driver-delay variability, spatial correlations must be in-
corporated in the presented framework. A possible extension to
handle correlated effects would be to express the correlation as
a sum of two random variables, one which is perfectly corre-
lated and the other which is independent. Then, the independent
component can be handled by our current approach, while the
perfectly correlated part can be handled separately by enumer-
ation, and then combined together. Also, systematic variations
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can be handled in our methodology by changing the mean of the
distribution for edge delay random variables, as a preprocessing
step and, hence, is orthogonal to the methodology explained in
this paper.

Since all edge delays take a deterministic value on a manu-
factured die, the sample space consists of all possible dies with
different edge delay combinations. Note that the edge delays are
deterministic only in the context of process variations, but may
still vary due to environmental variations. The probability that a
manufactured die has a driver with a delay in interval [dy, d2] is

Pr{d; < D. < dy} = / f(De)dD.. 4

Furthermore, since the edge delays are independent random
variables, the probability of the occurrence of a particular
combination of edge delays is simply the product of the prob-
abilities of the occurrence of each individual edge delay [32].
Finally, since all clock-tree characteristics, such as minimum
and maximum path delay and skew are defined over the sample
space, they are also random variables. In statistical clock-skew
analysis, the goal is to obtain the PDF or the cumulative
distribution function (CDF) of the clock skew, based on the
PDF or CDF of the edge delays in the PTT.

III. PROPOSED APPROACH FOR STATISTICAL
SKEW COMPUTATION

We start with a formal definition of the CDF F/(.S) of clock
skew over the sample space of manufactured dies. The proba-
bility of skew s being equal or less than value S can be expressed
as the integral over the sample space of the DTTs which satisfies
s < S. As mentioned, the probability of occurrence of a DTT
is the product of the probabilities of occurrence of its individual
edge delays p. ;(t), which leads to the following expression for
clock skew CDF:

F(S)=Pr{s < S}
/ / Pe,1(t1)pe2(t2) . - Den(tn) dty ... dt,

&)

where d,in and d ., are defined for a DTT in (1) and (2).

The brute-force approach for computing the CDF of clock
skew would involve a complete enumeration of the sample space
consisting of all possible DTTs, computing the likelihood of
their occurrence, and determining if the dy,i, and dp,,x asso-
ciated with each satisfies dypax — dmin < S. This approach has
exponential complexity with respect to the number of edges in
the graph and, hence, is not practical.

A more intuitive approach would be to implement a statis-
tical timing analysis method that mirrors the approach for com-
puting skew in a DTT, according to (1)—(3). Using one of sev-
eral statistical timing-analysis methods presented in [21]-[30],
we can easily compute the earliest (minimum) and latest (max-
imum) arrival time distributions of each clock sink in the tree.
We can then define the maximum and minimum delay of the
clock tree as random variables D, and D,;,, similar to that
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Fig. 2. Joint distribution of D05/ Dmin among a group of sinks.

for the DTT in (1) and (2), and attempt to compute their prob-
ability distributions by taking a statistical maximum and min-
imum over all sink nodes. From the difference of these two
random variables, the skew is then obtained. Unfortunately, this
approach is complicated by the correlations that must be ac-
counted for during the computation. First, the arrival times at
sink nodes are correlated since timing paths to sink nodes typ-
ically share multiple edges in the timing tree. This correlation
must be explicitly expressed when computing the maximum and
minimum clock tree delay distributions, which is computation-
ally difficult. Second, the minimum and maximum clock tree
delays themselves are correlated. This is immediately obvious
from the fact that minimum delay can never exceed the max-
imum delay and vice versa. Therefore, the correlation between
the minimum PTT delay D,,;, and the maximum PTT delay
D ax must be determined in order to correctly compute the dis-
tribution of skew, again complicating the analysis.

We, therefore, propose an alternate approach to statistical
skew analysis as detailed in the next section. The key idea is
to avoid separate computation of the minimum and maximum
PTT delays and instead compute their joint probability density
function (JPDF) which preserves their correlation information.
Furthermore, we show that by propagating the JPDF of min-
imum and maximum PTT delay in a bottom up traversal of
the clock tree, the JPDFs that are merged during the traversal
are independent, which simplifies the analysis. From the JPDF
of Dyyin and D,,..«, the distribution of the clock skew is then
computed in a straightforward manner. The propagation and
merging of JPDFs during the bottom-up traversal of the clock
tree is performed using discretized distributions. We propose
an efficient method for merging of JPDFs during the traversal
which reduces the worst-case runtime complexity for merging
from O(n?) to O(n?), where n is the number of discretization
in each dimension of the JPDF. Note that the runtime com-
plexity in terms of circuit size is linear in all cases.
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A. Computation of Clock-Skew Distribution

We now define JPDF and the joint CDF (JCDF) of minimum
and maximum PTT delays and then show how the skew, as de-
fined in (5) can be computed using such a JPDF. The JCDF of
Dyin and D,y is defined over the sample space as follows:

F(Dmiranax) = Pr{min(dp,i) S Dmin; nlax(dp,i) S Dmax}
(6)

where dj, ; are clock-tree path delays and minimum and max-
imum operations are taken over all clock net sinks. The JPDF
can be obtained from the JCDF through differentiation

82

f(Dmirn Dmax) = m

F(Dminvaax)~ (7)

For numerical computation, it is often more convenient to dis-
cretize the JPDF. An example of the discretized JPDF for D,
and Dy, is shown in Fig. 2, as a mesh plot. Here, the darker
regions indicate the areas with higher probability. The entire dis-
tribution lies above the D ,.x = Dmin line. This follows from
the obvious property that D,,;,, can never be greater than D,y

Using the JPDF of Dy, and Dy,x, we can compute
the probability of manufacturing a chip with minimum and
maximum delays within the intervals [Dmin,1, Dmin,2] and
[Dmax,1; Dmax,2] as follows:

Pr{Dmin,l S Dmin < Dmin,27 Dmax,l S Dmax < Dmax,Z}

Dmin,2 Dmax,2

f(Dmin7 Dmax)dDmademin~

®)

Dmin,1 Dmax,1
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Dinax = Diin

= A Dype=Dpin+ S
min / /'
0 S D,..
Fig. 3. Graphical representation of integration region in (10).

We now write the expression of clock skew CDF in (5) in
terms of the JPDF of minimum and maximum PTT delays as
follows:

F(S)=Pr{s < S}

/ / f mm max)dDmaxd min

Dmax—Dmin<

C))

which follows directly from the definition of the JPDF in (8)
and the definition of clock skew in (5). Finally, we rewrite the
integral in (9) above using simple manipulation of the integral
limits as follows (as illustrated in Fig. 3):

F(S)=Pr{s <S5}
00 Dmin+s
= / / f(Dmin7
0 Dpin

Dmax) dDmademin .

(10)

Using the above expression of clock skew, and a given
discretized JPDF of D,,;, and D,,.x, the computation of the
clock-skew PDF can be accomplished through simple integra-
tion. We now show how the JPDF of D,,;,, and D,,.x for a PTT
can be efficiently computed using a single bottom-up traversal
and how the final clock-skew distribution is computed.

B. Joint Probability Distribution Computation

We compute the JPDF f(D,in, Diax) for the minimum and
maximum path delays in a PTT in a bottom up fashion. The
JPDF f;(Dmin, Dmax) for an internal node n; in the PTT rep-
resents the joint probability distribution of minimum and max-
imum path delays from node n; to any of the leaf node of n;.
The JPDF f;(Dpin, Dmax) at node n; is defined in terms of
the JPDFs f;(Dumin, Dmax) at the children n; of node n;. The
JPDFs for all nodes in the PTT are, therefore, computed using a
single topological traversal of the clock tree starting at the leaf
nodes of the tree. After the JPDF of D,,;, and D,,.x iS com-
puted for the root of the tree, we compute the skew distribution
using the integral in (10). Below, we first discuss how the JPDFs
are computed in a PTT tree and then how the final clock skew
distribution is computed.

1) Computing the JDPF of Din and Dy,.x: We consider
a parent node n; with two children n;; and n;2, and edges e;

1235
f;'(Dmin' Dmax)
merging
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Q fil (Dmim Dmux) fi2 (Dmiw Dmax) ,o“
§ 2
& - =
NG Je1(De1) fe2(De2) 33
N =
S =)
Q >
];'1 (Dminv Dma.x) 'j1 nj .GZ (Dmin' Dmax)

Fig. 4. Propagation and merging of JPDFs in a PTT.

and e2, as shown in Fig. 4. Given the JPDF f;1(Dmin, Dmax) at
node nj1 and fj2(Dmin, Dmax) at nj2, and the edge delay PDFs
fe1(De1) of edge e and f.o(D.2) of edge e2, we compute the
JPDF f;(Dmin, Dmax) at the parent node n; using the following
two operations.

a) Propagation: Propagation computes JPDF
Jprop(Dmin, Dmax) of minimum and maximum delays of
signals from the parent node to all its successors. The JPDF
is propagated through edge between a child and the parent
node. JCDF Firop(Dmin p; Dmax,p) can be expressed as the
following integral:

Fprop (Dmin poax,p)
- fprop min S Dmin,p> Dmax S Dmax ,D

-/ [

Dmin,j+De<Dmin,p>Dmax,j +De <Dmax,p
'fe(De)dDmin,dimax,JdDe (11)

where f;(Dumin, Dmax) is the JPDF of minimum and maximum
delays at the child node and f.(D.) is PDF of the edge delay.
The JPDF fprop(Dmin; Dmax) can be computed by differenti-
ating this formula as shown in (7).

We compute the JPDFs using discretized functions. Each
of the JPDFs f;1(Dmin; Dmax) and fj2(Dumin, Dmax) com-
puted at a child node n;; and n;y is propagated to parent
node n; along the respective edges e; and e, to obtain the
JPDFs  fi1(Dmins Dmax) and  fio(Dmin, Dmax). For mnode
nj1 this is performed by enumeration of all possible triples
(Dmin,j1, Dmax,j1, De1) of minimum and maximum path de-
lays and edge delay, corresponding to JPDF f;1(Dimin, Diax)
at node n;; and the delay PDF f.1(D.1) of edge e;. Initially,
the JPDF fi1(Dpin, Dmax) at node n; is initialized with zero
for all combinations of Dy, Dmax. Then, for each enumerated
triplet, we compute the minimum and maximum path delay
at node n; by adding the edge delay to the path delay at node
UZ Dmin,il = Dmin,j1+Del and Dmax,il = Dmax,jl +De;.

From our assumption that all edge delays are independent
random variables, it follows that the edge delay random vari-
able D, is independent from random variables D i, and D .
at node n ;1. Therefore, the probability of occurrence of triplet
(Dmin,jh Dmax,jh Del) is

Pr{Dmin,j17 Dnlax,j17 Del}

= Pr{Dmin,thmax,jl} 'Pr{Del} (12)
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1. Initialize f;1(D,ips D pgy) to zero for all D,,;., D
2. For each Dy, jy from {0,1,2,.....j} {

3. For each Dmax,jlfrom {0,1,2,...k} {

4. Foreach D, from {0,1,2,...1} {
5. Dmin,il = Dminjl + Dy
6.
7.

max

Dmax,il = Dmax,/'l + D,y
JiDumins Dinax) = fitDppins D
fjl(Dmim D jax) *fel(Del)

max) +

8
9. }
10.}
Fig. 5. JPDF Propagation Algorithm.
which can be computed directly from the JPDF

fi1(Dmin, Dmax) and PDF f.1(D,1). The probability value
of the fi1(Dmin, Dmax) of the JPDF at node n; is then
incremented with the probability of the occurrence of the triplet
(Dmin, j15 Dmax,j1, De1). The same calculation is performed
for node njs to compute the JPDF f;2(Dyin, Dimax). The
computation is shown in pseudocode in Fig. 5. This can also be
represented as a discrete equation, as follows:

f’il( mm,jl + D917Dmax,11 + Del)

= Z Z Z Pr{Dmm,]h max,]l}
Dmin,j1=0 Dmax,j1=0 Dc1=0
-Pr{D.}. 13)
b) Merging: Using the two propagated JPDFs

fi1(Dmin, Dmax) and fi2(Dmin, Dimax ), we compute the JPDF
fz( mins max) at node Tog. The JCDF Fi(Dmin,ivaax,i)
can be expressed by the following integral. (See the equa-
tion at the bottom of the page.) JPDF f;(Dmin, Dmax) can
be obtained from the above formula by differentiating it
according to (7). We compute the JPDF using discretized
functions. This is performed by enumerating all possible
quadruplets (Dmin,ihDmax,i17Dmin,i27Dmax,i2> of min-
imum and maximum path delays to n; corresponding
fi1(Dmin, Dimax) and  fia(Dmin, Dmax). Again, we first
initialize the JPDF f;(Duin, Dmax) at node n; with zero
for all combinations of Dy, Dmax. For each quadru-
plet, we then compute the minimum and maximum path
delays at node n;: Dyyin min(Dyyiy i1, Dmini2) and
Diax,i = max(Dmax,i1; Dmax,i2). Since the two JPDFs at
node n;; and nj, are computed in a bottom up fashion, they
are completely determined by the delays of the subtrees rooted
at the nodes nj; and n;,. Since these two subtrees are by
definition disjoint, (meaning they do not share any edges) it
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1. Initialize f(D,ins D yay) to zero for all D, D,
2. For each D,y ;1 from {0,1,2,....j} {
3. For each Dy i1 from {0,1,2,...k} {

4. Foreach D,y i from {0,1,2,....1} {

5. Foreach D,,4y i3 from {0,1,2,...m} {

6. Dmin,i =min (Dmin,il’ Dmin,iZ)

6. Dmax,i =max (Dmax,ib Dmax,il)

7. S Duins Dinax) = fiDomins Dax) +
Ji1Dmins Dyax) * Ji2Drmins Dimax)

8

9.}

10. }

11.}

Fig. 6. Algorithm for Merging JPDFs.

is clear that the random variables D.,;,, and Dy,ax at nj; are
independent with respect to random variables D, and D, ax
at njo. Also, the two edge delays D.; and D, are independent
random variables. Therefore, the probability of occurrence of
quadruplet (Dmin,ib Dmax,il; Dmin,i2~, Dmax,iZ) is

Pr{Dmin,ilp Dmax,il ’ Dmin,i27 Dmax,iZ}

= Pr{Dmin,ih Dmax,il} : Pr{Dmin,i27 Dmax,iZ} (14)
which can be obtained directly from the JPDF
fi1(Dmin, Dimax) and JPDF fio(Dmin, Dmax)- The value of

the JPDF f;(Dmin, Dmax) at node n; is then incremented
with the probability of the occurrence of quadruplet
(Dmin,ih Dmax,ih Dmin,i27 Dmax,iZ)- The Computation is
shown in pseudocode in Fig. 6. This can also be represented as
a discrete equation as follows:

fi ( min(Dmin,ih Dmin,i2)7 maX(Dmax,ih Dmax,iQ))

J k l m
Dinin,i1=0 Dmax,i1=0 Dmin,i2=0 Dpmax,i2=0
Pr{Dmin,il: Dmax,il} . Pr{Dmin,i27 Dmax,i2}~ (15)

Note that if node n; has more than two children, the merging
procedure is iteratively repeated, each time merging a propa-
gated JPDF from a new child node with the JPDF resulting from
the merging operation of already processed children.

By repeating the propagation and merging operations in a hi-
erarchical fashion during a bottom-up traversal of the PTT, the
JPDFs of Dy, and Dy, are computed for all nodes in the tree.
The complexity of the algorithm is linear with the number of
edges in the clock tree, since each edge in the tree requires ex-
actly one propagation and merge operation. In terms of the dis-

mm KX max,i) = fi(Dmin S Dmin,i-, Dmax S Dmax,’i)
// / /fil(Dmin7Dmax)
min(Dmin,i1;Dmin,i2) <Dmin,Max(Dmax,i1;Dmax,i2) < Dmax '

X f'i?(Dmin;

Dmax)dDmin,il dDmax,il dDmin,i,Z dDmax,iQ
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cretization, the complexity of the analysis is O(n?) for the prop-
agation operation and O(n*) for the merging operation, where 7
is the number of discretizations of the edge delay PDF in each
of the two dimensions of the JPDF. Since the merging opera-
tion has the highest computational complexity in terms of the
number of discretization, we propose a more efficient method
for merging two JPDFs in Section IV, which reduces the com-
plexity of the merging operation to O(n?).

It is important to note that the size of n increases as we
propagate JPDFs up the tree. Therefore, the JPDFs must be
pruned as they are propagated. However, in our benchmark
testing presented in Section IV, it was not necessary to perform
pruning, as the clock trees in consideration had a small number
of levels of logic. Also, the efficiency of the algorithm can be
improved by exploiting the fact that all the arrays of JPDFs
have nonzero values only above their diagonals. This allows
reduction in memory consumption by a factor of two. The
constant of proportionality for the runtime complexity is
reduced by a factor of two for the propagation procedure and
by a factor of four for the merging procedure.

Also, the merging operation is simplified for nodes
in the tree whose children are leaf nodes. The JPDF
fi1(Dmin, Dmax) propagated from a leaf node is equal to
the edge-delay probability f.1(De1) of the leaf edge for
values Dyin = Dmax = De1, and is zero for all values
Dmin # Dmax. This allows the enumeration for the merge
operation to be simplified from enumerating quadruplets to
enumerating triplets (D1, Diin,i2, Dmax,i2) if child node n
is a leaf node, or enumerating only pairs (De1, D.2) if both
children of n; are leaf nodes. The complexity of merging,
therefore, reduces to O(n?) or O(n?) for processing leaf nodes
of the PTT. In practice, most nodes of a clock tree are leaf
nodes, which improves the runtime of the algorithm.

2) Efficient Merging Procedure: Since the merge operation
has the highest complexity in terms of the number of discretiza-
tions, we introduce a new procedure based on precomputation
of JCDFs and marginal JCDFs to improve the computational
complexity.

We consider the computation of JPDF f;(Dmin, Dmax)
at node n; by merging two JPDFs fi1(Dmin, Dmax)
and  fi2(Dmin, Dmax). From the merging procedure pre-
sented in the previous section, it follows that for each
possible quadruplet of minimum/maximum path lengths
(Dmin,i1, Dmax,i1; Dimin,i2, Dmax,i2) the resulting path delay
values D, and D, .« at n; are as follows:

(16)
a7

Dmin = mln(Dmin,ﬂ; Dmin,iZ)

Dmax = maX(Dmax,ih Dmax,iZ)-

From thiS, it follows that Drnin S Dmin,i17 Dmin S Dmin,iZ
and Similal‘ly that Dmax 2 Dmax,i17Dmax 2 Dmax,i2~
In addition, we have the following inequalities: Dy, <
Dmax; Dmin,il S Dmax,ih Dmin,iZ S Dmax,iZ' From
(16) and (17), it is clear that either Dy = Dmin,1 OF
Dmin = Dmin,iZ and Dmax = Dmax,il or Dmax = Dmax,i?~
Also, we consider that Dyin = Dmini2 if Dmini1 = Dumin,i2
and SimilarIYs Dpax = Dmax,iZ if Dmax,il = Dmax,i2~
The resulting JPDF  f;(Dyin, Dimax) can be computed by
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considering the following four mutually exclusive cases for
Din,i1, Dmax,i1s Dmin,i2, Dmax,i2, and their probabilities:

case I : Dyiy = Diinin
Dmax = Dmax,il

Dnin < Diiingi2 < Dmax,i2 < Dmax (18)
P1 = fi1(Dwmin; Diax)
- fi2(Dmin < Dumin,i2; Dmax,i2 < Dmax) (19)
case I : Din = Dmin,i1
Dnax = Dmax,i2
Diax,i1 < Dmax
Dpin < Diini2 (20)
= fi1(Dmins Dmax,i1 < Dmax)
- fi2(Dmin < Dmin,i2: Dmax) 2n

case III : Dyin = Dpin,i2

Dyax = Dax,i2

Dnin < Diingi1 < Dmax,it < Dmax (22)
P3 = fi1(Dwmin < Dmin,i1 < Diax) - fi2(Dmin, Dmax)

(23)

case IV : Dpin = Din i2

Dax = Dumax,i1

Diax,i2 < Dmax

Diin < Dinjin
(24)

P4 = fi1(Dmin < Dmin,i1, Dmax)
- fi2(Dmin, Dmax,i2 < Dmax)- (25)

Based on the four mutually exclusive cases identified above, we
can obtain the following expression for JPDF f;(Dyin, Dimax )

Ji(Dmin, Dmax) =
= fir(Duin,
- fi2(Dmin < Dmin,i2; Dmax,i2 < Dmax)
+ fi1(Dmin, Dmax,it < Dmax)
- fi2(Dmin < Dmin,i2: Dmax)
+ fi1(Dmin < Dmin.i1; Dmax,it < Dimax)
- fi2(Dxmins
+ fi1(Dmin < Dmin,i1s Dmax)
- fi2(Dmin, Dmax,i2 < Dmax)

P+P,+Ps+ Py

max)

max)

(26)

where each term corresponds to each of the cases I-IV in
(18)—(24). Each of the nontrivial probability expressions in the
first two terms of (26) can be expressed with the following
summations over the discretized JPDFs, with a discretization
unit of Ag:

fiQ(Dmin < Dmin,iZ; Dmax,’i? < Dmax)
(Dmax—Agq)/Aq 0o
Dmax,i2,k=0 Dpin,i2,k =(Dmin+2Aq)/Aq
fi2(Dmin,iz.k - Da, D

max,i2,k * Ad) 27
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sz(Dmm Dmin, i2 Dmax, i2 < Dmax) FIZ max(Dmax Ad) FiZ(Dmin’ Dmax - Ad)
A
Dmax,iZ B T Dmath B e
fZ(]jmm*Dmax) : fZ(]jmm*Dmax)'
Dmax"-"'_ - —— mec"' B
- - ' - - -
- l - -
(a) Dmin Dmin, i2 mm Dmin, i2 Dmin Dmin, i2
fil(Dmin’ Dmax,il SDmax) tl(Dmm’ ax) Fil(Dmin_Ad’ Dmax)
A
Pmastl - oroepoere e T
fl (nmmﬂDmax) : E f;l (]jrr;tr;;sz;x). : :
a7 '_|_'T__l__'| _é’:__?'_’
' ;
o
1 1 ' ' ; i 1 ' ' :
(b) Dyin,i1 Doin Dinin,i1 Dinin Dipin,it
fIZ(Dmm Dmin, i2’ Dmax) (FzZ max(Dmax) FzZ(szn’ max)) (FIZ max(DmaJc Aa') FIZ(Dmm’ max ~ Ad))
A
Dmax,iZ ------------------
f Z(DmmﬂDmax) ‘
- - - f———
(C) Dmin,iZ
Fig. 7. JPDF computation using JCDFs and marginal CDFs (a) (30), (b) (31), (c) (32).
. 1. Initialize f(s) to zero for all s
1 1<D
fi ( min /Zix’l max) 2. For each D,,;, from {0,1,2,....j} {
3. Foreach D,,,, from {0,1,2,...k} {
= Z le( min» max,il,k . Ad) (28) 6 =D mal.)v
D L =0 - 5 =Pmax = Pmin
R 7. J©)= f9) + f[i{Dpins Diax)
fiZ(Dmin < Dmin,i?aDmax) 8 )
oo
9.}
= Z fiQ(Dmin,iQ,k . AdaDmax)
Din,i2,k =(Dmin+A)/Aq Fig. 8. Skew computation algorithm.
(29)

with similar expressions for the nontrivial probability terms in
the last two terms of (26). Note that since the expressions neces-
sary to compute (26) involve at most double summations, (26)
can be computed with O(n?) computational complexity, where
n is the number of discretizations of the JPDFs f;; and f;o.
However, the computation can be further improved in efficiency
by precomputing the following probability functions:

1) The JCDFs F};; and F;5, where

Fil(Dmina Dmax)

= fil(tmin S Dminytmax S Dmax)
Dmin/Ad Dmax/Aa

Z Z fi1 (tminyk - Ads tmax,k - Ag)  (30)

tmin, k=0 tmax k=0

and Fjs is expressed similarly.

2) The marginal PDFs fil,miru fil,ma)n fi2,min’ and fi?,max’
where

Z Ji1(Dmin; tmax,k - Aa)

tmax,k =0

fil,min(Dmin) (31)

and fi1 max, fi2,min»> and f;2 max computed similarly.

3) The marginal CDFs  Fji min, Fi1,max, Fi2,min, and
Fi2 max Where
fil,min(Dmin) = fil,min(tmin S Dmin)
Duin/Ad
= Z fil,min(tmin,k ) Ad) (32)
tmin, k=0

and F1 max, F2,min, and Fi2 max can be computed simi-
larly.
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TABLE 1
RESULTS OF OUR ALGORITHM AND MONTE CARLO
Circuit Monte Carlo Our Algorithm % error run time (s)
tree | #sink # avg# | max# | mean 99% pt. mean 99% pt. mean | 99% pt. Our Efficient | Imprv.
no. | nodes |levels | fanouts |fanouts (ps) (ps) (ps) (ps) (ps) (ps) | Approach| Method | factor
T1 16 6 14 2 35.98 59.69 35.91 59.47 -0.194 | -0.368 5 I 5
T2 120 7 1.7 6 57.59 81.02 57.47 79.99 -0.208 | -1.250 18 3 6
T3 1200 5 1.9 50 61.64 78.22 61.61 78.07 -0.048 | -0.191 20 4 5
T4 2400 5 1.9 100 63.43 78.91 63.24 78.72 -0.315 | -0.240 42 7 6
T5 4800 5 1.9 200 66.98 82.98 66.75 82.69 -0.343 | -0.349 80 14 5.7
T6 6000 5 2 250 66.47 83.07 66.33 81.63 -0.210 | -1.733 90 18 5
T7 | 12000 5 2 500 69.90 85.38 69.46 84.40 -0.629 | -1.140 180 30

We can now express fio(Dmin < Dmin,i2; Dmax,i2 < Dmax)
in (27) in terms of JCDF Fj, and marginal CDF Fj3 1. as il-
lustrated in Fig. 7 as follows:

.f’iZ(Dmin < Dmin,i27 Dmax,i2 < Dmax)

= i2,max(Dmax - Ad) - Fz (Dmin; Dmax - Ad) (33)
Also, (28) and (29) can be computed as follows:
fil(Dmin7 Dmax,il S Dmax)
= il(Dmin7 Dmax) - Fi (Dmin - Adv Dmax) (34)

f’iZ(Drnin < Dmin,i27 Dmax)
= (FiQ,max(Dmax) - Fi (Dmin-, Dmax))

- (FiQ,max<Dmax - Ad) - Fz (Dmin7Dmax - A))

(35)

where the other summations necessary to compute (26) can be
expressed similarly.

Hence, we precompute JCDFs and marginal CDFs from the
JPDF fi1(Dmin, Dmax) and fi2(Dumin, Dmax) once, and then
compute all terms in (26) directly from these JCDFs and mar-
ginal CDFs avoiding repeated numerical summation and im-
proving the computational efficiency. By following the above
method, the computational complexity of the merging operation
is reduced to O(n?), where n is the number of discretizations of
the JPDFs f;; and f;>. However, the computational complexity
of propagation remains O(n?), and hence the overall compu-
tational complexity in terms of the number of discretizations is
reduced from O(n*) to O(n?). The runtime complexity in terms
of the number of edges in the PTT remains linear.

3) Computing the Skew-Probability Distribution: Once
the JPDF of D, and Dy .y is computed at the root node
of the PTT, it can be used for computing the probability
distribution of clock skew. We simply enumerate all possible
pairs (Duin, Dimax) of the JPDF and for each pair compute
the associated skew s = Dax — Dmin. We then update the
probability of occurrence of this skew with the probability of
occurrence of the pair (Dpin, Dmax)- The algorithm is shown
in pseudocode in Fig. 8. The complexity of the algorithm is
O(n?) where n is the number of discretizations.

Since a JPDF of D,;,, and D,,,.., is obtained for all nodes in
the PTT during the bottom-up traversal, it is possible to compute
the skew distribution for individual subtrees in the PTT with

minimal runtime overhead. This allows the designer to compare
the variability of different parts of a clock tree, which can be
helpful to determine which parts are most prone to process vari-
ations. The proposed algorithms, therefore, provide not only a
way for predicting the expected clock skew in manufactured die,
but also a means to guide the designer in improving the robust-
ness of the clock tree to process variations.

IV. EXPERIMENTAL RESULTS

The proposed method for statistical clock-skew computa-
tion was implemented and tested on a number of clock-tree
benchmark circuits, including a large industrial clock tree from
an industrial high-performance microprocessor in 130-nm
technology. The other clock-tree benchmark circuits were syn-
thesized with varying numbers of levels and sinks to examine
the operation of the algorithm under different configurations.
Gate-delay PDFs with standard deviation of 10%-15% of
the mean delay were used. Gaussian distributions truncated
at their 30 points were used for the PDFs. The number of
discretizations to represent the delay PDFs was ten for the
performed experiments. We also implemented Monte Carlo
simulation to obtain the skew distribution for comparison with
our proposed method.

The results for the proposed algorithm and Monte Carlo sim-
ulation are shown in Table I. Columns 2 and 3 show the number
of sink nodes and the number logic levels for the tree, respec-
tively. Columns 4 and 5 show the average and maximum number
of fanouts for the tree. The industrial test case is circuit T7 with
12 000 sink nodes and a maximum fanout of 500. Columns 6
and 7 show the mean and 99% confidence point of the computed
skew using Monte Carlo simulations and columns 8 and 9 show
these values using our proposed algorithm. The 99% confidence
point is the skew value corresponding to the 99% yield point on
the CDF of clock skew, and signifies the maximum skew for the
best 99% of the manufactured dies. Columns 10 and 11 show the
percent error for the mean and 99% confidence points obtained
by our approach and Monte Carlo simulation. Approximately
10 000 simulations were used to achieve a good accuracy with
Monte Carlo simulation at the 99% confidence point. The max-
imum error is negligible, demonstrating the correctness of the
proposed approach. In column 12, the runtime in seconds for
our algorithm is shown, which includes parsing the benchmarks,
generating PDFs for the edge delays, bottom up propagation of
JPDFs and skew computation. Column 13 shows the improved
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Fig. 9. PDF of skew for clock tree T7.
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Fig. 10. JPDF of D, and D,y for clock tree T7.

runtime using our efficient merging procedure, and column 14
shows the improvement factor. Fig. 9 shows a plot of the skew
PDF, while Fig. 10 shows a three-dimensional representation of
the JPDF of D ,;, and D, . at the root of clock tree of T7. We
also performed Monte Carlo simulations for the same amount of
time as our algorithm, to see how accurate Monte Carlo results
are as compared to our approach. For the industrial test-case
clock tree T7, the mean of the skew PDF obtained by Monte
Carlo had a small error of 0.5%, although the 99% confidence
point had an error of 4.7%. The errors were computed with ref-
erence to Monte Carlo simulation results which were allowed to
converge, requiring 10 000 simulations typically. This confirms
the usefulness of our approach as compared to Monte Carlo sim-
ulation.

In Table II, we show a comparison between our algorithm,
worst-case skew analysis and traditional case analysis. In
worst-case skew analysis, a deterministic delay is assigned to

140

Dskew

D min

each gate within its £90% or £99% confidence point range.
The delay of each gate is independently chosen from this range,
such that the total skew of the clock tree is maximized. The
results shown in columns 3 and 8 demonstrate that worst-case
skew analysis can significantly overestimate the likelihood
of skew, with overestimates ranging from 5% to over 100%.
In traditional case analysis, we again perform a deterministic
analysis but this time we use case-files and all gates are set at
their 90% or 99% delay values. The results shown in columns
5 and 10 demonstrate that traditional case analysis is highly
optimistic since it ignores the mismatch between drivers due
to intradie-process variations.

V. CONCLUSION

In conclusion, we have presented a method for modeling the
effects of process variations on clock skew. We have shown
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TABLE II
RESULTS OF OUR ALGORITHM, WORST-CASE AND TRADITIONAL CASE ANALYSIS

Ckt Analysis for 90% confidence point (ps) Analysis for 99% confidence point (ps)

tree 1o OL.ll' Worst—Case. %error Traditiona% %error Ol..lr Worst—Case %error Traditiona? %error

algorithm | skew analysis case analysis algorithm |skew analysis case analysis
TI 46.38 105 126.39 1.604 -96.54 59.47 130 118.59 5.108 -91.41
T2 67.74 130 91.91 2.470 -96.35 79.99 160 100.02 8.106 -89.86
T3 68.67 85 23.78 1.733 -97.47 78.07 100 28.09 5.769 -92.61
T4 69.58 75 7.78 1.668 -97.60 78.72 100 27.03 5.382 -93.16
T5 73.59 85 15.50 1.634 -97.77 82.69 100 20.93 5.407 -93.46
T6 73.01 80 9.57 1.615 -97.78 81.63 100 22.50 5.565 -93.18
T7 75.72 80 5.65 1.619 -97.86 84.40 95 12.55 5.034 -94.03
how the distribution of the clock skew can be efficiently ob- [14] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu, “Impact of

tained from the JPDF of minimum and maximum clock-tree
delay. We proposed an algorithm which is linear with circuit
size, and demonstrated efficiency of the algorithm. We veri-
fied the correctness of our algorithm by comparing with Monte
Carlo simulations. We also compared our statistical approach
with worst-case skew analysis and traditional case analysis and
demonstrated the importance of statistical analysis of clock-tree
skew.
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