
1784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2005

Probability Distribution of Signal Arrival Times
Using Bayesian Networks

Sarvesh Bhardwaj, Student Member, IEEE, Sarma Vrudhula, Senior Member, IEEE, and
David Blaauw, Member, IEEE

Abstract—This paper presents a new method based on Bayesian
networks (BNs) for computing the exact probability distribution of
the delay of a circuit. The method is based on BNs, which allows
an efficient means to factor the joint probability distributions over
variables in a circuit graph. The space complexity of the method
presented here is O(m|C |), where m is the number of distinct
values taken by each delay variable and |C| is the number of
variables in the largest clique. The maximum clique size present
in a BN is shown to be much smaller than the circuit size. For
large circuits, where it is not practically feasible to compute the
exact distribution, methods to reduce the problem size and get a
lower bound on the exact distribution are presented. Comparison
of the results with Monte Carlo simulations shows that we can
reduce the size of the circuit by as much as 89% while maintaining
the maximum difference between the predicted and simulated 3σ
values to be less than 3%.

Index Terms—Bayesian networks, probability, process varia-
tions, timing, yield estimation.

I. INTRODUCTION

A S COMPLIMENTARY metal–oxide–semiconductor
(CMOS) technology continues to move further into the

nanometer regime, even the slightest of variations in parameters
such as gate length, dopant concentrations, and oxide thickness
can result in significant variations in the performance of a
device. The conventional methodology to model the effect of
variations is to determine the circuit performance assuming for
each gate the worst possible value of its delay. This can lead
to very pessimistic designs. Hence, compared to the traditional
deterministic approach to analyze circuit behavior (both logical
and temporal), probabilistic methods based on stochastic
models are more appropriate [1]. An excellent discussion of
the sources of uncertainty and the need for stochastic models
appears in [2].

Probabilistic timing analysis (PTA) is an approach to per-
forming timing analysis where the delays of gates and/or in-
terconnect are random variables. In this view, the delay of a
circuit is also a random variable, but one that is a very complex
function of the gate and interconnect delay random variables.
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The central problem in PTA is determining the probability
distribution of the circuit delay.

A difficulty that arises in PTA is that it involves maxima and
sums of a large number of dependent random variables. If M is
a random variable that denotes the arrival time at the circuit out-
put, the solution proposed in [3] is to construct the probability
distribution of a new random variable M ∗ such that the expected
tardiness of M ∗ at time t (E[(M ∗ − t)]) is always larger than
the expected tardiness of M at time t for all t. This requires
solving a constrained nonlinear programming problem of very
high dimensionality and can be computationally prohibitive for
modern circuits.

The method proposed in [4] is to reduce the complexity of
the underlying problem by obtaining symbolic expressions for
the delays of the circuit. Another path-based approach has been
presented in [5] that starts with a set of critical nodes based on
static timing analysis. Both of the above approaches perform
Monte Carlo simulations after initial pruning and can take care
of false paths. However, the number of paths in a circuit can
increase significantly with the circuit size, resulting in high
complexity.

The approach taken in [6] is to propagate discrete prob-
ability distribution functions (pdfs) through the graph, with
numerical convolution and multiplication being performed at
each step. In the presence of reconvergent paths, random var-
iables are replaced by stochastically larger (s.l.) ones to ob-
tain upper bounds on the pdf. The method described in [7]
computes the probability distribution of the circuit delay from
the joint distribution of the parametric variations by an effi-
cient scheme that performs the integration over the feasible
region.

The complexity of computing the exact probability distribu-
tion of the delay of a circuit has been stated to be exponential
either in the number of paths [8] or in the circuit size [6]
because of the presence of reconvergent fan-outs. Even so, exact
methods are still of interest as they can be applied to reduced
circuits and lead to provably good upper or lower bounds.

Another form of correlation between the arrival times occurs
because of the spatial correlations between the underlying
sources of variation such as the length of the gate, its threshold
voltage, etc. Various approaches that take into account this kind
of correlation have been proposed in [9] and [10].

In this paper, we present a different approach for comput-
ing the exact probability distribution (over the quantization
errors introduced in converting a continuous distribution to a
discrete distribution) of the circuit delay in the presence of
path reconvergence. The approach is based on representing the
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Fig. 1. Modeling of the circuit as a DAG.

circuit as a Bayesian network (BN) [11]. While the theoretical
complexity of this approach is still exponential, unlike other
exact methods, it is exponential in the maximum clique size of
a graph derived from the circuit, and this maximum clique size
grows much slower than the circuit size. In the cases where it
is not possible to compute the exact distribution, we present
several transformations for reducing the size of the circuit and
show that this leads to good bounds on the pdf. Note that in
our formulation, gate delays are assumed to be independent
random variables but path delays are not. In [8], it is shown that
the circuit delay in the absence of spatial correlations between
the gate delays is a lower bound to the delay in the presence
of correlations. Thus, treating the gate delays as independent
random variables is conservative. BNs have been used earlier in
the circuit analysis to efficiently compute the switching activity
of the signals [11]. This paper gives a detailed description of
the concepts introduced in [12] and provides detailed results to
emphasize the importance of circuit transformations to reduce
the problem size.

The organization of rest of the paper is as follows. Section II
contains the formulation of PTA. Section III gives a brief
introduction to BNs and how they are used in our analysis.
Section IV presents several transformations for reducing the
size of the problem. Section V shows how wire delays can be
included without increasing the number of nodes in the circuit.
Finally, the experimental results and the conclusions are given
in Sections VI and VII, respectively.

II. PROBLEM FORMULATION

A logic level netlist (e.g., Fig. 1) C is represented as a
directed acyclic graph (DAG) G = (N,E), where the nodes of
G correspond to the gates or equivalently gate outputs in C,
and an edge represents a connection between the corresponding
gates in C. Associated with each node in G are two random
variables: Xi, which represents the arrival time of the output
signal at that gate, and Di, which represents the delay of the
gate. Fig. 1 shows the modeling of a circuit in the form of
a DAG. It should be noted that in practice the gate delays
are continuous variables. Hence, the gate delays need to be
discretized over their respective ranges. Thus, each node X
has a minimum delay dXmin and a maximum delay dXmax

associated with it and the delay random variable has a discrete
distribution over this range.

Let X be the arrival time of a node in G with delay D
and inputs from nodes having arrival times as X1,X2, . . . , Xk.

Then

X = max{X1,X2, . . . , Xk} + D. (1)

The objective here is to compute the pdf of the arrival times
of the primary outputs O1, O2, . . . , Om. This representation
of a combinational circuit in the form of a DAG is similar
to the representation in [11], the only difference being that
the variables in this case represent the signal arrival times in-
stead of switching activity. This work computes the distribution
of the signal arrival times under the max delay model (1);
hence, it is suitable for analyzing the setup time violations.
For the hold time violations, a min delay model can be used
and results similar to the ones outlined in this work can be
derived.

The distribution of the arrival times of any node X in the
circuit is given in terms of the arrival times at its fan-ins
(X1,X2, . . . , Xk). The delay D of the gate is independent of
the arrival times of the fan-ins, but because of the presence
of reconvergent fan-ins, the arrival times of the fan-ins are
not independent. Hence, finding a closed form expression for
P (X ≤ t) is not possible. Traversing all the way back to
primary inputs will result in the arrival time at the circuit output
being represented in terms of the arrival times of all the gates
in the circuit. Thus, it seems that to compute the probability
distribution of the arrival times at the outputs will require
computing the joint pdf of the arrival times of all the nodes
in the circuit. The space required for such a computation will
be exponential in the circuit size. However, in the next section,
we show that through the use of BNs the computation of the
joint pdf is not necessary. There are other approaches that do
not compute the joint pdf of the arrival times of the nodes in
the circuit [6]. We will provide a comparison of our approach
with this approach with an example. Other approaches such
as propagating cutsets of the circuit from primary inputs to
primary outputs could also be used, but these approaches also
have very high computational complexity.

III. INTRODUCTION TO BNS

Definition 3.1 [13]: A BN is a set of variables and a set of
directed edges between the variables that form a DAG. Each
variable A can assume one of a finite set of states, and if
B1, B2, . . . , Bn are its parents, then we associate a conditional
probability distribution P (A/B1, B2, . . . , Bn) with A.

In [11], it was proved that the representation of the circuit in
the form of a DAG structure is a BN. This is true in the present
case as well. Each node in the BN corresponds to the random
variable representing the signal arrival time at that node. For
each node X , a probability distribution of the signal arrival
time at X can be defined conditioned on the arrival times at
the inputs of X .

Consider the DAG shown in Fig. 1. The brute force
approach for obtaining the pdf of X8 is to compute the
joint pdf of X1,X2, . . . , X8 as P (X1,X2, . . . , X8) and then
compute P (X8) as P (X8) =

∑
X1,...,X7

P (X1,X2, . . . , X8).
This approach requires storage of the joint pdf of all the
variables; hence, its space complexity is O(mn), where m is
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the number of distinct values taken by each variable and n is
the total number of variables in the DAG. However, there exists
an efficient method of computing the pdf of X8 by factoring the
joint distribution and performing efficient marginalization of
the factors. For example, P (X8) can be obtained by (2) shown
at the bottom of the page.

In (2), the summation over a variable Xi (or marginalizing
Xi), i = 1, . . . , 7, represents that the pdf is summed over all
the possible outcomes of Xi. As a result of marginalizing Xi,
the resulting distribution will not be a function of Xi. The order
of the marginalizations in (2) is (X3,X1,X2,X4,X5,X6,X7).
This requires the joint pdf of at most three variables to be
stored after every marginalization step. The method is based
on separating the nodes in the DAG into different subsets (also
known as cliques) such that the joint pdf of the nodes in a
subset C can be computed and the marginal pdf of any node
in C can be obtained from these joint distributions. To compute
these subsets, the DAG is first converted into a moral graph.
The moral graph is then triangulated. A secondary structure
(called clique tree [14]) T is constructed from this triangulated
graph and the conditional pdfs (CPDs) are assigned to the
cliques in T . These probabilities are then propagated within T
to obtain the pdf of the primary outputs.

Another method to compute the pdf of the arrival times at
the outputs by propagating the arrival time pdfs through the
circuit was proposed in [6]. The authors obtain the set of
dependence nodes (nodes that are a source of reconvergent
fan-outs) and then enumerate all the possible outcomes of the
arrival times over the set of these dependence nodes to compute
the pdf of the arrival times at the outputs. From Fig. 1, X2

is a dependent node. Hence, for each arrival time at X2, a
conditional probability distribution for X8 (conditioned on the
arrival time at X2) is computed. In the end, these different
CPDs are weighted by the probability of their respective arrival
times at X2 to compute the probability distribution of X8.
In comparison, the BN-based approach marginalizes out X2

much before the probability distributions of the arrival times
at X5 or X6 are computed.

A. Graph Moralization and Triangulation

Let PX be the parent set of a node X in a DAG. X is called
the child of every node in PX . For example, the parent set of
X8 in the DAG of Fig. 1 is {X7,X6}.
Definition 3.2: A moral graph of a DAG G is an undirected

graph with nodes and edges of G such that all the nodes in
G having a common child are connected to each other. The
process of constructing a moral graph is called moralization.

Moralization is done by adding undirected edges between
the parents of each node in the DAG and removing the direc-

Fig. 2. Moralization of the DAG shown in Fig. 1.

tionality of all the edges in the DAG. Fig. 2 shows the graph
of Fig. 1 after moralization. Given the joint pdf of the parents
PX = {X1,X2, . . . , Xk} of any node X , the joint distribution
of X and PX can be determined using the Bayes theorem [15]

P (X,X1, . . . , Xk) = P (X/X1, . . . , Xk) P (X1, . . . , Xk).
(3)

Moralization ensures that for every node, there exists a set that
contains both the node and its parents.
Definition 3.3: A graph is called complete if there is an

edge between every pair of vertices in the graph. A clique is
a maximal complete subgraph.

Thus, for every node X in a moralized graph, there is at least
one clique containing X and its parents PX .

Definition 3.4 [16]: An undirected graph G = (V,E) is
said to be triangulated (or chordal) if every cycle of length
four or more has at least one chord, i.e., an edge joining two
nonconsecutive vertices along that cycle.

To obtain an efficient ordering for performing the marginal-
izations as shown in (2), a clique tree needs to be created from
the moral graph.
Definition 3.5: A clique tree T obtained from a graph G is

a tree whose vertices are the cliques of G, such that for any
vertex v of G, if we remove from T all cliques (vertices of T )
not containing v, the remaining subtree stays connected.
In other words, any two cliques containing v are either adjacent
in T or connected by a path made entirely of cliques that
contain v.

From Theorem 3.1, a clique tree exists for a graph only if
the graph is triangulated. Hence, the moral graph is triangulated
to remove any chordless cycle of length greater than 3.
Theorem 3.1 [16]: Let G be an undirected graph G =

(V,E). Then there exists a clique tree corresponding to G if
and only if G is triangulated.

The problem of obtaining an optimal triangulation to min-
imize the maximum clique size in a graph is NP-hard [13].
However, given a moral graph, Algorithm 1 [17] gives an

∑
X7,X6

P (X8/X7,X6)


 ∑

X5,X4

P (X7/X5,X4)P (X4)

(∑
X2

P (X2)

(∑
X1

P (X5/X2,X1)P (X1)

(∑
X3

P (X6/X3,X2)P (X3)

)))
(2)
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Fig. 3. Result of step 3 in Algorithm 1.

Fig. 4. Triangulated DAG.

efficient two-step algorithm for both testing the chordality of
a graph and triangulating it.

Algorithm 1: Graph triangulation algorithm

1) Input: a moralized graph.
2) Output: a triangulated graph.
3) (Maximum Cardinality Search) Compute an ordering for

the nodes: number vertices from 1 to |V|, in increasing
order, always assigning the next number to the vertex
having the largest set of previously numbered neighbors
(breaking ties arbitrarily).

4) From n = |V| to n = 1, recursively fill in edges between
any two nonadjacent parents of n, i.e., neighbors of n
having lower ranks than n (including neighbors linked
to n in previous steps). If no edges are added, the
graph is triangulated; otherwise, the new filled graph is
triangulated.

The complexity of maximum cardinality search (Step 3) in
Algorithm 1 is O(n + e), where n is the number of nodes and e
is the number of edges in the graph. Fig. 3 shows the graph with
its nodes numbered as a result of maximum cardinality search.
After obtaining the ordering of the nodes, the chords are added
to obtain the triangulated graph shown in Fig. 4.

From a triangulated graph, the cliques of the graph can
be obtained using Algorithm 2 [13] in O(n + e) time. The
subgraph on nodes X6, X7, and X8 in the triangulated DAG
in Fig. 4 forms a clique. Table I shows all the cliques of this
triangulated graph. Thus, the original circuit graph has now
been partitioned into different cliques so that the distribution of
a node X can be obtained by computing the joint distribution
of nodes in a clique C such that X ∈ C.

TABLE I
CLIQUES OF THE TRIANGULATED GRAPH SHOWN IN FIG. 4

Fig. 5. Clique tree of the moralized graph in Fig. 2.

Algorithm 2: Generating cliques from a triangulated graph
1) Input: a triangulated graph G(V,E).
2) Output: set of cliques {C1, C2, . . . , Ck} of G. Start with

the highest ranked vertex X in G, X and its neighbors
form a clique.

3) Remove X from the vertex set V = V \ X and remove
all the edges incident on X from E. Also, remove all the
nodes present only in the neighbor set of X .

4) If V = φ, then we have obtained all the cliques. Other-
wise go to step 3.

B. Clique Tree: A Secondary Structure

As a first step towards obtaining the joint pdf of the variables
in a clique, a clique tree (shown in Fig. 5) is constructed using
Algorithm 3 [13], [16], [18] from the triangulated graph. An
edge between two cliques represents that there exists at least
one common variable between the two cliques. The first step in
constructing a clique tree is to order the cliques according to the
rank of the highest vertex in each clique. From the method used
for obtaining the cliques (Algorithm 2), it can be seen that in
every step the highest ranked vertex X is removed along with a
clique containing X . Thus, the rank of the cliques obtained in
every step will be lower than the rank of the clique obtained in
the previous step. This guarantees that there are no two cliques
with the same rank. Table I shows the rank of the highest
ranked vertex in each clique. It can be seen that the order-
ing of the cliques in the increasing order of their ranks is
C1, C3, C5, C4, C2, C6. The cliques are now connected to
each other starting with C6. Since the next clique is lower in
order than C6 and sharing maximum number of variables with
it is C5, they are joined. Now C2, which is the next clique in
order, is joined with C3, which is lower in order and shares the
maximum number of variables with C2. The edges are added in
this manner until all the cliques have been processed to obtain
the clique tree shown in Fig. 5.

Algorithm 3: Assembling a clique tree
1) Input: a moralized graph G.
2) Output: a clique tree for G.
3) Triangulate the graph G using Algorithm 1 to generate a

chordal graph G′ (if G is chordal, G′ = G).
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TABLE II
ASSIGNMENT OF PROBABILITY DISTRIBUTIONS TO THE CLIQUES

4) Identify all cliques in G′ using Algorithm 2. Let the
number of cliques be k. Since any vertex and its parent
set (lower ranked nodes connected to it) form a clique in
G′, the maximum number of cliques can be |V|.

5) Order the cliques C1, C2, . . . , Ck by rank of the highest
vertex in each clique in ascending order.

6) Starting with Ck, form the clique tree by connecting
each Ci to a predecessor Cj (j < i) sharing the highest
number of vertices with Ci.

C. Assigning Probabilities to Cliques

Once the clique tree is constructed, the CPDs/marginal pdfs
of every variable X need to be assigned to a clique containing
X . Algorithm 4 [14] shows the steps involved in doing this.
The input to the algorithm is the set of marginal probability
functions associated with the primary inputs and the conditional
probability functions of each child conditioned on its parents.
If n is the number of nodes in the BN, there are n probability
functions (both conditional and marginal). Also, the maximum
number of cliques in a graph can be n. Hence, the complexity of
assigning the probabilities is O(n2), where n is the number of
nodes in the graph. Table II shows the cliques and the pdfs as-
signed to them. If after assigning all the pdfs there exist cliques
to which no pdf has been assigned, such cliques are assigned 1
to indicate that no pdf has been assigned to that clique.

Algorithm 4: Probability assignment to cliques

1) Input: set of probability functions P = {P1, . . . , Pn}.
2) Output: set of cliques C = {C1, . . . , Ck}.
3) Starting with P1, assign Pi to a clique Cj such that Cj

contains all the variables over which Pi is defined (or the
domain of Pi), breaking ties arbitrarily.

4) To every clique Cj ∈ C that does not have any Pi assigned
to it, assign 1.

D. Propagation in a Clique Tree

To obtain the marginal pdf of the arrival times at a primary
output Ok of a circuit, the joint pdfs of the variables in a clique
C need to be computed such that Ok ∈ C. The clique C is made
the root of the clique tree. The leaf nodes of this rooted clique
tree contain at least one variable corresponding to the primary
inputs. For example, in the clique tree shown in Fig. 5, C6 is the
root and C1, C2, and C4 are the leaves. It can be seen that every
leaf node contains at least one primary input. The joint pdf of
the variables in the root clique is computed by propagating the
pdfs of the variables in the leaf nodes to the root.

The joint pdf of the variables for each of the leaf nodes
(cliques) in the clique tree is calculated by multiplying the

pdfs assigned to that clique. For example, the joint pdf of the
variables in C1 is given by

P (X1,X2,X5) = P (X5/X1,X2)P (X1)P (X2). (4)

Equation (4) is valid under the assumption that the arrival times
at the primary inputs are independent of each other. Similarly,
the pdf of the variables in C2 can also be obtained.

A clique CY is a child of clique CX if CY is adjacent to
CX and CX lies on the path from CY to the root of the clique
tree. Once the pdfs of all the variables in every child clique
(CXi) of a clique CX have been computed, they are propagated
from the child cliques to the parent clique. However, some of
the variables can be marginalized from the joint pdf of the
child clique CY before propagating it to the parent clique CX .
From Theorem 3.1, if a variable A is present in a child clique
CY and is not in the domain of its parent CX , then A will
not be present in any clique on the path from CX to the root
clique of the tree. Hence, A can be marginalized from the
joint pdf of the variables in CY before propagating it to CX .
For example, while propagating the pdf from C1 to C3, the
joint pdf of X1, X2, and X5 can be summed over X1 since
{X1,X2,X5} \ {X2,X5,X6} = {X1}.

The pdf of the variables in a parent clique CX can then be
computed by multiplying the pdfs incident on CX and the ones
assigned to CX . Thus, the distribution of the variables in C3 is
obtained as

P (X6,X5,X2) =

(∑
X1

φC1

) (∑
X3

φC2

)
(1)

= P (X6/X2)P (X5,X2) (5)

where φC1 is P (X5,X2,X1) and φC2 is P (X6,X3/X2).
Equation (5) is obtained from the independence of the random
variables X5 and X6 given X2. This shows that the pdf of
the variables in C3 can be obtained from that of C2 and C1.
Fig. 5 shows how all the pdfs are propagated in the clique
tree. Following the same procedure, the joint distribution of
the variables in C6 is computed from which the marginal
distribution of X8 can be computed.

E. More on Complexity

1) Space Complexity: The space complexity of the entire
procedure is O(m|C|), where |C| is the number of variables in
the largest clique and m is the maximum number of distinct
values taken by a variable. The maximum clique size present
in a BN is dependent on the amount of reconvergence in the
network as well as the maximum fan-in in the circuit. Since
the maximum fan-in in a circuit is bounded (typically 10–15),
in practice the clique sizes will be much smaller than the
circuit size.

Algorithm 1 is an efficient heuristic for triangulation to pro-
duce small clique sizes. The fourth column in Table III shows
the maximum clique sizes for the International Symposium
on Circuits and Systems (ISCAS) benchmark circuits. This
confirms the assumption that the clique size grows much slower
than the circuit size. Thus, BNs are efficient tools for computing
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TABLE III
MAXIMUM CLIQUE SIZE IN BENCHMARK CIRCUITS

the pdf of any variable in the network. As is evident from this
example, the complexity is directly related to the maximum
clique size of the DAG.

The dependence of the maximum clique size on the amount
of reconvergence and the density of the DAG can be seen from
Fig. 6. The DAGs GA and GB in Fig. 6 have the longest cycle
of length 7. However, GB has more number of nodes with
reconvergent fan-ins. From their corresponding triangulated
graphs, it can be seen that the maximum clique size for the
triangulated graph of GB is larger than the triangulated graph
of GA. Hence, the complexity of analyzing GB is higher when
compared to GA.

If there are k levels in the DAG, and each gate can take
n distinct delay values, then the number of distinct arrival
times at a primary output will be m = n · k. Hence, increasing
the resolution of the gate delay increases the complexity of
computing the pdf of the circuit delay.
2) Time Complexity: The time complexity of generating a

clique tree T from a DAG G and assigning the probability
distributions to the cliques in T is O(n2), where n is the number
of nodes in G. Computation of the joint pdf of the variables in
a clique C is equivalent to obtaining a k-dimensional matrix
(where k is the number of variables in C). Every element of this
k-dimensional matrix is equal to the product of the elements of
l matrices, where l is the number of neighbors of C. Thus, the
complexity of obtaining this k-dimensional matrix is O(l · mk).
The complexity of obtaining the marginal distribution of a
variable from the joint pdf of k variables is O(mk). Hence, the
time complexity of the entire procedure is O(n · l · m|C|), as
there can be at most n cliques.

For this work, the BN Toolbox for MATLAB reported in
[19] was used. To specify the BN, the CPDs P (X/Xj ,
Xj+1, . . . , Xk) for each of the nodes (X) in the circuit are
constructed as

P (X/Xj , . . . , Xk) =
∑

d

P (X,D = d/Xj , . . . , Xk)

=
∑

d

P (X/Xj , . . . , Xk,D)P (D = d).

(6)

Now, P (X/Xj ,Xj+1, . . . , Xk,D) is either 0 or 1 for a particu-
lar combination of X,Xj , . . . , Xk and D. Since the distribution

Fig. 6. Dependence of the maximum clique size on the amount of reconver-
gence and density of a DAG. (a) Original DAG GA. (b) Original DAG GB .
(c) Triangulated graph obtained from GA. (d) Triangulated graph obtained
from GB .

Fig. 7. Reducing the maximum fan-in in the DAG.

of the delay can be assumed to be given, the CPDs for each of
the variables can be specified to perform the analysis.

IV. GRAPH TRANSFORMATIONS

The complexity of constructing the exact pdf of the circuit
delay can be reduced either by implementing efficient trian-
gulation algorithms or by devising new methods to reduce
the circuit size. The former will result in only an incremental
improvement in speed, whereas reducing the circuit size will
lead to tight lower bounds on the pdf of the delay. In this
section, we present a set of transformations that can be used to
reduce the complexity of obtaining the pdf of the signal arrival
times. The size for storing the CPDs is reduced by performing
the reduce fan-in transformation so that the maximum fan-in
in the reduced DAG is 2. The next two transformations,
switching window reduction (SWR) and inputs reduction, help
in eliminating nodes that do not contribute to the critical delay
of the circuit. Finally, series reduction transformation is used to
combine nodes satisfying a particular topology. We also prove
the correctness of these transformations.

A. Fan-ins Reduction

The size of the CPD depends exponentially on the fan-in of
a node. Hence, if a node has fan-in k, with input having m
distinct values, then the size required to store this distribution
is O(mk+1) (including one additional dimension for the output
of the node). This size is extremely large even for a small value
of m. To reduce this size, the node is split into several nodes
in the form of a tree as shown in Fig. 7. The delay associated
with each of the new nodes is 0, whereas the root node has
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delay of the original node associated with it. Equation (7) shows
that this transformation results in a graph that has an identical
underlying pdf as the original graph, i.e.,

P (max{X1,X2,X3,X4} + D ≤ t)

= P (max {max{X1,X2},max{X3,X4}} + D ≤ t)

= P (max{Y1, Y2} + D ≤ t) . (7)

This transformation is performed to restrict the maximum
fan-in of a node in the DAG to 2. Thus, the size of the largest
CPD will be O(m3). In the process, at most 2�log2 k� new nodes
are added, where k is the number of fan-ins. The space required
in the original case is mk+1, whereas the space required in the
transformed DAG is (2�log2 k�)m3. Hence, we get a reduction
in the space required for k ≥ 3 and m ≥ 2. Thus, although the
number of nodes increases, the total space required to store the
CPD decreases.

B. Reducing Switching Window Size

The switching window of a signal X is an interval [lX , uX ],
where lX and uX are the earliest and latest arrival time (EAT
and LAT) at X , respectively. In general, a designer is interested
in computing the distribution of the arrival times over the entire
switching window of the output. However, of greater interest for
the purpose of timing yield analysis is distribution close to the
LAT. Hence, by removing some events that result in an arrival
time close to the EAT of the outputs, a significant number of
nodes can be discarded without sacrificing accuracy. The circuit
size can be reduced using this idea by propagating a critical
time (T ∗) from the primary outputs to the primary inputs just
as required time is propagated in static timing analysis. A sink
node Xsink is created and a directed edge is added from each
output Oi to Xsink such that Xsink has a zero delay associated
with it.

Algorithm 5 shows the steps in the SWR transformation.
The complexity of this algorithm is O(fn), where f is the
maximum fan-in of the nodes and n is the total number of nodes
in the circuit graph.

Algorithm 5: SWR transformation
1) Input: DAG G = (V,E) with the sink node and a re-

quired time T ∗.
2) Output: Reduced DAG G′ = (V ′, E′).
3) Label the nodes in topological order. Hence, the label on

Xsink = |V |.
4) T ∗

Xsink
:= T ∗ and TX := lX for all nodes X ∈ V .

5) For all nodes in V , starting with the node X labeled n =
|V | in the decreasing order, perform Steps 6 and 7.

6) Assign the required time T ∗
Yi

to the node Yi in the fan-in
cone of X as T ∗

Yi
:= max{lX − dXmin , T ∗

Yi
}.

7) If T ∗
X > uX for some node X , remove X from the graph.

Also, remove all nodes in the fan-in cone FIX of X that
do not fan-out to any node outside FIX . Go to Step 5.

8) The resultant graph is G′.

The SWR transformation is shown over a simple graph
structure in Fig. 8. The original graph is shown in Fig. 8(a), with

Fig. 8. (a) Original DAG and (b) DAG after SWR transformation.

Fig. 9. Dependencies between the fan-ins.

[li, ui] being the switching interval for variable Xi. The delay of
each node Xi can take values in the range [dimin, dimax]. T ∗ is
the required time at the output X3 and is propagated backward
as explained in Algorithm 5.
Definition 4.1 [20]: If X and Y are two random variables

with sample spaces SX and SY , SY ⊆ SX , then Y is s.l. than
X , denoted by Y ≥st X , if P (Y > t) ≥ P (X > t) ∀ t ∈ SY .

If Y is s.l. than X , then the pdf of Y is a lower bound on the
pdf of X . Hence, the fraction of circuits whose delay is greater
than a critical value t (i.e., P (X > t)) is never underestimated
if X is replaced with an s.l. random variable Y .

In the following, the term reduced DAG means the DAG
obtained after performing SWR transformation on the original
DAG. Let Yred be an output node in the reduced DAG and let Y
be the corresponding node in the original DAG. The following
sequence of results are aimed at demonstrating that Yred ≥st Y .

Let X ′ be a primary input in the reduced DAG and X
be the corresponding input in the original DAG. Let T ∗

X

be the required time associated with X as a result of prop-
agating a required time T ∗ from the sink node to the
primary inputs. Then X ′ = max{X,T ∗

X}. Since {X ′ ≤ t} ≡
{X ≤ t, T ∗

X ≤ t} ⊆ {X ≤ t}, P (X ′ ≤ t) ≤ P (X ≤ t) or
P (X ′ > t) ≥ P (X > t). Hence, X ′ ≥st X . Thus, all the
variables representing primary inputs in the reduced DAG are
s.l. than the corresponding variables in the original DAG. The
pdfs of the arrival times of the primary inputs in reduced DAG
are obtained using

P (X ′ ≤ t) =
{

0, t < l∗X
P (X ≤ t), t ≥ l∗X .

(8)

Now consider an arbitrary node Y ′ in the reduced graph and
let Y be the corresponding node in the original DAG. After
performing the reduce fan-in transformation, either the two
inputs to Y ′ originate from the same node as shown in Fig. 9, or
they are independent. Lemma 4.1 shows that in the case similar
to shown in Fig. 9, Y ′ is s.l. than Y .
Lemma 4.1: Let X and Y be two random variables denoting

the arrival times of two nodes as shown in Fig. 9 with sample
space [lX , uX ] and [lY , uY ], respectively, such that Y = X +
max{D1,D2}, where D1 and D2 are two other random vari-
ables corresponding to the delay along two paths with sample
space [d1min, d1max] and [d2min, d2max], respectively. Also,
let X ′ and Y ′ be two random variables representing the ar-
rival times of the corresponding nodes in the reduced DAG
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with sample space [l∗X , uX ] (l∗X ≥ lX ) and [l∗Y , uY ] (l∗Y ≥ lY ),
respectively, such that

X ′ = max {X, l∗X} , Y ′ = X ′ + max{D1,D2}

then Y ′ is a lower bound of Y .
Proof: It was shown earlier that X ′ ≥st X . It should be

noted that the EAT of the node Y ′ is the sum of the maximum
of the minimum delays along D1 and D2, and the EAT at node
X ′, that is, l∗Y = l∗X + max{d1min, d2min}. Now the pdf of Y ′

is given by

P (Y ′ ≤ t)

= P (X ′ + max{D1,D2} ≤ t)

=
∑
d1,d2

P (X ′ ≤ t − max{d1, d2}/d1, d2) P (d1, d2) (9)

≤
∑
d1,d2

P (X ≤ t − max{d1, d2}/d1, d2) P (d1, d2)

= P (Y ≤ t). (10)

From (10), we see that Y ′ ≥st Y . �
In the proof of Lemma 4.1, there was no condition on the

independence of delay of the two paths D1 and D2; hence, even
if the delays of the two path are dependent due to reconver-
gence, the transformation is still valid.

It has been shown that the arrival times of the primary inputs
in the reduced DAG are s.l. than the arrival times of the primary
inputs in the original DAG. It was also shown that if two paths
from a variable X ′ that is s.l. than the corresponding variable
X in the original DAG reconverge at some variable Y ′, then
Y ′ will also be s.l. than the corresponding variable Y in the
original DAG. To complete the validity of this transformation,
it needs to be shown that the signals at second level of the
reduced DAG are also s.l. than the signals at second level in the
original DAG.
Theorem 4.1: Let X1 and X2 be the random variables de-

noting the arrival times of two primary inputs of a circuit. Let
X ′

1 and X ′
2 represent the random variables denoting the arrival

times of the same primary inputs in the reduced DAG obtained
by assigning a required time T ∗ at the outputs. Also, let Y
represent a random variable such that Y = max{X1,X2} + D
and Y ′ be the corresponding arrival time in the reduced DAG,
then assuming the input arrival times to be statistically indepen-
dent, Y ′ is a lower bound of Y .

Proof: Since Y ′ represents the arrival time corresponding
to Y in the reduced DAG, we have Y ′ = max{X ′

1,X
′
2} + D.

Thus, the pdf of Y ′ (P (Y ′ ≤ t)) is obtained using

P (max {X ′
1,X

′
2} + D ≤ t)

=
∑

d

P (X ′
1 ≤ t − d,X ′

2 ≤ t − d/D = d) P (D = d)

≤
∑

d

P (X1 ≤ t − d)P (X2 ≤ t − d)P (D = d) (11)

Fig. 10. SWR transformation.

=
∑

d

P (max{X1,X2} ≤ t − d/D = d) P (D = d)

= P (Y ≤ t). (12)

Since X ′ ≥st X , (11) can be obtained. �
Hence, the signal arrival times at level 2 (whose fan-ins

are primary inputs) in the reduced DAG are s.l. than the
corresponding signal arrival times in the original DAG. In a
circuit, the only dependencies present are those caused by
reconvergences. Hence, for any signal, either the arrival times
at its fan-ins are independent or the dependency is as described
in Lemma 4.1. Since the signal arrival times at level 2 in the
reduced DAG are s.l. than the signal arrival times in original
DAG, the signal arrival times at subsequent levels will also
be s.l. than the corresponding signal arrival times in the orig-
inal DAG.

Fig. 10 shows the DAG of a circuit and its reduced DAG by
taking the critical time T ∗ to be the EAT of the output. The
critical time at the input of each node is obtained by subtracting
dmin of the node from its critical time. For simplicity, the delay
of each node in the DAG of Fig. 10 has the range [5,7]. If there
is an internal node whose fan-ins are removed (e.g., node 7 in
Fig. 10), the LAT of that node is assigned a Probability of “1”
to ensure that its arrival time is s.l. than the arrival time of the
same node in Original DAG.

C. Inputs Reduction

Depending on the relative alignment of the switching win-
dows of the two inputs to a node, further reduction in the graph
size can be performed as shown in Theorem 4.2.
Theorem 4.2: If A and B are the fan-ins of a node C such

that the LAT of A is less than or equal to the EAT of B, then
A can be removed from the fan-in of C without affecting the
pdf of C.

Proof: The arrival time of C can be written as TC =
max{TA, TB} + D, where TA, TB , and TC are random vari-
ables representing the arrival times of signals A, B, and C.
For each possible combination of TA, TB , and D, for example,
tA, tB , and d, tA ≤ tB . We have

tC = max{tA, tB} + d

= tB + d ∀ tA, tB , tC , and d. (13)

Hence, TC = TB + D. �
Thus, the edge from A to C can be removed from the graph.

Note that [6] also uses this transformation. In order to remove
A from the entire graph, all the fan-outs from A should satisfy
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Fig. 11. Compound node for wire delays.

the above condition, i.e., the LAT of A should be less than or
equal to the EAT of all other inputs of all the gates in the fan-
out of A. Using this transformation, all the nodes in the fan-in
cone FIA of A can be removed if none of the nodes fan-out to
a node outside FIA.

D. Series Reduction

A much widely known form of transformation is also per-
formed, which reduces the complexity of analysis by combining
two nodes if the only fan-out of the first node is the second node
and the only fan-in of the second node is the first node.

Let the delays of the two nodes be D1 and D2, respec-
tively. The delay of the reduced node is D = D1 + D2.
Hence, if the ranges of D1 and D2 were [d1min, d1max]
and [d2min, d2max], then range of the resultant node will
be [d1min + d2min, d1max + d2max]. Under the assumption of
the independence of the gate delays, from general probability
theory [15], the probability density of the sum of two inde-
pendent random variables is obtained by convolving their
probability density functions

P (D = t) =

∞∫
−∞

P (D1 = t − τ)P (D2 = τ)dτ. (14)

V. WHAT ABOUT WIRE DELAYS?

Even though a significant amount of work has gone in
the development of PTA tools, the problem of including wire
delays and still being able to perform the analysis efficiently
has not been discussed in detail. A naive way to include the wire
delays in the analysis is to insert a node on each of the edges
of the DAG; however, this procedure increases the DAG size by
the number of edges in the DAG. This will result in a DAG size
that is significantly larger than the size of the original DAG.
In this section, we present an efficient way of incorporating
wire delays without increasing the number of nodes in the DAG
along with only a minor increase in memory space.

We assume that the delay of an interconnect is independent
of the delay of the gate driving it as well as the delay of
the gate driven by this interconnect. We first insert dummy
nodes corresponding to the interconnect delays on each of the
edges as shown in Fig. 11. Let us denote by DAi

and DBi
the

interconnect delays corresponding to the edges connecting A
to C and B to C, respectively. Let TA, TB , and TC represent
the arrival times at A, B, and C, respectively. Our assumption

TABLE IV
REDUCTION IN THE CIRCUIT SIZE ON PERFORMING TRANSFORMATIONS

regarding the independence of gate and interconnect delays
implies that the delay random variables DAi

, DBi
, and D are

independent of each other. To keep the DAG size the same, we
now combine the three nodes into a compound node. To carry
on with our analysis, we only need the CPD corresponding
to this compound node. Hence, we compute the CPD of this
node as follows.

The delay at the output C is given by

TC = max {TA + DAi
, TB + DBi

} + D.

The pdf of TC conditioned on TA and TB , P (TC = t/tA, tB)
can be computed as

∑
d,dAi

,dBi

P

(
max {tA + dAi

, tB + dBi
} = t − d/tA,

tB , d, dAi
, dBi

)
PD(d)PDAi

,DBi
(dAi

, dBi
) .

From the independence of DAi
and DBi

, PDAi
,DBi

(dAi
,

dBi
) = PDAi

(dAi
)PDBi

(dBi
). Now the first term in the sum-

mation is either “0” or “1” depending on whether max{tA +
dAi

, tB + dBi
} is equal to t − d or not. For a given combination

of tA, tB , d, dAi
, and dBi

being “1” if it is and “0” otherwise.
Hence, given a particular tA, tB , and tC , we can obtain the
corresponding value of the conditional probability of TC with
respect to TA and TB .

VI. RESULTS

We performed our analysis on ISCAS benchmark circuits
and compared our results with 10 000 runs of Monte Carlo
simulations. The delays of the gates were mapped using a
user-specified library for assigning different delay distributions
depending on the gate type and the fan-ins/fan-outs. We ran our
simulations on a shared Sun 280r server having two Sparc III
processors 900 MHz and 4 GB RAM.

The reduce fan-in and SWR transformations were imple-
mented in PERL and the resulting DAG was given as an input
to the MATLAB program. The inputs reduction and series
reduction transformations and the remaining procedures were
implemented in MATLAB. The BN-based analysis was done
using BN Toolbox [19] in MATLAB.

Table IV shows the reduction in gate sizes obtained after
performing switching window and series reduction transfor-
mations. We obtained as much as 89% reduction in the circuit
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Fig. 12. Circuit size for C3540 after SWR transformation versus variation in
gate delay.

TABLE V
COMPARISON OF BN-BASED APPROACH AND

MONTE CARLO SIMULATIONS

sizes and the average reduction obtained was 61%. The table
also shows the maximum clique size as well as the number of
cliques in the reduced circuit. From the column of maximum
clique size, it can be seen that there is a considerable reduc-
tion in the maximum clique size compared to Table III and so
in the complexity of the problem.

The percentage variation in the delay ((dmax−dmin)/dmean)
in the analysis was in the range from 20% to 40%. The SW
reduction was performed with the critical time as the EAT of
the output. The EAT was propagated to the primary inputs by
subtracting dmin of each gate encountered in the path. The
amount of reduction using the switching window transforma-
tion depends on the percentage variation in the delay. The
amount of reduction decreases as the percentage variation in
the delay increases. This can be attributed to the fact that as
the variation increases, more and more paths start becoming
critical. For example, in the extreme case of no variations, there
might be only one critical path, but in presence of variations
there are typically more than one critical path. The effect of the
gate delay variation on the amount of reduction in the circuit
size for circuit C3540 is shown in Fig. 12. The figures show
that the reduced circuit size increases with an increase in the
variation in the gate delays.

The exact distribution for C17 was obtained. Because of the
large number of reconvergences present in other circuits, only
their bounds could be obtained. In Table V, the means and the
standard deviation of the output of the circuit obtained from our
analysis are compared with Monte Carlo simulations. We see
that the worst case difference in the simulated (MC) and pre-
dicted (BN) 3σ values is less than 3%. The runtime of our pro-
cedure was significantly less than the Monte Carlo simulations.

Fig. 13. Probability distribution of the delay of circuit C7552.

TABLE VI
RUNTIME–ACCURACY TRADEOFF FOR C7552

TABLE VII
COMPARISON OF α PERCENTILES FOR C7552 AND C5315

The probability distribution of the delay of the circuit C7552
is compared with Monte Carlo simulations in Fig. 13. We see
that the predicted probability is always less than the simulated
probability. Hence, we never underestimate the fraction of
circuits whose delay is greater than a given critical time.

A. Runtime–Accuracy Tradeoff

The runtime of this approach can be reduced at the cost of
the quality of the bounds. Table VI shows an example of such a
tradeoff on C7552. The different rows correspond to the µ + 3σ
values of the circuit delay for the different values of the critical
time assigned during the SWR transformation. The switching
window of the output is [22, 31] ns. The runtime on assigning
the critical time of 22, 22.5, and 23 ns is shown in Table VI.
We see that we can reduce the runtime considerably (by around
45%) while incurring only a small penalty in the accuracy.

To compare the tightness of the distributions obtained using
the Monte Carlo method and our approach using BNs, the
percentiles of the arrival time were computed. The values of
the α percentiles for α = 10, 20, . . . , 90 are shown in Table VII
for C7552 and C5315. It can be seen that the BN-based tech-
nique accurately estimates the α percentiles with the maximum
percentage difference for the two cases being less than 3%.

Since the computations have been performed in MATLAB,
the runtime of our analysis is much slower than compared to a
BN package implemented C. Hence, significant speedups can
be obtained by implementing the code in C.
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VII. CONCLUSION

A new methodology for performing probabilistic timing
analysis (PTA) of circuits based on Bayesian networks (BNs)
was introduced. The problem of finding the exact probability
distribution function (pdf) of the arrival time of a signal in the
circuit was shown to be exponential in the maximum clique size
of a graph derived from the circuit. Various analytical results
were presented using which different graph transformations
can be performed to reduce the circuit size without having
significant effect on the accuracy. A method for incorporating
wire delays in the analysis was proposed without significant
increase in the complexity. The transformations can result in
as much as 89% reduction in the circuit size with the average
reduction being 61%. Also, the maximum difference in the
computed 3σ values and the simulated 3σ values is less than
3%, which shows the accuracy of the approach.
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