
1670 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

Short Papers_______________________________________________________________________________

Postroute Gate Sizing for Crosstalk Noise Reduction

Murat R. Becer, David Blaauw, Ilan Algor, Rajendran Panda,
Chanhee Oh, Vladimir Zolotov, and Ibrahim N. Hajj

Abstract—Gate sizing is a practical and a feasible crosstalk noise cor-
rection technique in the post route design stage, especially for block level
sea-of-gates designs. The difficulty in gate sizing for noise reduction is that,
by increasing a driver size, noise at the driver output is reduced, but noise
injected by that driver on other nets is increased. This can create cyclical
dependencies between nets in the circuit with noise violations. In this paper,
we propose a fast and effective heuristic postroute gate-sizing algorithm
that uses a graph representation of the noise dependencies between nodes.
Our method utilizes gate sizing in both directions and works in linear time
as a function of the number of gates. The effectiveness of the algorithm is
shown on several industrial high-performance designs.

Index Terms—Crosstalk noise, gate sizing, noise repair, signal integrity.

I. INTRODUCTION

Crosstalk noise is a critical design and verification issue for large,
high-performance designs. This problem has become more significant
due to the increased ratio of crosstalk capacitance to total capacitance of
a wire and the usage of more aggressive and less noise immune circuit
structures, such as dynamic logic.

In noise analysis, the nets on which crosstalk noise is injected by
one or more of its neighbors are called the victim nets whereas the
nets that inject this noise are called the aggressor nets. Noise can be
divided into two types: Functional noise refers to noise that occurs on
a victim net which is being held quiet by a driver. Crosstalk noise on
such a victim causes a glitch which may propagate to a dynamic node
or a latch, changing the circuit state and causing a functional failure
[1], [2]. On the other hand, delay noise refers to noise that occurs when
two capacitively coupled nets switch simultaneously. Depending on the
direction of these transitions, the delays on both nets are affected [3],
[4]. The focus of this paper is on functional noise but the presented
techniques can be extended for delay noise as well.

Recent literature proposes a number of crosstalk noise analysis
and noise avoidance methods. In [1] and [5], detailed noise analysis
using parasitic extraction and model order reduction is proposed. In
[6] and [7], the authors introduce simple noise metrics for crosstalk
amplitude and pulse width in capacitively coupled interconnects.
The derived expressions are also used to motivate circuit-design
techniques, such as transistor sizing and layout techniques to reduce
crosstalk. In other recent works, [8] proposes an improved 2� model
which is extended by [9] to a 4� model. Reference [9] also uses
this model to analyze the effects of several circuit parameters to
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noise, giving guidelines to the effectiveness of several noise reduction
methods. In an effort to identify crosstalk noise problems early in the
design cycle, [10] proposes an probabilistic extraction algorithm based
on global route congestion and a predetailed-route crosstalk-noise
analysis methodology.

In this paper, we focus on correcting the identified crosstalk-noise
problems in the postroute design stage. Noise can be reduced through
routing and interconnect optimization (wire spacing, wire widening,
controlling coupling length and position) [11], [12], buffer insertion
[13], [14] and driver sizing. In the postroute design stage, it is not de-
sirable to use techniques such as wire perturbations and buffer inser-
tion since they would require rerouting and, thus, increase design time.
Rerouting can result in significant changes in net lengths and neighbors
of nets which can cause many new noise failures that did not exist ini-
tially and may result in nonconverging design iterations. After routing
is completed, noise failures are therefore more effectively corrected
using driver sizing. The flexibility through scalable libraries and ex-
isting fill-space, allows one to make incremental changes to the driver
sizes without affecting global routing.

Recently, transistor-sizing methods for crosstalk-noise reduction
were proposed in [15]–[18]. Reference [15] uses coupling capacitance
as the noise metric and optimizes noise, area, delay, and power by gate
and wire sizing. A gate-sizing method to reduce crosstalk induced
delay noise is proposed in [16] and is based on a crosstalk-noise aware
static-timing analysis. More recently, in [18], a postroute gate-sizing
algorithm for crosstalk-noise reduction is proposed. However, since
this method only utilizes downsizing of aggressor drivers under delay
constraints, and not increasing the size of victim drivers, it has limited
effectiveness.

In this paper, we therefore propose a new postroute gate sizing algo-
rithm for crosstalk noise reduction. Due to the nonlinear dependence
of crosstalk noise to the interconnect and driver parameters [9], [17],
the problem of postroute gate-sizing for crosstalk-noise reduction is
a nonlinear optimization problem. The overwhelming system size
(i.e., number of nets) in today’s highly coupled interconnects makes
it impractical to solve the nonlinear optimization problem in an exact
manner. We propose a heuristic algorithm in this paper. The algorithm
increases the size of victim drivers as well as reducing the size of
aggressor drivers. The proposed algorithm takes into account both
timing and area constraints and treats each net as both an aggressor
as well as a victim. This duality is a critical factor in postroute gate
sizing and must be accounted for to ensure that new noise violations
are not introduced while fixing existing failures. We approach the
problem by introducing a noise graph which is constructed based on
the static noise analysis of the design. The noise graph represents all
critical nets, their significant aggressors, and the noise dependencies
(aggressor–victim relation) between them. We introduce a sensitivity
measure to eliminate weak dependencies from the noise graph to
reduce system complexity. The strong cyclic dependencies in the noise
graph are investigated using a cyclic sensitivity metric. Cycles that are
likely to converge are allowed to remain in the graph, however, high
sensitivity cycles are eliminated from the graph by removing a min-
imum number of vertices. Some edges are temporarily removed from
the low-sensitivity cycles to obtain an acyclical graph. The resulting
acyclical graph is then sorted topologically, where the topology in the
noise graph represents the noise-dependency relations. Gate sizing is
then iteratively performed on the sorted noise graph under delay and
area constraints. The algorithm is guaranteed to converge and has a
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Fig. 1. Coupled net cluster.

runtime complexity that is linear with the size of the circuit. Results
on three large microprocessor designs are presented to demonstrate
the effectiveness of the approach.

The paper is organized as follows. Section II outlines a brief
qualitative and quantitative analysis of postroute gate sizing and
formally defines the postroute gate sizing problem. In Section III,
we explain the noise-graph concept and our algorithm in detail,
including the cycle-breaking strategy and sensitivity measures. Results
on three high-performance microprocessor designs are presented in
Section IV. Section V contains closing remarks.

II. GATE SIZING FOR NOISE REDUCTION

If a victim driver is sized up, its effective conductance increases and
more effectively holds a net at a steady voltage (vdd or ground). Also,
if an aggressor driver is sized down, its effective conductance decreases
and as a result, noise induced by the aggressor on a victim net decreases.
Fig. 1 shows a situation where several nets form a coupled cluster. We
investigate the noise pulses at the receiver input and output of net v and
a 1 as the driver gate of net v is sized up. Fig. 2 shows the voltage wave-
forms at receiver input and receiver output of net v when the driving
gate of net v is changed from inv_4 to inv_12. The inverters are from
a high-performance standard cell library and their transistor widths are
proportional to x in inv_x. As can be seen, the noise pulse at the re-
ceiver input of net v is reduced in terms of both noise peak and width,
as the driving gate is sized up. Note that, although the noise pulse peak
with inv_12 is nearly 450 mV (35% of Vdd), the propagated noise at the
receiver output is negligible. The complication of victim–aggressor du-
ality in driver sizing emerges when we consider the voltage waveforms
on net a 1. Fig. 3(a) shows the high to low transition on net v, when net
v is acting as an aggressor on net a 1. As can be seen, when the driver
of v is sized up from inv_4 to inv_12, the transition on net v becomes
faster, making it a stronger aggressor on net a 1. This causes the noise
pulse at the receiver input of a 1 to increase about 50 mV resulting in
the propagated noise pulse to increase by 200 mV as seen in Fig. 3(b).
As demonstrated in this example, when a net’s driver gate is sized up
to reduce noise on that net, it also becomes a stronger aggressor which
in turn can induce more noise on other nets. Thus, a driver-sizing so-
lution on nets with existing noise failures, may result in new failures
on other nets. Postroute driver sizing, therefore, must account for this
dependence between nets to ensure convergence of the algorithm.

In some cases, by sizing both victim and aggressor drivers, we can
converge to a solution that fixes noise, while in other cases, the two
drivers can be sized in an iterative manner and noise is not fixed on
either net. The unnecessary sizing up of drivers of nets in such cyclic

Fig. 2. Noise effects on net v due to sizing up of driver of net v.

dependencies will also result in more induced noise on other nets. Sen-
sitivity of noise on these nets with respect to their driver sizes is a key
factor in whether the sizing will converge or not. A good gate-sizing
algorithm must distinguish between these two cases to eliminate those
cases that will not converge. Otherwise, such nonconverging depen-
dencies can destroy the sizing of other nets and introduce more noise
in other parts of the design.

Other critical complications in the postroute driver-sizing problem
can be explained as follows.

Area impact: When a driver is sized up, it requires a larger foot-
print and may cause the legalizor to shift around some of the
neighboring instances causing some changes in the routing. Usu-
ally, the additional area required to size up a driver gate (i.e., re-
placing it with a bigger size from the library) is less than the area
required to insert a buffer and is less likely to modify the route
significantly. Also, the existing fill space around the instances can
be utilized.
Timing impact: When a gate size is changed, it affects the timing
of paths through this gate. Sizing up a gate speeds up the signal on
the net that it drives but it also presents a higher gate capacitance
to the previous net, slowing it down. Reverse effects are true if a
gate is sized down. Effects on the previous net can be eliminated if
the gates in the library are designed in multiple stages, keeping the
first stage size the same and reflecting the size differences in the
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Fig. 3. Noise effects on net a_1 due to sizing up of driver of net v.

driving stage. During gate sizing, effects on timing are represented
as constraints on gate sizes.
System size: The victim–aggressor duality dictates that all inter-
acting nets and their driver-gate sizes should be taken into account
in a gate-sizing algorithm. This makes the problem a constrained
nonlinear multiple goal attainment problem for which the system
size (>100 k nets is very common) can be prohibitive. An exact
solution is therefore not practical, and we propose a heuristic so-
lution in this paper.

A. Formal Definition of Postroute Gate Sizing Problem

Suppose there are n nets in a given design, where each net corre-
sponds to a driver that is part of a standard cell library. Prior to postroute
driver sizing, all the driver and interconnect data for all nets are avail-
able. Also a postroute noise analysis has been done on the design. As-
sume that, according to the results of postroute noise analysis [1], k of
these nets are failing, and the remaining n�k are passing the crosstalk
noise failure criterion chosen in the analysis.1

Noise on each net can be represented as a nonlinear function of the
victim net’s driver size and all its aggressor nets’ driver sizes

noisenet = f si; saggressors(net ) (1)

where sx represents a gate from the standard cell library which has the
same functionality of the original driving gate of net x. The goal of
postroute gate sizing is to bring down this noise on the k failing nets to
a nonfailing level while making sure that the n� k initially nonfailing
nets stay that way. Additional constraints on the driver gates are due to
timing and area considerations. A net’s driver has an upper and a lower
limit due to area and timing constraints. So, if we put all these observa-
tions together, the postroute gate sizing problem can be formulated as
follows. Solve for si to attain the goal of noisenet � thresholdnet

1The interested reader is referred to [19] for a detailed discussion on func-
tional noise failure criteria.

for the k failing nets such that noisenet � thresholdnet remains for
the n�k nonfailing nets andmins � si � maxs for area and timing
constrains. As can be seen, this is a discrete multiobjective nonlinear
optimization problem with nonlinear and linear constraints.

In practice, each net can be driven by more than one driver. This
can be reduced to the above case (n nets and n drivers) by picking the
worst/dominant driver for each net.

Any algorithm that attacks this problem should have an efficient
yet accurate way of calculating noise on a net, given both its and its
aggressors’ driver gates, as well as the coupled interconnect cluster
that represents the victim and the aggressor nets [i.e., a way of
solving (1)]. Fast and efficient analytical models [8], [9] can be used.
For more accuracy, one can use linearized drivers and PRIMA-like
[20] model-order reduction methods for the interconnect. For the
highest amount of accuracy, SPICE can be used at the expense of
increased run time.

III. PROPOSED GATE-SIZING METHOD

In a postroute design stage, detailed information on the topology,
neighbors and drivers of all the nets in the design is available. First,
we perform an accurate postroute static noise analysis on the design,
utilizing timing and logic correlation information to avoid false fail-
ures [1]. Noise analysis identifies the severity of noise on each net
through a “slack” value. If the slack of a net is negative, it is failing
the noise analysis. The failure criterion used in the paper is the so
called the “noise rejection curve” method [1]. Each cell in the stan-
dard cell library is characterized with a noise rejection curve which
shows the noise pulse Height/Width boundary at which the cell starts
to propagate more than a predefined output noise threshold. In this con-
text, slack is defined as the difference between the predefined output
noise threshold and the propagated noise peak at the receiver output:
(noise slack = output noise threshold�V (receiver output)).
Note that the proposed algorithm is independent of the noise failure
criterion being used.
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Fig. 4. Sample noise graph.

A. Noise-Graph Representation

As explained in this section, we represent the gate-sizing problem
using a noise graph. A noise graph G((V; A); E) consists of vertices
(V;A) and edges E.

• Vertices: Nets are represented by vertices in the noise graph.
There are two types of vertices. Type V vertices represent
nets which are failing or close to failing the noise analysis.
In other words, nets that have noise slack less than some pre-
defined positive value will be of Type V vertices. Drivers of
Type V vertices are candidates to be sized up. Type A ver-
tices represent significant aggressors which have very low
noise on them. A significant aggressor is an aggressor which
contributes at least 20% of the total noise on a victim net.
Very low noise means that net has a noise slack greater than
a predefined positive slack. Drivers of Type A vertices are
candidates to be sized down.

• Edges: A directed edge between vertex a and vertex b exists
if net a is a significant aggressor of net b. Note that type A
vertices always have an in-degree of 0.

Fig. 4 shows a simple noise graph. It is a directed graph which con-
tains cycles. The noise graph contains all the failing and critical nets
(V 1-V 7) as well as their very low-noise aggressors (A1-A2). It also
contains the existing significant relations between these nets in the form
of edges. In reality, victim–aggressor duality exists for each neigh-
boring net in the design. However, in our noise graph, we incorporate
only significant edges, filtering out the insignificant victim-aggressor
dependencies which would otherwise increase complexity. Therefore,
cycles in the noise graph represent significant victim–aggressor depen-
dencies (in some cases in a more extended sense—V3-V4-V5-V7-V3
cycle). These cycles may lead to oscillating solutions and/or conver-
gence problems. In the simplest case of a two-vertex cycle, made up of
vertices V5 and V6, the negative slack can oscillate between the two
nets as each one is sized up and neither is fixed. The noise graph also
dictates an order in which Type V vertices are sized up. For example, if
we first size up V2 and then V1, we might have to come back to V2 as
it is affected by V1. This information is utilized to minimize the com-
plexity of our algorithm.

B. Sizing Algorithm

Our algorithm can be summarized as follows. After constructing the
noise graph as explained in the previous section, we first size down all
Type A vertices. At this point, if the noise graph is acyclic, we simply
size up the Type V vertices in topological order, where the topology in
the noise graph represents the noise-dependency relations. However, in
general, the noise graph will contain cycles which may lead to prob-
lems. We introduce cyclic sensitivity, a metric designed to represent
the overall noise trend in a noise-dependence cycle as the drivers are

sized up, to distinguish those cycles that will cause convergence prob-
lems and those that will converge. Low sensitivity cycles are stripped
off some edges temporarily, to be able to obtain an acyclic graph. Prob-
lematic cycles are eliminated through the removal of some Type V ver-
tices from the noise graph. The removed vertices are not sized and thus
will not be fixed by driver-gate sizing. Our algorithm removes a min-
imum number of vertices to eliminate the problematic cycles. The re-
sulting directed acyclic graph is then topologically sorted, and Type V
vertices are sized up in the topological order. The problem of iterating
over the low sensitivity cycles in the noise graph is solved by repeating
the topological sizing procedure until convergence. The pseudocode of
the proposed algorithm is shown below.

Algorithm: Postroute Driver Sizing
Input: Noise analysis results
Output: Instance cell replace direc-

tives
begin
1 Construct a noise graph

based on noise analysis
2
3
4
5
6 repeat until convergence
7 for each vertex in
8
end

We now explain the algorithm stages in detail. In Step 1, we con-
struct a noise graph based on the noise analysis. The complexity of this
step isO(jV j+ jAj+ jEj). During the construction of the noise graph,
we apply a sensitivity-based pruning method to further eliminate some
of the introduced edges. An edge e from vertex u to vertex v represents
a significant noise contribution from the net represented by vertex u to
the net represented by vertex v. We add a dynamic character to this
static edge-insertion criterion by introducing a sensitivity notion. As
the driver of vertex u is sized up, if the noise change on vertex v is not
significant, i.e., �(noisev)=�(sizeu) is very small, then we can con-
clude that when vertex u is sized up, this will not increase the noise
on vertex v significantly. In other words, the noise dependency from u
to v is weak. Edges that represent such weak dependencies are elim-
inated. This results in reduced complexity of the noise graph and in
some cases elimination of some noise dependence cycles. Note that
the effects, although small, of these eliminated edges will be caught as
the topological sizing is iterated. In Step 2, we size down all Type A
vertices as much as possible such that they maintain a sufficient noise
slack margin and stay within the timing constraints. By sizing down
the significant aggressors up front, the rest of the algorithm is simpli-
fied since from this point on only size-up operations will be performed.
The constraint on the noise slack of Type A vertices ensures that no
new failures among these nets will be introduced, while trying to fix
the existing failing nets.

In Step 3, we analyze the cycles in the noise graph. the complexity of
this step is bounded byO(jV j+jAj+jEj)�size of (largest cycle). Cy-
cles represent significant noise dependencies in the noise graph which
have a cyclic nature. These cycles may lead to oscillating solutions and
thus convergence problems. We introduce a cyclic sensitivity metric to
separate those cycles which will converge, from those which will create
problems. Assume we have a cycle C in our noise graph, made up of
n vertices (V1 . . .Vn) and n edges (e1 . . . en). Note that since we al-
ready eliminated edges that correspond to weak dependencies from the
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noise graph, all the edges in cycle C represent “strong” noise depen-
dencies. Our cyclic sensitivity metric for cycle C is defined in

cs(C) =

�N

�s

�N

�s

�

�N

�s

�N

�s

� . . .�

�N

�s

�N

�s

�

�N

�s

�N

�s

(2)

where Ni is the noise on vertex i and si is the size of the gate at vertex
i. Each term in (2) represents the consequences of sizing up a gate in
the cycleC . The ith term is the ratio of the sensitivity of induced noise
on vertex i + 1 to the size of the driver of vertex i and the sensitivity
of noise reduction on vertex i to the size of driver of vertex i. In other
words, each term is a measure of additional noise introduced to the
cycle versus the noise reduction from the cycle due to sizing up a gate in
the cycle. Therefore, if cs(C) < 1, this means that as the gates in cycle
C are sized up, overall cycle noise will tend to go down. On the other
hand if cs(C) > 1, this means that the overall cycle noise will increase
as we size up the gates, leading to a nonconvergent situation. In Step
3, we identify and analyze each cycle in the noise graph and eliminate
an edge from those cycles with low cyclic sensitivity. The reason we
eliminate an edge from these cycles is to be able to obtain an acyclic
graph while keeping all the vertices of such cycles in the noise graph.
Note that the apparent loss of information by eliminating an edge from
low-sensitivity cycles is actually a temporary one. The practical task of
iterating on these cycles is solved algorithmically by iterating on the
entire noise graph in Steps 7 and 8. As noise analysis is performed on
each vertex (i.e., net), all aggressors of that net is taken into account
regardless of the absence or existence of an edge in the noise graph. As
a result, the effect of these eliminated edges are accounted for as the
sizing process is iterated in Steps 7 and 8.

After Step 3, the remaining cycles in the noise graph are those which
will cause convergence problems. In Step 4, we remove such cycles in
the graph by eliminating a minimum number of vertices. By removing
vertices from the noise graph, we sacrifice some nets (they will not be
fixed by driver sizing), but we ensure that there will not be any con-
vergence issues. Our cycle-breaking strategy (Break cycles(G)) en-
sures that the minimum number of Type V vertices are removed from
the noise graph: Let G be a directed graph G = (V;E), where V is
the set of vertices and E is the set of edges. We want to find a feed-
back vertex set, i.e., a subset V 0 � V such that V 0 contains at least
one vertex from every directed cycle inG, while minimizing the cardi-
nality of the feedback vertex set jV 0j. This problem is equivalent to the
known graph-theory algorithm, minimum feedback vertex set, which is
shown to be approximable within O(logjV jloglogjV j) [21]. Breaking
the cycles result in a directed acyclic graph (DAG). This graph is topo-
logically sorted in Step 5, whose complexity is O(jV j+ jAj + jEj).

In Steps 7 and 8, the gates are sized in topological order. This en-
sures that the victim-aggressor duality is taken into account. Since we
are sizing in the order of noise dependence, the effects of sizing up a
driver will be seen downstream, on the nets that it has an effect on. The
noise graph consists of nets that are failing and that are close to failing.
The topological sort approach makes sure that if any of the ‘close to
failing’ nets start failing due to one of its upstream neighbors being
sized up, this is detected and addressed. At each vertex, a proper gate
size from the cell library is chosen such that the area and timing con-
straints are satisfied. The pseudocode for the size-up process is shown
below. Elimination of some significant edges to preserve the low sen-
sitivity cycles in Step 3, dictates that Steps 7 and 8 should be iterated
until convergence. As explained above in Step 3, the effects of elim-
inated edges will be seen at each iteration since our noise calculation
on a net takes into account all the aggressors of that net, whether or
not they are represented in the noise graph. The theoretical limit on the
complexity of these iterations is linear with the system size. However,
in practice, the number of required iterations was found to be very small

TABLE I
NOISE-REDUCTION RESULTS USING THE PROPOSED ALGORITHM

TABLE II
SOME DETAILED STATISTICS FROM THE RUNS

and thus can be treated as constant. Therefore, the proposed algorithm
works in linear time as a function of the number of gates in the design.

Algorithm:
Input: Type V vertex
Output: library cell to replace driver

of vertex
begin
1 while and are

within constraints
2 replace driver of with next larger

same functionality cell in library
3 if
4 return
5 return
end

IV. RESULTS

In this section, we present results of our algorithm on three large
designs. The circuits used for experiments are chip_1, which has 31 489
nets, chip_2, which has 39 200 nets and chip_3 with 165 481 nets. All
three designs are actual high performance ICs in 0.18-�m technology
and the number of nets reflect the number of top level nets analyzed
by the noise analysis tool. Coupled RC interconnects were extracted
using a commercial extraction tool and the analysis was performed in
the typical process corner. Each cell in the standard cell library used
in these designs was precharacterized for holding and switching driver
models and receiver noise failure criteria [1]. Initial noise analysis is
performed on these three designs after they have been optimized for
delay and slew constraints. During gate sizing for noise reduction, we
use the timing slacks obtained from static timing analysis as timing
constraints.

Table I shows the noise-reduction results obtained by applying the
proposed algorithm and Table II shows some statistical information on
the runs. From Table I, we can see that number of nets that fail the
noise criterion goes down significantly, as much as by 98%. The last
two columns in Table I show the maximum and average peak noise
voltage reduction.

Table II presents the following information in column order:
number of aggressor gates that have been sized down [# a], number of
vertices in the initial graph [#ver=in], number of remaining vertices
after Analyze cycles [#ver=ac], number of remaining vertices
after Break cycles [#ver=bc], number of “high sensitivity cycles”



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004 1675

Fig. 5. Noise-peak changes at receiver input before and after employing proposed algorithm.

Fig. 6. Noise slack changes at receiver output before and after employing proposed algorithm.

[#cy=hs], number of “low sensitivity” cycles [#cy=ls], number
of edges in initial graph [#edg=in], number of edges remaining
after sensitivity pruning [#edg=el], number of edges remaining
after Analyze cycles [#edg=ac], number of edges remaining after
Break\_cycles [#edg=bc]. Note that all the cycles in chip_1 were high
sensitivity cycles whereas chip_2 and chip_3 contained many low-sen-
sitivity cycles, resulting in better noise-reduction results in chip_2 and
chip_3. This shows the importance of detecting weak cycles instead of
blindly breaking all cycles through vertex elimination.

In Figs. 5 and 6, we show the changes in noise peak voltages at
receiver inputs and changes in noise slack values at receiver outputs.
Each dot in these figures corresponds to a noise simulation. The values
on the x and y axes are before and after gate sizing, respectively, in
both figures. The 45� line is the x = y line. The region below the line
represents improvement in noise in Fig. 5 and degradation in noise in
Fig. 6. Fig. 6 is additionally divided into four quadrants by the vertical

and horizontal lines at x = 0 and y = 0. Each dot in these figures
corresponds to a noise simulation, and each net has two noise simula-
tions. One noise simulation is where the victim net is stable at ground
and the aggressors are switching from low to high and the other is the
reverse situation. It can be seen from Fig. 5 that, noise on most nets
has been reduced and only on some nets noise has increased slightly.
Note from Table II that chip_2 and chip_3 did not lose any vertices
from the noise graph since all their significant noise dependence cycles
have been eliminated using the cyclic sensitivitymeasure. Thus the few
nets in chip_3, whose noise have increased after gate sizing, are those
whose gates were not sized up due to other constraints such as timing
and area. Note that Figs. 5 and 6 only show simulations of those nets
whose peak noise exceed a certain value. This is why we do not see the
noise increase on the aggressor nets whose driver gates have been sized
down. Fig. 6 shows that no slack value went from positive to negative
after gate sizing (i.e., quadrant IV is empty). Hence, if a net did not fail
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Fig. 7. Noise peak and slack changes in chip_3 when cyclic sensitivity is not used.

before gate sizing, it remained that way after gate sizing. This shows
that our algorithm is successful in not introducing new noise problems
while trying to fix the existing ones. This is due to the fact that our al-
gorithm checks the noise on aggressors as they are sized down and also
the aggressor–victim duality is taken into account properly through the
topological sort approach. These figures also show that, noise failure
on many nets has been improved although the net was not fixed. How-
ever, on the other hand, some nets that were failing initially may end
up failing worse after gate sizing, especially if their corresponding ver-
tices have been eliminated during the Break cycles procedure. We
minimize such nets by choosing the minimum number of vertices to
be eliminated from the noise graph. These results show the effective-
ness of the cyclic sensitivity measure which significantly reduces the
number of eliminated vertices (sacrificed nets), improving the quality
of the obtained solution. The algorithm converged after two iterations
in all three chips and required 163, 150, and 780 s runtime, respectively,
on an UltraSparc-II machine.

To quantify the efficiency of cyclic sensitivity, our algorithm was
reapplied on chip_3, but this time skipping the Analyze cycles

step. To eliminate the 72 cycles, 53 vertices were eliminated in
Break cycles step, and the number of noise violations after gate
sizing was 108. Remember that none of the 72 cycles were eliminated
through vertex removal when the cyclic sensitivity is used. The change
in noise and slack are shown in Fig. 7. As can be seen in Fig. 7, there
are some simulations in quadrant IV. All these correspond to nets
which were eliminated in Break cycles step.

Although no new violations were created (the simulations in quad-
rant IV belonged to nets which were already failing due to the other
type of simulation), the quality of solution is degraded, compared to
the one in which cyclic sensitivity was used. Also note that 38 more
nets were fixed when cyclic sensitivity was used, whereas these nets
are simply ignored due to vertex elimination if cyclic sensitivity is not
employed. The advantages of using cyclic sensitivity are clear when
Figs. 5 and 6 are compared with Fig. 7.

We have also observed that the impact of proposed driver-sizing op-
erations on the congestion and routability of the reported test cases has
been minimal. This is partly due to the fact that the presented algorithm
uses available physical information on the sizeability and legalizability

of each driver by constraining the available sizes for each driver as
explained in step 8. This is also due to the fact that this algorithm is
employed as one of the final stages of a crosstalk noise management
methodology [22]. At this stage of the design flow, several techniques
(before and during routing noise prevention) have already been applied
to minimize crosstalk noise problems as much as possible; thus leaving
a relatively small number of failures to deal with using driver sizing.

As a result, our algorithm reduced number of failing nets signif-
icantly (45%, 98%, and 86% in three designs, respectively) while
not introducing any new failures. Some controlled increase of noise
on aggressor nets was allowed, making sure that they stayed within
acceptable positive slack. Even with the increase of noise on elimi-
nated vertex nets, average noise reduction was 11%, 23%, and 21%,
respectively, for the three designs.

V. CONCLUSION

In this paper, we presented a postroute gate-sizing algorithm for
crosstalk-noise reduction. The algorithm is timing and area constrained
and takes into account the victim–aggressor duality through a topolog-
ically sorted noise graph. We introduced a cyclic sensitivity metric to
be able to efficiently handle cyclic noise dependencies which present
the most important challenge in the post route gate sizing problem. The
proposed algorithm works in linear time as a function of design size,
utilizes sizing in both directions and has been shown to be effective on
large high performance designs.
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Statistical Timing Analysis of Coupled Interconnects Using
Quadratic Delay-Change Characteristics

Tom Chen and Amjad Hajjar

Abstract—With continuing scaling of CMOS process, process variations
in the form of die-to-die and within-die variations become significant which
cause timing uncertainty. Statistical design methods have been proposed in
the past to model the impact of process variations. However, all the existing
methods deal almost exclusively with modeling delay variations of logical
gates or physical variations of interconnect wires. This paper proposes a
method of analytically analyzing statistical behavior of multiple coupled
interconnects with an uncertain signal arrival time at each interconnect
input (aggressors and the victim). The method utilizes delay-change char-
acteristics due to changes in relative arrival time between an aggressor and
the victim. The results show that the proposed method is able to accurately
predict delay variations through a coupled interconnect.

Index Terms—Coupled interconnect, crosstalk noise, delay-change curve
(DCC), statistical timing analysis.

I. INTRODUCTION

With continuing scaling of CMOS process, die-to-die and within-die
variations have a significant impact on chip performance and power
consumption [1]. Such variations come from process variations such as
Le and Vt [2]–[4], as well as supply voltage and temperature variations.
Process variations cause timing uncertainty. Current design methods
for on-chip interconnects use pessimistic approaches where designs are
assumed at their worst-case corners. Typically, an initial design solu-
tion is simulated. Monitoring the critical nets, an incremental technique
is used with a number of iterations until the design meets its specifica-
tion [5], [6]. The worst-case scenarios in measuring coupling noise are
also assumed, i.e., when the aggressor noise peaks match the victim
switching time in the same or opposite direction. Such an approach
often leads to overdesigning circuits causing unnecessary elevation of
power and other reliability problems. Statistical design methods have
been proposed in the past to model the impact of process variations.
However, all the existing methods deal almost exclusively with mod-
eling delay variations of logic gates [7] or physical variations of inter-
connect wires, such as wire width and thickness variations [8], [9]. This
paper deals with a method of analytically analyzing statistical behavior
of multiple coupled interconnects with an uncertain signal arrival time
at each interconnect input. The goal is to determine the statistical be-
havior of signal transmission from one point to another point in a circuit
under the influence of uncertain multiple coupling sources.

The statistical behavior of such a delay can be obtained by Monte
Carlo simulations of the circuit involved. However, Monte Carlo
simulations are expensive, faster analytical methods with enough
accuracy is needed to deal with complex very large scale integration
(VLSI) designs. The method discussed in this paper achieves both
goals of having an analytical-based faster method and high enough
accuracy by calculating delay-change characteristics with respect to
relative signal arrival times between the aggressors and the victim. The
statistical behavior of signal delay through the coupled interconnect
can then be easily obtained through analytical methods rather than
Monte Carlo simulations. The remaining part of the paper is organized

Manuscript received June 25, 2003; revised October 29, 2003. This paper was
recommended by Associate Editor F. N. Najm.

The authors are with the Department of Electrical and Computer Engi-
neering, Colorado State University, Fort Collins, CO 80523 USA (e-mail:
chen@engr.colostate.edu).

Digital Object Identifier 10.1109/TCAD.2004.837720

0278-0070/04$20.00 © 2004 IEEE


