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 ABSTRACT
In this paper, we have modelled the flip-flop clock to output

delay dependency on the data arrival time and introduced this phe-
nomenon in timing analysis. Traditionally, finding the minimum
clock period of a flip-flop based sequential design was based on
the assumption that the setup-time and clock to output delay of a
flip-flop are constant and hence each stage of the pipeline can be
analyzed independently. However, it is well known that the delay
of a flip-flop depends on the data arrival time at its input and
hence there exists an interdependence among different pipeline
stages. The problem of finding the minimum clock period of such
a coupled system is a non-trivial problem. In this paper, we formu-
late the problem of finding the minimum clock period of a flip-
flop based sequential circuit accounting for these dependencies.
We show that the problem is a non-linear convex optimization
problem. We propose three different solution approaches and
compare their results on ISCAS ‘89 sequential benchmark cir-
cuits. Modeling these data arrival time dependencies we have seen
a consistent decrement of approximately 50-60ps compared to the
traditional approach using constant setup-time and flip-flop
delays. We also show how the analysis can be extended to account
for hold time constraints for short paths in the circuit.

General Terms  : Verification
Categories and Subject Descriptors : 
B [Hardware] : B.8 [Performance and Reliability] : B.8.2 [Per-

formance Analysis and Design Aids]
Keywords : Timing Analysis

1.  Introduction

Static timing analyzers are widely used to verify the behavior
of large digital circuit designs in various stages of design. They
have also become the core engine used inside circuit optimization
tools, such as the transistor and gate sizing tools and logic synthe-
sis. Ever since the frequency of operation of circuits has gained
marketing focus, accurate and efficient computation of a circuit’s
clock period is one of the most important tasks in design.

Flip-flop delay is an increasing concern for high performance
circuit designers. Cycle times have been shrinking dramatically
driven by both faster gate delays and by more aggressive designs
using fewer gates in a single pipeline stage. Thus, flip-flop delay
accounts for a significant portion of the clock period and there-
fore, accurate modelling of this delay is critical. Also, less pessi-
mistic STA algorithms based on better models help reduce the
overall clock period of the circuit, by aiding better design and ver-
ification techniques. 

Traditionally, the task of determining the minimum clock
period of a flip-flop based sequential circuit has consisted of find-
ing the longest combinational path between any two flip-flops of
the circuit and adding setup-time, flip-flop delay and clock skew
to it. (Note that the effect of clock jitter on clock period has been
neglected in the entire paper without the loss of generality.) The
above formulation is based on the assumption that the setup time
of a flip-flop is fixed and the clock to output delay of a flip-flop is
constant. This results in the major simplification that each pipe-

line stage can be considered independently from every other pipe-
line stage of the circuit. However, it is well known that the delay
of a flip-flop is in fact a function of the difference between the
clock and the data arrival time, as shown in Figure 1. We define

TDiff as the difference between the clock and data arrival time and
refer to Tff as the clock to output delay of the flip-flop. As shown
in Figure 1, Tff increases with decreasing TDiff until the flip-flop
goes metastable and Tff approaches infinity.   Hence, both Tff and
TDiff of a flip-flop must be considered as variables with mutual
dependencies rather than being treated as constants. We show in
this paper that the simplification of using a fixed setup time and
constant flip-flop delay may yield a pessimistic minimum clock
period, and it is therefore necessary to consider these interdepen-
dencies between pipeline stages. The problem of finding the clock
period of circuit considering this dependency has similarity with
the problem of finding the clock period of a latch based sequential
circuit in [1][10][11] except for the fact that this problem is non-
linear while latter in can be solved linearly.

In this paper, we model the flip-flop Tff dependencies on data
arrival times and propose a new timing analysis algorithm that
accounts for these dependencies, which to our knowledge is the
first effort to address this problem formally. We describe the prob-
lem of determining the minimum clock period as non-linear opti-
mization problem and prove that it is convex. We propose three
solution methods, a sequential quadratic programming approach,
simple rectilinear manhattan decent approach, a satisfiability
approach, and have compared their performance in terms of their
runtime and number of iterations on ISCAS’89 sequential bench-
mark circuits. We have also discussed their ease of integration
with the existing static timing analyzers. We compared the exact
solution obtained from the proposed formulation with the tradi-
tional approach using different Tsetup times and observed a reduc-
tion in the clock period of approximately 50-60ps, which is
equivalent to approximately one fan out of four delay in this tech-
nology. 

The treatment of Tff as a variable also has implications on the
short path constraints of a given circuit. As the data arrival time
gets closer to the clock the Tff increases thus reducing the number
of hold time violations. We therefore show how our analysid can
be extended to determine the lowest frequency that fulfills all the
hold-time constraints. The long path analysis therefore finds the
maximum frequency for which the long path constraints are met
whereas the short path analysis finds the minimum frequency for
which all short path constraints are satisfied. For any functionally
correct design, its is therfore neccessary for fshort < flong. This

Figure 1. Flip-flop delay dependence on arrival time.

 



results in a window of valid operating frequency as shown in Fig-
ure 2.

The remainder of the paper is organized as follows. Section 2
discusses the traditional method of finding the clock period and
the model of the flip-flop delay. Section 3 discusses the non-linear
problem formulation and discusses its properties. Section 4 dis-
cusses three different approaches used to solve this non-linear
problem. Section 5 describes the short path problem and its analy-
sis, Section 6 presents results and Section 7 concludes this paper.

2.   Background and Delay Model

In this section, we describe the traditional model used to com-
pute the clock period of a circuit. We then present a new model for
flip-flop clock to output delay Vs. data arrival time. We end the
section with an example that demostrates that the clock period
computed based on traditional model is pessimistic. We introduce
the following nomenclature.

Nomenclature

Tc Clock period of the circuit. 
Tsetup Setup time for the flip-flop.
Tff Flip-flop clock to output delay.
Thold                 Hold time of  flip-flop.
Tskew                 Characterized skew of the clock network.
n                    Number of flip-flops in the circuit.
Tc,ij               Effective delay between ith and jth flip-flop.
TLogic,ij,max   Maximum combinational delay between ith and jth flip-flops.
TLogic,ij,min   Minimum combinational delay between the ith & jth flip-flop.
TDiff,j             Difference between clock and data arrival at jth flip-flop.
TDiff,ij             Difference between the clock and data arrival for a path between 

ith   and jth flip-flops.                     

Traditionally, computing clock period of a sequential circuit is
performed as described below.

 (EQ 1)

  (EQ 2)

 Tsetup is defined as the difference between the clock and the
arrival time where Tff increases by 5% from its nominal value as
suggested in [2] and is shown as Figure 1. 

The fundamental assumption in the above timing model is that
the setup time and the flip-flop delay are constant, with the flip-
flop going metastable and the delay approaching infinity as soon
as the difference between the clock and arrival time is less than
Tsetup. However, as shown in Figure 1, the transition between
proper functionality and metastability is not as discrete as this
model describes. The delay of a flip-flop increases gradually as
the difference between the arrival time and clock decreases, creat-
ing a dependency of Tff on the data arrival time. 

In order to include this effect of variable flip-flop delay in tim-
ing analysis, it is important to accurately model the delay of a flip-
flop as a function of its data arrival time. Based on the model used
to resolve the metastability of a latch we propose the model below
in EQ 3 for the flip-flop delay.

(EQ 3)

where A,B,C are real non-zero constants.
This model can be easily fit based on the nonlinear least square

method using the trust region dogleg algorithm, with weighted
robust regression[12][3]. 

In Figure 3, we show a comparison between the proposed

model in EQ3 and the HSPICE delay for a D-flip-flop from an
industrial 0.18 micron library with a loading of 50 ff at 75 C. We
fitted the proposed model for four different flip-flop cells from a
comercial library. Table 1 summarizes the quality of the fit for dif-
ferent loads, with input slope of 1.8V/.1ns and temperature of
70 C.  In Table 1, RMSE is the Root Mean Square Error whereas

R-square is a statistical metric used to denote how successful the
fit is in explaining the variation of the curve, about its mean. The
ideal value for R-square is 1. From Table 1 it is evident that the
model mentioned in EQ3 is a good match for describing the flip-
flop delay dependence on its data arrival time. 

We now show with an example how the traditional approach
computes a pessimistic clock period. Consider a hypothetical
cyclical sequential circuit as shown in Figure 4. For the sake of
simplicity, we assume that both flip-flops in this circuit are of the
same kind with the same loading and identical delay dependency
curves. Furthermore, we assume that the circuit delay parameters
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Tc ij, Tsetup Tff i, TLogic ij max,, Tskew+ + +=
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Tff A B TDiff⋅( ) C+exp=

Table 1. Quality of Fit for Flip-flop Delay Model

Flip-flops 
types in  
library

Output 
Loads

Error

R-
Square

RMSE
(ps)

DFFNX1 .1pf .99476 1.4113
.05pf .99483 1.4023

DFFX2 .1pf .99913 .50861
.05pf .99919 .49134

DFFHQX4 .1pf .98554 1.9571
.05pf .98858 1.9542

DFFHQXL .1pf .99435 0.8251
.05pf .99619 .67761

Figure 3. Proposed Model for Flip-Flop Delay
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Figure 4. Effect On Tc considering variable Flip-flop delays



are as follows: Tff = 150ps, TLogic1= 700ps, Tsetup = 108ps, Tskew =
0ps.        

Based on these parameters and applying EQ 1 we obtain:
Tc12 = 700+150+108 = 958ps;   Tc21 = 560+150+108 = 818ps

Applying EQ 2 we get: Tc = max {958, 818} = 958 ps

However, it is possible to decrease TDiff for the first pipeline
stage which would translate into a higher Tff for Dff2. Since, the
clock period of the circuit is determined by the critical path in
stage 1, it is possible to increase Tff,2 for the non-critical path in
stage 2. As shown in Figure 5, it is possible for the Dff1 to operate
at point B and Dff2 to operate at point A rather than both operating
at the point C as suggested by the traditional approach. The time
period after considering these new operating points is calculated
as follows: 

Tc12 = 700+150+60 = 910ps;     Tc21 = 560+242+108 = 910ps
Tc = max {910, 910} = 910ps
Modelling of the flip-flop delay dependency on the arrival time

therefore has resulted in a reduction of the clock period by 48ps.
Thus, the actual silicon can run faster than predicted and the mis-
match is solely due to the inadequacy of the traditional model. It is
important to note that uncertainity in the data arrival time has
already been modelled by conservative delay characterization of
combinational path between flip-flops.

3.  Problem Formulation and Properties 

We now formulate the problem of finding the clock period of a
flip-flop based sequential circuit that takes into account the   delay
dependency on the arrival time relative to its clock:

(EQ 4)

     (EQ 5)

(EQ 6)

                        (EQ 7)

      (EQ 8)

The objective in the above formulation is to minimize Tc.
through the optimal allocation of all TDiff,ij in the circuit. From the
above formulation it is clear that Tc is a convex function in terms
of the optimization variables TDiff,ij. Though the proof of this con-
vexity is straightforward, it has significant implication on the opti-
mization problem and hence we include the proof in this paper. 

Theorem 1. Tc is a convex function with TDiff,ij as variables. 
Proof: 
We first observe that TDiff,j in (EQ5) is a convex function of

variables TDiff,ij as the minimum function retains convexity if its
arguments are convex. Also, Tff,j (EQ6) is convex as TDiff,j is con-
vex and exponential functions are convex. From this follows that
Tc,ij (EQ4) is convex as the sum of convex functions is a convex
function and consequently we find that Tc (EQ7) is a convex func-
tion as Tc,ij is convex and the maximum function also retains con-
vexity if its arguments are convex.

We now examine the properties of this optimization function
both when the delay of the logic stages are balanced and when
they are unbalanced.

Balanced Logic.
 We consider the circuit as shown in Figure 4. Since both the

pipeline stages are identical, we can replace the circuit by a single
pipeline stage as shown in the Figure 6, as far as the task of find-
ing clock period is concerned. Note that the circuit in Figure 6 is
simply the unrolled version of the circuit in Figure 4. The clock
period for the circuit in Figure 4 is given by:

(EQ 9)

To determine the minimum Tc we must satisfy .

Applying this criteria in EQ9, we obtain the condition

. This means that the flip-flop operates at the

point where the slope of the curve in Figure 5 reaches -1, as
shown by point D. This is intuitively clear since we can only
trade-off TDiff for Tff until the increase in Tff exceeds the decrease

in TDiff leading to the optimal operating point of .

Operating beyond this point would add more Tff than decreasing
TDiff and hence would increasing Tc. 

 The optimization space for Tc as a function of TDiff,1 and TDiff,2
for the circuit in Figure 7 with balanced loads is shown in Figure
7. Clearly, Tc is convex and its symmetric nature is due to the bal- Dff1 Tlogic,1 Tlogic,2Dff2

 Tf f     Tlogic1

 Tsetup  
  Tlogic2 Tsetup Tf f

f(TDiff)
   Tlogic1

TDiff f(TDiff)
 

(1)

(2)

Clk

TDiff
         

      

    Tactual

Tlogic2

Ttraditional
Figure 5. Typical Sequential Circuit and its timing

Tc ij, TDiff ij, Tff i, TLogic ij max,, Tskew+ + += i j n≤,( )∀

TDiff j, min TDiff ij,{ }= i n≤( )∀

Tff j, A B· TDiff j,⋅{ } C+exp⋅=

Tc max Tc ij,{ }{ }= i j n≤,( )∀

Objective  :   min Tc{ }

Dff1 Tlogic1

Clk
Figure 6. Equivalent circuit for Figure 4

Tc TLogic 11, TDiff 11, A B TDiff 11,⋅( )exp⋅+ +=

TDiff i,d
dTc 0=

TDiff i,d
dTff i, 1–=

TDiff i,d
dTff i, 1–=

Figure 7. Optimization Function Tc with Balanced Loads



anced stage delays TLogic,1 and TLogic,2. The optimization space
can be viewed as the maximum of two intersecting surfaces
defined by Tc,12 and Tc,21. From, this follows the useful observa-
tion that for the designs that are very balanced the traditional
method of defining Tsetup and Tff should be replaced with the defi-
nition of Tsetup and Tff corresponding to the negative unity gain
point of Tff Vs TDiff curve as shown by point D in Figure 5.

Unbalanced logic:
We now examine the case where the delay of the logic stages is

unbalanced, allowing reallocation between the flip-flop delays.
Assume in Figure 8 TLogic,2 > TLogic,1 then, the arrival time of the
flip-flop2 can be increased thus increasing its delay. Generally, it
is possible to decrease the TDiff for the critical path while this
decrease does not cause the delay of the next stage pipeline to
exceed the critical path itself. It is possible to show that the opti-
mal allocation for TDiff for minimum Tc will fulfill the condition:

. Figure 8 shows the optimization space Tc with

unbalanced loads. In this case, the minimum occurs for a smaller
TDiff,2 and larger TDiff,1.

4.  Proposed Solution Approaches

In this section, we describe three approaches used to solve the
above non-linear problem of finding the minimum valid clock
period. 

1. Sequential Quadratic Programming (SQP)
We solved the above problem using a non-linear optimizer,

treating the above optimization function as the minmax problem.
We use a Sequential Quadratic Programming (SQP) method in
MATLAB [4]. Modifications were made to the line search and
Hessian. In the line search an exact merit function ([6] and [7]) is
replaced with the merit function proposed by [8] and [9]. The line
search is terminated when the merit function shows improvement.
This method, while very general is not very suited for integration
with a timing analyzer. The method operates on a matrix that rep-
resents the connectivity of the circuit where each element Eij rep-
resents the maximum delay of the combinational path between
flip-flop j and flip-flop i. Each entry in the matrix therefore
requires a separate timing analysis run, leading to a high run time.
However, the results from this approach were used as reference to
check the results obtained with the other two approaches.

2. Rectilinear Manhattan Decent (RMD)
As the optimization function is convex, any decent in down-

ward direction approaches to the global minimum of the function.
We therefore repeatedly decrease the variable TDiff to which Tc is
most sensitive, by a small step. In the circuit, the most sensitive
TDiff can be identified by simply finding the critical path and

selecting the TDiff of the capturing flip-flop. Each time the vari-
able TDiff is decreased, the delay of the critical stage and the sub-
sequent stage are updated and a new critical path is selected. We
compare the new Tc with the previous Tc in each iteration and con-
tinue iterating until Tc increases by a greater amount that the step
size. The steps of the algorithm are as follows.
1. Calculate the critical path.
2. Decrease corresponding TDiff by a small step and update the

timing of the critical stage and the subsequent stage.
3. If the increase in new Tc is less than the step size, goto step 1

else, previous Tc was optimal.

3. Satisfiability Approach (SA)
This method performs a bounded binary search on the optimi-

zation space by testing whether the circuit can satisfy a given
clock period. We start with an initial upper and lower bound on Tc
and terminate the optimization process when the bounds con-
verge. This approach is described as follows:

a Tupperbound = max{TLogic,ij} + K (where K is a constant that
ensures the upper boundness)

b Tlowerbound = max{TLogic,ij}

c Tcurrent = mean {Tupperbound, Tlowerbound} 

d Pick an initial pipeline stage between two flip-flops and calcu-
late TDiff as the difference of Tcurrent and (Tff + Tlogicij) for the
corresponding pipeline.

e Using this TDiff, calculate Tff based on EQ3 for the next flip-
flop and propagate this effect through the circuit. 

f If at any stage TDiff becomes negative, then the circuit is not
able to function at Tcurrent. Change Tlowerbound = Tcurrent and
goto step 3.

g Else if the propagation of TDiff in the circuit converges, change
Tcurrent = Tupperbound and goto step 3.

h Continue iteration until Tupperbound and Tlowerbound converge.

It is important to note that in this method we compute TDiff
based on Tcurrent such that for all stages Tc,ij = Tcurrent. By comput-
ing TDiffs in this manner, we ensure that every path in the circuit is
critical. Each time we change a TDiff, based on a change in Tcurrent,
we impact the flip-flop delay of the next stage propagate this
change through the whole circuit. If there are cyclic paths in the
circuit, iterations may be required before the circuit stabilizes. The
circuit is said to satisfy the clock period Tcurrent, if all the TDiffs
remain unchanged from the previous iteration with none of them
are negative. If a TDiff becomes negative during the iterations, the
circuit cannot meet Tcurrent.

We now show that the optimization method reaches the global
minimum. Figure 9 shows the entire optimization space Tc. By,
calculating TDiffs based on Tcurrent, as mentioned earlier, we
ensure that every path in the circuit is critical. This corresponds to
solutions in the optimization space that lie on the black line in Fig-
ure 9. Henceforth, we shall refer this black line as the critical line.
It is clear that the global minimum is on this critical line. Also, in
the above proposed method we effectively test whether there exist
some intersection point between the Tcurrent surface and critical
line. In each iteration we change the bounds and hence Tcurrent in
such a way that we descend down the critical line is as indicated

TDiffid
dTffi

i
∏ 1=

Figure 8. Optimization Function Tc for Unbalanced Loads



by the arrow in Figure 9. Hence with each iteration our bounds
converge to the minimum point. This method can be argued as a
variant of steepest decent algorithm. Figure 9 shows the critical
line for a circuit as shown in Figure 9 with balanced loading. It is
noteworthy to clarify that the critical line might be a curve in a
multidimensional optimization space for Tc with unbalanced
loads.

5.  Short Path Problem Formulation and its 
Analysis

In this section, we first mention the traditional method of iden-
tifying short paths and then discuss the implication of variable
flip-flop delays on this problem. We then formulate the problem
of finding the maximum clock period such that all the short path
constraints are met.

In a traditional analysis, a hold time violation is reported when
the sum of the flip-flop clock to output delay and the minimum
combinational logic delay between the pipeline registers is less
than the sum of characterized clock skew and hold time of a flip-
flop:

  (EQ 10)

It is important to mention that the hold time of a flip-flop is a
constant with respect to data arrival time. As suggested earlier in
section 2, the clock to output delay of a flip-flop is not a constant
but a variable, and a function of data arrival. As the data arrival
time gets closer the clock, the delay of the flip-flop increases as
shown in Figure 3. This increase in Tff helps reduce the short path
violations as evident from EQ10. Thus, as we decrease the clock
period, the flip-flop delay increases and more flip-flops in a
design will meet short path constraint. 

We illustrate this effect using the circuit shown in Figure 4 with
following parameters, Tskew = 35ps, Thold = 225ps, TLogic,1 = 50ps
Traditional analysis assumes that Dff1 always operates at point C
in Figure 5. With this operation point a short path violation is
reported for the above case. But it is quite possible for DFF1 to
operates at point A, where the short path violation no longer
exists. In this case, the short path is analyzed pessimistically by
the traditional analysis, where as in other cases, the traditional
analysis may be optimistic. 

 We now formulate the problem of finding the maximum clock
period of a flip-flop based sequential circuit with no hold time
violations that takes into account flip-flop delay dependency on
the arrival time relative to its clock. 

    (EQ 11)

                    (EQ 12)

(EQ 13)

 (EQ 14)

 (EQ 15)

(EQ 16)

  Note that the above formulation finds the minumum clock
period such that there does exist at least one short path violation.
Hence Tc-  is the maximum clock period such that all hold time
constaints are met.

The solution of this problem as suggested in EQ16 is the lowest
frequency for which all the short path constraints are satisfied
whereas the solution of former problem in EQ8 is the highest fre-
quency for which all the long path constraints are satisfied. In Fig-
ure 2 these two frequency constraints fshort and flong are shown.
For any properly functional design fshort< flong to allow a region of
correct operation. By padding the short path delays, we essential
lower the lowest short path frequency and the amount of padding
determines the size of the feasible region of operation. 

6.  Results

The discussed methods discussed in Section 4 were imple-
mented and tested on ISCAS ‘89 sequential benchmark circuits.
We used the netlist as given by cbl.ncsu.edu and optimized them
using SYNOPSIS Design Analyzer[9] keeping the sequential cir-
cuit elements intact. Table 2 shows the runtime and the number
iterations for the three approaches discussed in Section 4. Table 2
presents the following information in column order: Circuit name,
number of flip-flops in that circuit, runtime for Sequential Qua-
dratic Programming (SQP), runtime for Rectilinear Manhattan
Decent (RMD), runtime for Satisfiability Approach (SA), number
of iterations for Rectilinear Manhattan Decent and number of iter-
ations in Satisfiability Approach. The three solutions reached
equivalent solutions, given the numerical accuracy of the analysis.

Figure 9. Optimization Function Tc

Tff i, TLogic ij min,, Tskew Thold i,+<+ i j n≤,( )∀

Tc ij, TDiff ij, Tff i, TLogic ij min,,+ += i j n≤,( )∀

TDiff j, max TDiff ij,{ }= i n≤( )∀

Tff j, A B TDiff j,⋅{ } C+exp⋅=

Tff i, TLogic ij min,, Thold i, Tskew+<+ i n≤( )∃

Tc max Tc ij,{ }= i n≤( )∀

Objective  :   min Tc{ }

δ

Benchmarks #FF

Runtime in seconds Iterations

SQP RMD SA RMD SA
s953 29 3.726 0.4110 0.02 46 21

s9234_1 211 245.1 6.88 0.04 367 21
s9234 228 207.05 4.3970 0.06 205 21

s838_1 32 4.87 0.14 0.02 46 21
s713 19 1.112 0.10 0.01 29 21
s641 19 1.21 0.091 0.02 29 21
s526n 21 1.522 0.11 0.01 36 21
s526 21 1.492 0.1 0.01 45 21
s400 21 1.452 0.16 0.01 147 21

s420_1 16 1.02 0.11 0.02 186 21
s382 21 1.252 0.11 0.01 64 21
s349 15 0.752 0.10 0.02 26 21
s344 15 0.731 0.08 0.01 26 21
s27 3 0.13 0.11 0.02 22 19

s13207_1 638 1192 23.405 0.23 26 21
s13207 669 1222 24.612 0.75 26 21

s15850_1 534 1021 19.89 0.22 100 21
s1238 18 0.531 0.06 0.04 26 21

Table 2. Comparing Runtime and Iterations of Three Approaches



In Table 3, we compare the exact solution obtained by model-
ling flip-flop delay dependencies on the data arrival time with the
traditional method when using various fixed Tsetup times on the
delay curve (Figure 1). Table 3, column 2 shows the result
obtained by modelling the flip-flop delay dependency using the
non-linear problem formulation and column 3, 4, 5 shows the
results obtained with traditional timing analysis using the 5%
delay point mentioned in Section 2, the delay change curve point
where d/dx = -1 mentioned in Section 4 and shown as D in Figure
5, and a constant Tff delay point as shown in Figure 1. The results
show significant improvement by modelling the flip-flop delay
dependency over the traditional approach. 

In addition to this we did compare our predicted highest long
path frequency with HSPICE simulation. This simulation was
done on some very smaller circuits that allowed for full SPICE
simulation. The flip-flop delays were characterized using the same
slopes at the input as seen in the HSPICE. The results are tabu-
lated in Table 4. We see that the predicted clock period matches
that with HSPICE results with a maximum deviation of 11ps and
average deviation of 5ps. 

7.  Conclusion

In conclusion, we have presented a new timing model for com-
puting the clock period of flip-flop based sequential circuits. The
timing analysis based on this models is more accurate as com-
pared to the traditional models as it accounts for flip-flop delay
dependencies on the data arrival time. We showed that the prob-
lem of finding the maximum clock period of a flip-flop based
sequential circuit considering these dependencies is a nonlinear
but convex optimization problem. We proposed three approaches
to solve this problem. Modelling flip-flop delay dependencies on
data arrival time, we obtained a decrease in clock period of 50-
60ps, which in current circuits with shallower pipelines can be a
significant part of the clock period. We have also formulated the

problem of finding the lowest frequency such that all the short
path constraints are met. Together these two formulation form the
basis of a static timing analyzer that models flip-delay dependen-
cies.
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Benchmarks
New 

Approach
5% Tsetup 

Time

d/dx = -1 
Tsetup 
Time

Constant 
Tff Tsetup 

Time 
s953 2774.2 2828 2825 2854

s9234_1 4504.2 4578 4555 4584
s9234 4484.2 4538 4535 4564

s838_1 6531.2 6588 6585 6614
s713 5404.2 5358 5355 5384
s641 5404.2 5358 5355 5384
s526n 2654.2 2708 2705 2734
s526 2634.2 2688 2685 2714
s400 2254.2 2308 2305 2334

s420_1 3574.22 3628 3625 3654
s382 2594.2 2648 2645 2674
s349 3264.2 3318 3315 3344
s344 3264.2 3318 3315 3344
s27 1192.2 1198 1195 1224

s13207_1 5034.2 5088 5085 5114
s13207 4994.2 5048 5045 5074

s15850_1 6344.22 6448 6445 6474
s1238 3344.22 3398 3395 3424

Table 3. Clock Period calculated by Modelling flip-flop delay 
dependency and Traditional approach Using various different 

Tsetup time (ps).  

Circuit Load Type Hspice Result Predicted 
Model Mismatch

Circuit A Balanced 2270ps 2265ps -5ps
Circuit B Unbalanced 2310ps 2313ps 3ps
Circuit C Balanced 692ps 681ps -11ps
Circuit D Unbalanced 2290ps 2291ps 1ps

Table 4. Comparison of HSPICE and Predicted results for long 
path analysis.


