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ABSTRACT 
In this paper we develop an approach to model interconnect 

delay under process variability for timing analysis and physical 
design optimization. The technique allows for closed-form 
computation of interconnect delay probability density functions 
(PDFs) given variations in relevant process parameters such as 
linewidth, metal thickness, and dielectric thickness. We express 
the resistance and capacitance of a line as a linear function of 
random variables and then use these to compute circuit moments. 
Finally, these variability-aware moments are used in known closed- 
form delay metrics to compute interconnect delay PDFs. We 
compare the approach to SPICE based Monte Carlo simulations 
and report an error in mean and standard deviation of delay of 1% 
and 4% on average, respectively. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids, B.8.2 [Performance 
and Reliability]: Performance Analysis and Design Aids 

General Terms 
Performance, Design 

1. INTRODUCTION 
With process technologies shrinking to the nanometer regime, 

the impact of process variation on performance has become 
extremely critical [I] .  Process variation can have a significant 
impact on both device (front-end of the line) and interconnect 
(hack-end of the line) performance [Z]. The effects of device 
parameter variations are typically captured hy using a comer-based 
analysis. However, it has been shown that the comer-based analysis 
cannot be applied to interconnect due to their context dependent 
nature [3]. It was shown in [3] that for two different interconnect 
structures, when metal thickness is increased, the delay of the one 
structure increases while that of the other structure may reduce. 
This makes it V ~ I Y  difficult to capture the impact of variability on 
interconnect delay using a traditional comer-based method. 

Recently, work was proposed to capture the effect of 
interconnect variability on timing. Reference [4] proposes a 
reduced order modeling approach that includes manufacturing 
variations. The authors suggest an analytical framework to perform 
variational analysis using model order reduction approaches such 
as PRIMA [SI. However, the proposed approach is computationally 
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Figure 1: Basics of moment-based delay metrics 
expensive due to the lack of closed-from expressions. A second 
drawback of the approach is that it can only be used to predict the 
change in interconnect delay due to deterministic values of the 
changes in the physical dimensions. In reality, the changes in the 
physical dimensions are not deterministic values but are random 
variables. Therefore, it is required that an interconnect analysis 
framework be developed that takes in probability density functions 
(PDFs) of the changes in physical dimensions and outputs the PDF 
of the change in the interconnect delay. In this paper, we propose a 
methodology to achieve this objective. 

This type of statistical interconnect modeling approach should be 
computationally efficient in order to be useful in incremental 
timing analysis and physical design optimizations. This is the 
reason why there has been substantial effort in developing closed- 
form metrics for nominal interconnect delay calculation [7-1 I]. The 
existing delay modeling methodology and some of the existing 
moment-based metrics for delay computation are summarized in 
Figure 1. In this paper, we incorporate variability into these metrics 
and propose the use of closed-form variational delay metrics that 
can be used to efficiently 'predict the mean and variance of 
interconnect delay in the presence of uncertainty in the geometric 
dimensions. 

2. VARIATIONAL INTERCONNECT METFUCS 
In this section we discuss ow approach for modeling 

interconnect delay while considering variability in the physical 
dimensions. In ow methodology, we express delay directly as a 
function of changes in the physical parameters. The advantages of 
such a formulation are that it preserves all correlations and that it 
can he very useful in evaluating delay sensitivities due to changes 
in various physical dimensions. Our approach is based on the 
observation that the interconnect delay distribution with process 
variation considered is Gaussian. This implies that interconnect 
delay can be expressed as a linear function of variations in physical 
dimensions. This point allows us to simplify complex expressions 
by truncating them to their linear terms. The basic methodology of 
delay computation remains the same as the conventional approach 
of Figure I.  The steps in our approach are summarized below. Each 
of these steps is then discussed in detail in the following sections. 
I .  Express electrical parameters (resistances and capacitances) in 

terms of changes in physical dimensions. 
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2. 

3. 

Express moments in terms of electrical parameters and hence 
in terms ofchanges in physical dimensions. 

Express interconnect delay as a function of moments and 
therefore in terms of changes in physical dimensions. Find 
mean and variance of delay distribution as a function of the 
statistics of variability in physical dimensions. 

For simplicity, in the following discussion, we consider 
variations only in metal width 0, metal thickness (T) and 
interlayer dielectric thichess (H). We explain our approach for 
these three dimensions but there is no restriction on the number of 
variables in our methodology. The approach can be easily extended 
to include other variation sources. We assume that the geometric 
variations are expressed as Gaussian distributions and that variation 
in one dimension is mutually independent with variations in other 
dimensions. 

2.1 Mapping Physical Dimensions to Electrical 
Parameters 

To first order, delay through an interconnect can be expressed as 
the RC product of its resistance and capacitance. With any change 
in the physical dimensions of the wire, its resistance and 
capacitance also change, causing interconnect delay to fluctuate. In 
order to model the impact of variability on wire delay, we need to 
capture the effect of geometric variations on the electrical 
parameters. The change in electrical parameters due to variations in 
geometric dimensions can he captured by the simple linear 
approximation shown in Equation 1: 

R = R,,, + a,A W + a,AT 
C = C,, + b,AW + b2AT + b,AH (1)  

Here, R,,, and C,, represent nominal resistance and 
capacitance values, computed when the wire dimensions are at their 
nominal or typical values. AW, AT, and AH represent the change in 
metal width, metal thickness, and ILD thickness respectively. The 
coefficients oi and 6, are the modeling coefficients in the linearized 
model. This linear approximation shows a high degree of accuracy 
for our purpose while remaining very simple to use. Linear models 
similar to Equation 1 have been proposed in earlier works on 
interconnect variability [12]. Reference [12] proposes a 
methodology that requires a one-time nominal capacitance 
extraction after which look-up tables are used to calculate delta 
capacitances due to geometric parameter variations. In this paper, 
we use empirical capacitance modeling equations [I31 to compute 
linear coefficients hut any look-up table-based linear modeling 
approach can be used in a similar manner. We now discuss how 
these electrical parameters can be mapped to the moments. 

2.2 Mapping Electrical Parameters to Moments 
Once interconnect dimensions are mapped to the circuit 

parameters, the next step is the computation of circuit moments. 
For deterministic resistance and capacitance values in an RC tree, 
the circuit moments can be computed easily by path tracing [6]. 
However, with interconnect variability the resistances and 
capacitances are now random variables. If changes in physical 
dimensions (AW, AT, etc.) are considered independent normal 
random variables, then the resistance and capacitance calculated 
using Equation 2 are correlated normal random variables. This adds 
complexity in the moment computation process especially for 
higher order moments. We illustrate moment computation with 
variability for the simple RC tree example shown in Figure 2. 

The first moment at any node can be expressed as a function of 
resistances Rj's and capacitances Cl's. For example, the first 
moment at node 3 (without considering variability) in the above 
circuit is given by 

R I i , ,  R i -  

- +_ IC' - zc2 - 

(2) 

$: 
Figure 2: A simple RC tree 

m: = m , ( R , , C , )  = -R, (C,  +C, + C , ) - R , C ,  

With variability, the resistances Ri and the capacitances C, are 
linear functions of random variables (AW,  AT, etc). 

R, +Rriw)AW+Rri,iAT 

Cr =C,imm) + C w ) A W +  C,i& + C,i#f (3) 
Here, R,[na,,,) and C;,.,) are nominal resistance and capacitance 

respectively. The coefficients Rjiw), C j , w )  model change in the 
resistance and capacitance with a change m width. Similarly, other 
coefficients capture the delta resistance and delta capacitance with 
respect to each physical dimension. All such coefficients can be 
computed as discussed in Section 2.1. Substituting R, and C,  from 
Equation 3 into Equation 2 gives 

m, = mlinom) + kwAW + k,AT + k & f  + k , , ( A W y  

+k, . (ATy ++k,(AWAT)+k,,,(AWWf)+k,,(ATAH) (4) 

Here mlinom) is the first moment evaluated at nominal resistance 
Riinom) and nominal capacitance C,,,,,. We express this by the 
following notation: 

ml[nonl = m,(Rj~"om,~C,,",,)) ( 5 )  

The coefficients in Equation 4 can be calculated by evaluating 
the first moment at different values of R's and C's. For example, 
the coefficient kw'can be computed by calculating the first moment 
when all resistances and capacitances are replaced by the 
corresponding 9 , w )  and Cj,w,. The expressions for each coefficient 
in terms of first moment computation are given below. 

kw = m$(Ri[w)2cri"o,"))+ m,(R,,,,,,,C,,,,) k,. = m,(Rr[w)>cl [w])  

kT = ~ ~ ( ~ , i ~ l ~ ~ j i ~ o m ~ ~ +  m,(R,,,, , ,Cj,, ,) k,. = ~ z ~ ~ z , r l ~ ~ , i r l ~  

k" = ~ , ( R 2 [ " 0 m 1 & f ) )  k w  = m l ( R , [ w ) ~ c ~ i l i ) )  

km =m,(Rj lw, ,C, i r , )+m,(R, i , , ,C , iw, )  k, = m,(R,,,, ,C,,, ,) 
(6) 

Equation 4 shows the first moment expression as a function of 
normal random variables representing variations in back-end 
physical dimensions. Equation 4 contains higher order terms and 
cross product terms, thereby implying that the distribution of first 
moments is not exactly Gaussian. However, experimentally, we 
find that the higher order terms are not significant and can be 
neglected without loss of accuracy (results are detailed later in this 
section). By neglecting higher order terms, the first moment 
expression from Equation 4 reduces to the following equation: 

(7) 

We can perform a similar analysis for the second moment. The 
second moment can be expressed as a function of resistances. 
capacitances, and the first moments. For example, the second 
moment at node 3 (without considering variability) for the circuit in 
Figure 2 is given by 

mi = m,(Rr ,C, ,m;)  = -R, (m$, + m:C, + m:C,) -  R,(m:C,) (8) 

m, = m,imm) + k,AW + k,AT + k,AH 
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With variations in physical dimensions, Ri's and Cj's can he 
replaced by their corresponding expressions from Equation 3 and 
similarly m,'s can be replaced by the expression given in Equation 
7. If we again keep only the linear terms, m2 can be expressed as 

m, = mi,noml + A,AW + A,AT + A,AH (9) 

Here m2(nm, is the second moment evaluated at nominal 
resistance Ri,noml, nominal capacitance C,,,,, and nominal first 
moment ml(nomp We express this by following notation. 

milnom) = m2(4(",> c<("am,,m,,",,) (10) 

The coefficients in Equation 9 can be calculated hy evaluating 
the second moment at different values ofR's, C's and m,'s. 

A, = m i  (Rr,,oml,C,,,,ml.k, )+ mi (Rr,mnml ,c,,,,,m,,,,,,) 

+ m* (R,,,, Ci,",, ,m,,,,,,) 

+ m i  (Rt,,,, ~ , ,"om,~m,,"oml 1 
(11) 

A, = m * ( R j , " ~ ~ ) , C ~ , " ~ ~ , , k ~ ) +  m ~ ( R j , " ~ - , , c ~ , ~ , . m , , " ~ ~ l )  

AH = m,(Rj,",,,,C,,",,,kH)+ m,(R,i"~~l,C,,, l ,m,,",,  i 
Here k,, kT, and kH can be computed as shown in Equation 6. We 

again point out that Equations 9 and 11 show only the linear 
coefficients. We can write a full expression of the second moment 
(similar to Equation 4 for the first moment), however we again find 
that the non-linear terms are not significant and can be ignored. 

To test the linearity assumption, we reconsider a simple 5 mm 
long line with a ground plane below the line. Nominal metal width 
and thickness of the line were chosen to be 0 . 8 p  and nominal ILD 
thickness was 0.55pm. We considered a 3-sigma tolerance of 
+ O . l p  in width and thickness and + O . O S p  in ILD thickness. 
Given these distributions of AW, AT, and AH, we plot the 
distributions of first and second moments at sink node with and 
without the non-linear terms. Figure 3 shows that the two curves 
are almost identical. The figures also show that the distributions of 
moments are Gaussian and hence the linear approximations of 
Equation 7 and 9 are extremely accurate. 

To this point we have provided expressions for the first and 
second circuit moments as a function of random variables (AW, 
AT, etc.). We have also shown that the moments have Gaussian 
distributions and the complicated expressions of the moments can 
be safely truncated to contain only linear terms. This allows us to 
keep the expressions simple and tractable. Furthermore we have 
demonstrated that the coefficients in the expressions of the 
moments can be easily computed in a manner similar to the 
nominal moment computation. We now tum OUI attention to 
mapping circuit moments to the delay metrics. 

2.3 Mapping  Moments to Delay Metr ies  
Once moments are expressed as functions of change in physical 

dimensions, the next step is to map the PDF of these moments to an 
interconnect delay PDF. Among existing delay metrics, we chose 
D2M [SI for our analysis in this paper. We explain our 
methodology for D2M but the approach is independent of the 
metric and can be applied to any other closed-form metric as well. 

Using D2M the delay in terms of moments can be expressed as 

. 

(m,,,., + k,AW + k,AT + k,,AHy 

m+-, + A,AW + A,AT + A,AH 
D2M = ln2" 

Analyzing the D2M expression in Equation 12 is difficult. 
However, if we write a series expansion of the expression and keep 
only the linear terms, then the D2M expression can be re-written as 

Figure 3: First (left plot) and second (right plot) moment 
distributions with and without considering non-linear terms. 

0 2 M  M.ani61.0p. S M . r l . 7 P  
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Figure 4: Delay distribution using statistical D2M compared to 
Monte Carlo simulations. 

D2M = ln2*- ( P 6 + s,Aw + STAT + SHAH) 
im,,,., 

S , = 2 k , _ A ,  S T = L - -  H -  

(13) 

Here Sw, S,, and S, can be calculated using 

AT s - 2 k ~  Am 2k 

","I 2m,,,,, ",-, 2%,", f4,"ml 2",, 

(14) 
To test the above expression, we reconsider the test case used in 

Figure 3. We performed ,1000 Monte Carlo simulations and 
measured 50% delay in each case. Figure 4 shows the distribution 
of delay measured from the simulations. The figure also shows the 
PDF for delay generated using Equation 13. It is clear from the 
figure that Gaussian nature of the delay distribution is captured 
well by the statistical D2M model. 

Equation 13 is a simple linear function of AW, AT, and AH. If 
AW, AT and AH are independent random variables with their mean 
values zero and standard deviations of aw, aT, and aH respectively, 
then the mean and standard deviation of delay in terms of the 
standard deviations in physical dimensions can be written as 

Sfdev(D2M) = In 2 **&Lo; ( 7  + S&; + S,$o,$) G 
For the example of Figure 4, the mean and standard deviation of 

delay computed using Equation 15 are 6 4 . 9 ~ s  and 1 . 7 ~ s  
respectively. These numbers match well with the 64 .7~s  and 1 . 7 ~ s  
found using Monte-Carlo simulations. The advantage of Equation 
13 lies in its simplicity, making it useful in evaluating delay 
sensitivity to variation in a particular physical dimension. 



3. EXPERIMENTAL RESULTS 
In this section, we test our methodology on various test cases. 

First, we test the Gaussian assumption (and hence the linearity 
assumption) when the .variations in physical dimensions are large. 
We chose a simple line with nominal metal width and thickness of 
0.6pm and nominal 1LD thickness of 0.45pn. We considered 3- 
sigma variations of 30% in all the three dimensions, which is 
slightly larger than the expected levels of back-end process 
variability [I]. Figure 5 compares the delay distribution using our 
approach with Monte Carlo simulations. The figure shows that 
even with large variations in geometric dimensions the delay 
distribution remains Gaussian, and the proposed model captures its 
mean and variance very accurately. 

For the next experiment, we revisit the test case discussed in 
Figures 3-4. Modeling this 5mm line using 30 identical segments, 
we look at the various nodes along the line and compute their 
distributions. Table I compares the mean and standard deviation 
computed using Monte Carlo simulations with the proposed model. 
The table shows that the model works well across all nodes. Node 
I O  shows a relatively large error in the mean and variance 
computation, but this error is primarily due to the error in D2M in 
nominal delay calculation for near-end nodes. Table I also shows 
the nominal delay computed using SPICE. We observe here that the 
means computed using Monte Carlo simulations are very close to 
the nominal delays for all the nodes, thereby implying that the 
Gaussian assumption is applicable for intermediate nodes as well. 

0.11 “,in., W.T.Ol“m. ILD.DUlm. L=fnm. m!ay==*p. 

@SlnP#CE UO“t.C.“O: M ~ ~ . ~ p * , * ~ . * ~  

1 , ~  --,,U, my: LIUn-Ulp. *-.e+, 1 II 

NomDelay 
(ps)(SPICE) 

Node 

D.lW IP.1 

Figure 5: Delay distribution using statistical D2M compared to 
Monte Carlo simulations 

Table I: Mean and standard deviation of delay distribution 
along various nodes in a simple 30-segment line 

Mean(ps) I Stdev (ps) 
SPICE I Model I SPICE I Model 

15 41.1 I 40.9 1 4 3 . 4  I 1 . 1  I 1.12 

20 1 55 I 54.8 I 55.2 I 1.46 I 1.43 
25 I 62.5 I 62.3 I 62.6 I 1.67 I 1.63 

Avg. Error 

I 30 I 64.9 I 64.7 I 64.9 I 1.71 I 1.69 I 

1.2% 3.8% 

We also generated a large set of random test cases hy varying 
nominal physical dimensions and their 3-sigma variabilities. 
Nominal linewidths and thicknesses were allowed to vary from 
0 . 4 ~  to 0.8pm while nominal ILD thickness could take values 
between 0 . 2 5 ~  and 0.55pm. For each test case, the 3-sigma 
variability in each of the three physical dimensions was randomly 
chosen to be between 10% and 30% of the nominal. Table II 
shows the error statistics for these 2900 test cases compared to 
Monte Carlo simulations. The 3-sigma variation in delay for this set 
of test cases ranged from 5% to 34% of the mean. This implies that 
even with the reverse trends shown by resistance and capacitance 
for a given change in physical dimensions, the delay variability due 
to hack-end process tolerances can he large and should be modeled 
accurately. 

4. CONCLUSIONS 
We describe a simple technique to extend popular closed-form 

moment-based delay metrics to consider hack-end process 
variation. These variational delay metrics are based on the use of 
linearized models of electrical parameters (R,C) that capture 
unceliainty in process parameters. These models arc then used to 
compute moments using known path-tracing techniques - a key 
point is that only terms linear with the random variables (W,T,H) 
were found to be necessruy to ensure good accuracy. These 
variation-aware moments were then used in accurate delay metrics 
such as D2M to capture the distribution of interconnect timing. We 
demonstrate good accuracy in the mean and standard deviation of 
the resulting interconnect delay distribution for a number of test 
cases (1.2% and 3.8% average error, respectively, for 2900 
randomly generated test cases). 
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