
1.2p

Single-Voo and Single-VT Su rowsy Techniques
for Low-Leakage High-Performance instruction Caches

Nam Sung Kimt, Krisztian Flautnert, David Blaauw, Trevor Mudge
Intel Corp.t, ARM Ltd.$, University of Michigan

nam.sung.kim Qintel.comt, kristian.flautnerQarm.com*, {blaauw, tnm}Qescs.umich.edu

ABSTRACT
In this p a p a we present a circuit technique rhar supports a super-
drowsy mode witlr a single- V D ~ In addition, we perform a detailed
working set analysis for various cache line update policies for plac-
ing lines in a drowsy stare. The analysis presents a policy for an
insrrucrion cache and shows ir is as good us or better than more
complex schemes pmposed in the past. Furthermore, as an alremna-
rive to using high-threshold devices to reduce the bitline leakage
through access rransistors in drowsy caches, we propose a gated
birline precharge technique. A single threshold process is now sufi-
cient. The gared precharge employs a simple but effective predictor
that almost completely hides any performance loss incurred by the
transitions between sub-bank. A 6 4 - e n q predictor with 3 bits per
entry reduces the run-time increase by 78%, which is as effective as
previous proposals that used content addressable predictors with 40
bits per emiy Overall, the combinarion of the proposed rechniques
reduces the leakage power by 72% wirh negligible (0.4%) run-time
increase.
Categories and Subject Descriptors:
B.3.2 [Memory Structures]: Design S t y l e s x a c h e memories;
8.7.1 [Integrated Circuitsl: Types and Design Sty lesMemory
technologies
General Terms: Design, Performance
Keywords: Low power. Leakage current

1. Introduction
Until very recently, only dynamic power has been a significant

source of power consumption, and Moore’s law has helped to con-
trol it. Shrinking processor technology below lOOnm has allowed,
and actually required, reducing the supply voltage to reduce
dynamic power consumption. However, smaller geometries with a
low threshold voltage exacerbate leakage, so static power is begin-
ning to dominate the power consumption equation. In particular, the
leakage power of on-chip caches is becoming a significant problem.
While dynamic power is dissipated by a cache suh-bank accessed.
static leakage power is dissipated by all the sub-banks even if they
are not accessed.

To alleviate this problem, transistors in on-chip caches could
he designed for low leakage, for example, by assigning them a high
threshold voltage, VT. or by controlling the V, with adaptive body
biasing or, if a better balance of speed and power is required, by
employing dual V,, or combining those circuit techniques with
microarchitectural controls 11-31. A complementary approach, the
drowsy cache, a low-leakage static memory circuit technique based
on dynamic voltage scaling, has received significant attention,
because of its memory state-preserving capability and short wake-
up latency.

There have been a number of earlier studies that have used
dynamic voltage scaling to reduce leakage power in instruction
caches [6, 81. In [6,71, a sub-bank-based cache leakage control was

Pcnnission to make digital or hard copies of a11 or pm of this work for
penonal or classrwm use is granted without fee provided that copies are
not made or distributed fur profit or commercial advantage and that copies
bear this notice and the full citation on the tint page. To copy otherwise.
or republish. to post an servers or IO redistribute to lists. requires prior
specific permission and/or a fee.
ISLPED’M, August 9-1 I . 2004. Newport Beach, CA, U.S.A.
Copyright 2004 ACM 1-581 13-929-2/04/0008 ... $5.00,

proposed with a nexr target sub-bank predictor. While this tech-
nique was effective at reducing both the cell and bit-line leakage
power with only a slight run-time increase, it has the potential to fre-
quently cycle an entire suh-hank on and off i f a small loop spans two
sub-hanks. In such cases, a significant fraction of leakage reduction
is offset by the frequent suh-bank switching to wake up whole cache
lines. In addition, the next target suh-bank predictor implementation
can require a conrent addressable memory (CAM) that is expensive
in terms of power and area. In [81, to reduce the penalties waking up
drowsy lines, a small number of prediction hits were added to the
BTB, but it still used the same cache line control policy and window
size as those reported by [SI, a scheme that was originally proposed
for data caches. However, instruction and data caches have different
access patterns or working set re-use characteristics. Hence, a policy
and window size optimized for data caches is almost cenajn to he
sub-optimal for instruction caches. Furthermore, [8] assumed that
high-V, access transistors were used to reduce the hit-line leakage
power that is responsible for 2090 of total leakage power in single-
polt static random access memories. Unfortunately, the high-Vi,
access transistors can increase instruction cache access time by
nearly 10%. which is critical in determining a microprocessor clock
cycle time.

I n this paper we propose solutions to these potential problems
as follows. First, we propose a single-VDD drowsy cache technique.
The circuit technique in [5-8] requires an extra supply voltage
source to support the stand-by or drowsy mode of cache lines; the
extra supply voltage source incurs additional interconnect routing
space. Second, we analyze inslNClion cache working sets and their
re-use characteristics, and evaluate trade-offs between performance,
the energy of cache control policies, and window sires or number of
cycles between re-entering drowsy states. This analysis reveals that
a simple policy and window size optimized for instruction caches
can minimize run-time increases, saving a substantial amount of
leakage power without employing any complex mechanisms.
Finally, we propose a gated bitline precharge technique to reduce
the bitline leakage power of instruction caches instead of using
high-VT access transistors, which slow down cache access. How-
ever, the on-demand gated precharge can result in significant aver-
age run-time increases. To minimize these, we propose a next target
suh-bank prediction technique that enables an inactive sub-bank just
before it is accessed. The proposed predictor is much simpler but as
effective as the CAM-based next target sub-bank predictor pre-
sented in [61.

The remainder of this paper is organized as follows. Section 2
explains the single-VDD super-drowsy cache circuit technique. Sec-
tion 3 investigates cache line update policies and window sizes for
instruction caches. Section 4 proposes a new class of next target
suh-bank predictor with a delayed precharge clock turn-off tech-
nique. Section 5 details the experimental methodology and presents
results for the proposed techniques. Section 6 concludes the paper.

2. Single-VDD Super-Drowsy Cache Circuit
Figure 1 shows a circuit for a single-VDD cache line voltage

controller to support drowsy caches. Once the “active” signal in Fig-
ure I is turned off the PMOS transistor supplying the nominal volt-
age is turned off and the cache line is placed into drowsy mode.
Since there is leakage current through memory cells connected to
“VVDD”, the voltage level of “VVDD” decreases. However, as the
“VVDD” reaches a minimum voltage level preserving memory state,
the Schmitt trigger inverter turns on the long-channel weak NMOS
transistor. The weak NMOS transistor is conservatively sized to
maintain a certain minimum level of the supply voltage where the

54

http://tnm}Qescs.umich.edu

Figure 1: SingleVD, cache line voltage conlroiier circuit.

Schmitt trigger inverter is triggered so that the memory state is not
lost.

To derive this minimum state-preserving voltage, we sweep the
supply voltage of B memory cell from 1 to OV using HSPICE. As the
supply voltage is scaled down, the voltages of the complementary
nodes of the memory cell approach each other and becoming indis-
tinguishable below 1OOmV. This implies that the memory cell state
has been destroyed. To keep a meaningful state, one cross-coupled
node should maintain logic "1" while the other should hold logic
"0". There is no way to recover the original logic state once the volt-
age level of both nodes become indistinguishable even if the supply
voltage level is fully restored. Therefore, the stand-by voltage must
he higher than the minimum state-preserving voltage. Allowing for
a 30 process variation for VT and, Len, our HSPICE studies indi-
cated that l65mV would be the minimum state-preserving voltage of
a 6 transistor memory cell [9]. However, we set the stand-by voltage
to 250mVto ensure against other noise issues such as supply voltage
fluctuation. At 250mV we can reduce the cell leakage power by
98%. This analysis shows that we can lower the supply voltage
much further than the voltage originally reported by [51 with the
same technology.

3. Super-Drowsy Cache Line Control Policy
3.1 Working Set Analysis

Figure 2-(a) shows a 32KB 2-way set associative data cache
working set re-use characteristics-the fraction of accesses that arc
the same as in the n-th previous 2K-cycle observation windows for
the sub-set of SPEC2K benchmarks (see Table 1 in Section 5 for the
processor simulation parameters). The results in the figure specify
what fraction of references in a current window are to lines that had
been accessed I, 2,8, or 32 2K-cycle windows before. Based on this
experimental results reproduced from [5], we were able to make two

observations on data caches. First, the average fraction of the work-
ing set of a 32KB 2-way set associative data cache is around 10% in
a 2K-cycle observation window. This implies that only a small frac-
tion of data cache lines need be in active mode, while the rest of the
lines can be in drowsy mode to reduce the data cache leakage power.
Second, more than 60% of the working sets in the ZK-cycle window
will not be used in next consecutive windows. This means that 40%
of the working set put into drowsy mode will not need to be woken
up in the near future; past accesses are not always a good indication
of the future cache line uses. In the case of equake, whose data
cache working set is very small (5%). the high working re-use char-
acteristic does not impact the run-time very much.

Unfortunately, the data cache working set characteristics,
which makes the policy in [5] work well, are not replicated for
instruction caches, because of the different access patterns of
instruction caches. When a 32KB 2-way set associative instruction
cache is used with a 2K cycle observation time window, the average
working set percentage of the instruction cache is similar to that of
the data cache (-IO%), but in many workloads such as cra f? and
vortex, the fractions of the working sets are very high, 28% and
21%, respectively. When the policy in [5] is employed for instruc-
tion cache leakage power control, the performance loss of those
workloads will be significant because more cache lines need to be
woken up in a fixed time window size. Figure 2-(b) shows the same
working set re-use characteristics for the same size instruction
cache. The fractions of the re-used working sets from the previous
windows in the instruction cache are much higher than those in the
data cache. In other words, the working sets of instruction caches
barely change for long cycles in many workloads. In other words,
the past access patterns for the instruction cache lines are good indi-
cators for the future usage of the instruction cache lines.
3.2 Policy and Window Size Effects

Considering the working set re-use characteristics and the high
memory impact of the instruction caches, the noaccess policy (only
lines that have not been accessed during a fixed time period are put
into drowsy mode) will have less run-time increases than the simple
policy (all lines in the cache are put into drowsy mode periodically).
The noaccess policy can be implemented with a hierarchical counter
implementation technique-ane global counter and a 2-bit counter
per cache line, see [4]. The "noaccess I N T and "simple I N T plots
in Figure 3 show the run-time increase and the fraction of drowsy
lines of the noaccess and simple policies. I n this experiments, we
used 2K, XK, 32K, and 12XK update window sizes and a I-cycle
drowsy-line wake-up latency. As expected, the "noaccess" policy
tracking the past access patterns of each cache line performs better
in terms of both the run-time increase and leakage reduction for all
workloads and update windows. The noaccess policy shows 2.4%,
0.9%. 0.1% and -0.0% average run-time increases with 91% 85%.
81%. and 78% average fractions of drowsy lines, while the simple

Figure 2: Working set re-use characteristics of a 32KB 2-way set associative data and instruction caches in (a) and (b).

55

.
0% I% 2% 3% 4% 5%

Run-time increase

Figure 3: Policy and window Size effects.

policy shows 4%, 2%, I%, and -0% average run-time increases
with 91%. 84%. 80%. and 78% average fractions of drowsy lines for
2K, 8K, 32K, and l28K window sizes. Compared to the simple pol-
icy, the noaccess policy reduces the run-time increases by 41%,
52%. 81%. and 88% with a slight decrease in fractions of drowsy
lines for 2K, 8K, 32K, and 128K window sizes.

In addition, "noaccess JITA INT" and "simple IITA I N T in
Figure 3 show the run-time increase and the fraction of drowsy lines
of the noaccess and simple policies with the jest-in-rime-activation
(JITA) of [8]. Except for the 2K window size case, "simple-JITA"
cannot outperform the noaccess policy without JITA. However, the
expcriment results shown in Figure 3 suggest that the 2K window
size used in [8] does not seem to be acceptable for high-perfor-
mance applications because of significant run-time increases. Con-
sidefing both the leakage reduction and run-time increases, the
noaccess policy with a window size between 8K and 32K cycles
seems to be the optimal range and policy for 32KB 2-way set asso-
ciative instruction caches. This is a much larger window size than
the one for the same size data caches.

In summary, rather than employing additional techniques to
reduce the run-time increases like those in [SI, we can achieve simi-
lar leakage reduction and better performance with the shove policy
and window size that has been optimized for instruction caches.

4. Super-Drowsy Gated Bitline Precharge
In data caches, high-\', access transistors are used to reduce

the bitline leakage, but it is a less desirable solution for instruction
caches, because the instruction cache access or cycle time is critical
in determining the cycle-time of the processor. To reduce the hitline
leakage power, we can employ a gated bitline precharge (or bitline
isolation) technique. In this technique, the bitlines of a currently
accessed sub-bank are precharged and the precharge enable signals
for the inactive suh-hanks are gated to isolate the bitlines from the
supply voltage. This reduces the bitline leakage power. However,
this technique--on-demand gated precharge-incurs an extra pen-
alty cycle when a cache access pointer transitions from one to
another sub-bank. According to [61, the run-time increases due to
those extra cycles can he up to 20% for some benchmark programs.

To reduce the run-time increase of the sub-hank transitions, we
need to identify their sources and enable the precharge signals of the
next target sub-bank in advance. The fundamental insight is that the
transitions between sub-banks are often correlated with specific
types of instructions. For example, the program counter, which is
the instruction cache access index or pointer, remains in small cache
regions for relatively long periods as a result of program loops. On
the other hand, there are often abrupt changes in the cache access
pointer on subroutine calls and returns. Most conditional branches
stay within the current cache region and it is rare that these branches
jump across page boundaries. In both SPEC2K integer and floating-
point workloads, the unconditional jumps are responsible for an
average of 40% of the sub-bank transitions. The sequential accesses

Figure 4 Next target sub-bank index generation,
to the next set in a different way (only for set associative caches)
also causes 40% of the transitions. Hence, unconditional jumps and
sequential accesses between two sub-bank boundaries are dominant
factors of the sub-hank transitions.
4.1 Next Target Sub-Bank Predictor

The sub-bank transitions triggered by the unconditional jumps
are quite predictable. The basic idea of the proposed next target suh-
hank predictor is as follows. When an instruction triggering the tran-
sitions is encountered (e.g., from the sub-hank 0x6 to 0x2). a next
target sub-hank predictor index (e.g., Ox7e) is generated from the
cache set index of the previous cycle access (e.g., Ox7f) and the
sub-bank index of the current cycle one (e.g., 0x6). With the predic-
tor index, the target sub-bank index (e.g., 0x2) is stored in the p n -
dictor; see Figure 4 for how to generate the predictor index. When
the cache set of 0x7f in the sub-bank 0x6 is accessed in later
cycles, the pointer gives the next target sub-hank index-0x2.
Since the instructions cache equipped with a single port only allows
the processor to access a single cache line in a cycle, the set address
instead of the individual instruction address is enough to detect the
sub-bank transitions and to index predictors.

Figure 5 shows the run-time increase vs. the predictor accuracy
for a sub-set of SPECZK integer workloads. We used a 32KB, 2-
way set associative instruction cache of 8x4KB sub-banks with 64-,
128.. 256.. 512.. and IK-entry predictors. As we increase the num-
her of the predictor entries, the average accuracy increases by 76%.
80% 83%. 86%, and 88% with 3.3% 0.9%. 0.7%. 0.6%. OS%, and
0.4% average run-time increases, respectively for 64-, 128.. 2 5 ,
512-, and IK-entry predictors. Compared to the run-time increase
without the predictors (on-demand gated hitline precharge), the pro-
posed predictor reduces the run-time increases by 72%. 78%. 81%

Figure 5: Run-time increase vs. predictor accuracy,

bzipl cram A gss 0 parscrfronsr x INTAVG

0.0% 5.0% 10.0% 15.0% 20.0%

Run-time increase

56

84%. and 87%. respectively for 64, 128-, 2 5 , 512.. and IK-enuy
predictors. For example, with a @-entry predictor which was the
smallest size predictor we studied, we could reduce the run-time
increases of bzip2, craJiy, and vortex from 16%. 5%. and 15% to
-0.0%. 2%. and 6%. respectively. For those workloads, we reduce
the run-time increases by -1M)%, 53%. 96%. and 61%. respectively.
Those results prove that a small size predictor is also very effective
to reduce the performance loss by the gated bitline precharge. Theo-
retically, this technique reduces the hitline leakage power by 88% in
the 8x4KB suh-hank instruction cache because only one suh-hank is
precharged among 8 sub-banks. However, it takes a finite time until
the floated hit-line conditions are balanced [IO]. Therefore, the
actual bit-line leakage saving is somewhat less than 88%. In previ-
ously proposed technique [61, a conrent addressable memory
(CAM), which is expensive, is used to store and match the full
address hits of instructions for the next target suh-bank predictor.
However, it turns out that we can achieve a similar accuracy with a
much simpler structure needing less hardware.

5. Experiments
5.1 Simulation Methodology

The architectural simulator used in this study are derived from
the SimpleScaladAlpha 3.0 tool set, a suite of functional and timing
simulation tools for the Alpha AXP ISA; see Table 1 for the proces-
sor simulation parameters. The processor microarchitectural param-
eters model a high-end microprocessor similar to an Alpha 21264.
To perform our evaluation we collected results from all 25 of the
SPEC2000 benchmarkst. For the circuit simulation parameters. we
used the 70nm BITM [I I] models, whose VDD and VT are 1.0 and
-0.2V. respectively. Our memory cell consumes 0.0778pW per
active hit at VDD = IV and 0.0167pW per drowsy bit at VDD =
0.25V with I-cycle and I15fl wakeup latency and energy penalties;
steady-state drowsy hit leakage power become 0.00387pW when
bit-line precharge devices are gored (or turned off). In addition, we
set the microprocessor clock cycle time to 12xF04 or 395ps to cal-
culate total energy consumption from total leakage power and
cycles.
5.2 Leakage Reduction and Run-Time Increase

Table 2 shows the run-time increase and the normalized leak-
age power of the proposed techniqucs-the noaccess drowsy policy
with the JITA, and the drowsy policy with the gated hitline pre-
charge (GPB in Table 2). A 32KB, 2-way set associative instruction
cache of 8 4KB sub-banks with a 32K-cycle update window size for
the nwaccess policy, an IK-entry predictor, and a 16-cycle tuming
off delay period for the gated bitline precharge is used; although
cache access pointer transits from one suh-hank to another, the pre-
charge circuits of the previous suh-bank remains turned on for a
specified number of cycles. The noaccess policy with the 32K-cycle
update window shows only a 0.07% run-time increase with the 60%
leakage power reduction assuming we reduces only cell leakage
power by voltage scaling. In the worst case, vortex shows a 0.85%
performance loss with a 21% leakage power saving. When we com-
bine the gated precharge with the noaccess policy to reduce the bit-

appiu
an

quake
facercc
galgel

Out of Order Ene-

o m
0.00
0.00
0.01

0.00

cution

0.01

Table 1: Processor simulation parameters.
4-wide fetch I decode I iswe I commit, 64
RUU, 32 LSQ, speculative scheduling

32 17

Functional Unit
(latencies)

0.38

Branch Prediction

41 28

Memory System
(latencies)

4 integer ALUs (I), 2 floating point ALUs (2).
1 integerMULT1DIV (3120). 1 floating point
MULTIDIVISQRT (4112124). 2 general mem-
ory pons

combined bimodal (4K-entry) I gshare (4K-
entry) w/ selector (4K~entry). 32-entry RAS,
512-entry 4-way BTB. Il-cycle misprediction
recovery

32KB ?-wiry 32-byte block LI inst (1) and data
caches(l),512KB 4-way M-byte blockunified
L2 cache (12). 128-entry fully associative inst
and daw TLB (28128) main memory (8018)

Table 2: Run-time increase and leakage power.
I run-time increase 1%) I normalized leakage 1%)

noaccess
. .

w/ GBP
0.04
2.01
0.03
0.01

0.09
3.84
0.02
0.07

0.01
0.01
1.10

0.17

0.00

79 69

34
19

28 13
41 30
30

13

line leakage power, the average run-time increase is 0.38% -less
than 0.5% performance loss-while reducing leakage power by
72%. In the worst case, vorrex shows the 3.84% performance loss
with 31% leakage saving. In particular, bzip2, gcc, rncf, parser, vpr,
applu, art, galgel, lucas, and swim - nearly the half of the entire
SPEC2K workloads - show negligible or no performance losses
while achieving more than 80% leakage power reduction for the
combined technique. In terms of the area overhead by the IK-entry
next target suh-bank predictor. it is less than 1.2% in terms of the
number of bits compared to the 32KB, 2-way set associative instruc-
tion cache.

6. Conclusion
In this paper, we present a single-VDD and a single-VT drowsy

cache design that reduces both memory cell and hitline leakage
power. The techniques are based on: 1) dynamic voltage scaling to
reduce the cell leakage and 2) gated precharge to reduce the bitline
leakage power. To control the cell leakage power of instruction
cache lines, we investigated various policies and window sizes and
we presented an optimal policy and window size derived from the
comprehensive working-set and re-use analysis of an instruction
cache. To reduce the hitline leakage power without using high-V,
transistors in memory cells, we proposed a gated bitline precharge
technique. To minimize the run-time impact, a simple hut effective
next target sub-hank predictor with a delayed suh-hank precharge
turn-off was proposed.

Reference

MT-CMOS." I!
131 F. Hamzaoelu.

121

[I] T. Douseki, et al., "A 0.5-IV MTCMOSiSlMOX S U M macro with
multi~VTH memory cells," IEEE SO1 Conf., 2000.
K. Nii, et al., "A low power SRAM using auto-backgate-controlled

et al.. "Analysis of dual-V, SRAM cells with full-
ILPED, 1998.

..
reduce cache leakage power," ISCA-jS.206i .-
K. Rautner, et al., "Dmwsy caches," ISCA, 2002.
N. Kim, et al., "Drowsy instruction caches," MICRO, 2002.

[5]
[6]
171 N. Kim. et al.. "Circuit and Microarchitectural Techniques for

Reducing Cache Leakage Power," IEEE TVLSI. Feb.. 2004
I. Hu, et al., "Exploiting program hotspots and code sequentiality for
insmction cache leakage management," ISLPED, 2W3.
C. Neau. et al.. "Ootirnal bod" bias selection for leakaee imorovement

[SI

191 . . , . I .
and process compensation &er different technology generations,"
ISLPED. 2003.

[IO] S. Yang. "Near-optimal precharging in high-performance nanoscale
CMOS caches.'' MICRO-36.2003,

[I l l http:llwww-dc~ice.cecs.berkeleyedu/-ptm

57

