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ABSTRACT 
In this p a p a  we present a circuit technique rhar supports a super- 
drowsy mode witlr a single- V D ~  In addition, we perform a detailed 
working set analysis for various cache line update policies for plac- 
ing lines in a drowsy stare. The analysis presents a policy for an 
insrrucrion cache and shows ir is as good us or better than more 
complex schemes pmposed in the past. Furthermore, as an alremna- 
rive to using high-threshold devices to reduce the bitline leakage 
through access rransistors in drowsy caches, we propose a gated 
birline precharge technique. A single threshold process is now sufi- 
cient. The gared precharge employs a simple but effective predictor 
that almost completely hides any performance loss incurred by the 
transitions between sub-bank. A 6 4 - e n q  predictor with 3 bits per 
entry reduces the run-time increase by 78%, which is as effective as 
previous proposals that used content addressable predictors with 40 
bits per emiy  Overall, the combinarion of the proposed rechniques 
reduces the leakage power by 72% wirh negligible (0.4%) run-time 
increase. 
Categories and Subject Descriptors: 
B.3.2 [Memory Structures]: Design S t y l e s x a c h e  memories; 
8.7.1 [Integrated Circuitsl: Types and Design Sty lesMemory  
technologies 
General Terms: Design, Performance 
Keywords: Low power. Leakage current 

1. Introduction 
Until very recently, only dynamic power has been a significant 

source of power consumption, and Moore’s law has helped to con- 
trol it. Shrinking processor technology below lOOnm has allowed, 
and actually required, reducing the supply voltage to reduce 
dynamic power consumption. However, smaller geometries with a 
low threshold voltage exacerbate leakage, so static power is begin- 
ning to dominate the power consumption equation. In particular, the 
leakage power of on-chip caches is becoming a significant problem. 
While dynamic power is dissipated by a cache suh-bank accessed. 
static leakage power is dissipated by all the sub-banks even if they 
are not accessed. 

To alleviate this problem, transistors in on-chip caches could 
he designed for low leakage, for example, by assigning them a high 
threshold voltage, VT. or by controlling the V, with adaptive body 
biasing or, if a better balance of speed and power is required, by 
employing dual V,, or combining those circuit techniques with 
microarchitectural controls 11-31. A complementary approach, the 
drowsy cache, a low-leakage static memory circuit technique based 
on dynamic voltage scaling, has received significant attention, 
because of its memory state-preserving capability and short wake- 
up latency. 

There have been a number of earlier studies that have used 
dynamic voltage scaling to reduce leakage power in instruction 
caches [6, 81. In [6,71, a sub-bank-based cache leakage control was 
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proposed with a nexr target sub-bank predictor. While this tech- 
nique was effective at reducing both the cell and bit-line leakage 
power with only a slight run-time increase, it has the potential to fre- 
quently cycle an entire suh-hank on and off i f a  small loop spans two 
sub-hanks. In such cases, a significant fraction of leakage reduction 
is offset by the frequent suh-bank switching to wake up whole cache 
lines. In addition, the next target suh-bank predictor implementation 
can require a conrent addressable memory (CAM) that is expensive 
in terms of power and area. In [81, to reduce the penalties waking up 
drowsy lines, a small number of prediction hits were added to the 
BTB, but it still used the same cache line control policy and window 
size as those reported by [SI, a scheme that was originally proposed 
for data caches. However, instruction and data caches have different 
access patterns or working set re-use characteristics. Hence, a policy 
and window size optimized for data caches is almost cenajn to he 
sub-optimal for instruction caches. Furthermore, [8] assumed that 
high-V, access transistors were used to reduce the hit-line leakage 
power that is responsible for 2090 of total leakage power in single- 
polt static random access memories. Unfortunately, the high-Vi, 
access transistors can increase instruction cache access time by 
nearly 10%. which is critical in determining a microprocessor clock 
cycle time. 

I n  this paper we propose solutions to these potential problems 
as follows. First, we propose a single-VDD drowsy cache technique. 
The circuit technique in [5-8] requires an extra supply voltage 
source to support the stand-by or drowsy mode of cache lines; the 
extra supply voltage source incurs additional interconnect routing 
space. Second, we analyze inslNClion cache working sets and their 
re-use characteristics, and evaluate trade-offs between performance, 
the energy of cache control policies, and window sires or number of 
cycles between re-entering drowsy states. This analysis reveals that 
a simple policy and window size optimized for instruction caches 
can minimize run-time increases, saving a substantial amount of 
leakage power without employing any complex mechanisms. 
Finally, we propose a gated bitline precharge technique to reduce 
the bitline leakage power of instruction caches instead of using 
high-VT access transistors, which slow down cache access. How- 
ever, the on-demand gated precharge can result in significant aver- 
age run-time increases. To minimize these, we propose a next target 
suh-bank prediction technique that enables an inactive sub-bank just 
before it is accessed. The proposed predictor is much simpler but as 
effective as the CAM-based next target sub-bank predictor pre- 
sented in [61. 

The remainder of this paper is organized as follows. Section 2 
explains the single-VDD super-drowsy cache circuit technique. Sec- 
tion 3 investigates cache line update policies and window sizes for 
instruction caches. Section 4 proposes a new class of next target 
suh-bank predictor with a delayed precharge clock turn-off tech- 
nique. Section 5 details the experimental methodology and presents 
results for the proposed techniques. Section 6 concludes the paper. 

2. Single-VDD Super-Drowsy Cache Circuit 
Figure 1 shows a circuit for a single-VDD cache line voltage 

controller to support drowsy caches. Once the “active” signal in Fig- 
ure I is turned off the PMOS transistor supplying the nominal volt- 
age is turned off and the cache line is placed into drowsy mode. 
Since there is leakage current through memory cells connected to 
“VVDD”, the voltage level of “VVDD” decreases. However, as the 
“VVDD” reaches a minimum voltage level preserving memory state, 
the Schmitt trigger inverter turns on the long-channel weak NMOS 
transistor. The weak NMOS transistor is conservatively sized to 
maintain a certain minimum level of the supply voltage where the 
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Figure 1: SingleVD, cache line voltage conlroiier circuit. 

Schmitt trigger inverter is triggered so that the memory state is not 
lost. 

To derive this minimum state-preserving voltage, we sweep the 
supply voltage of B memory cell from 1 to OV using HSPICE. As the 
supply voltage is scaled down, the voltages of the complementary 
nodes of the memory cell approach each other and becoming indis- 
tinguishable below 1OOmV. This implies that the memory cell state 
has been destroyed. To keep a meaningful state, one cross-coupled 
node should maintain logic "1" while the other should hold logic 
"0". There is no way to recover the original logic state once the volt- 
age level of both nodes become indistinguishable even if the supply 
voltage level is fully restored. Therefore, the stand-by voltage must 
he higher than the minimum state-preserving voltage. Allowing for 
a 30 process variation for VT and, Len, our HSPICE studies indi- 
cated that l65mV would be the minimum state-preserving voltage of 
a 6 transistor memory cell [9]. However, we set the stand-by voltage 
to 250mVto ensure against other noise issues such as supply voltage 
fluctuation. At 250mV we can reduce the cell leakage power by 
98%. This analysis shows that we can lower the supply voltage 
much further than the voltage originally reported by [51 with the 
same technology. 

3. Super-Drowsy Cache Line Control Policy 
3.1 Working Set Analysis 

Figure 2-(a) shows a 32KB 2-way set associative data cache 
working set re-use characteristics-the fraction of accesses that arc 
the same as in the n-th previous 2K-cycle observation windows for 
the sub-set of SPEC2K benchmarks (see Table 1 in Section 5 for the 
processor simulation parameters). The results in the figure specify 
what fraction of references in a current window are to lines that had 
been accessed I,  2,8, or 32 2K-cycle windows before. Based on this 
experimental results reproduced from [5], we were able to make two 

observations on data caches. First, the average fraction of the work- 
ing set of a 32KB 2-way set associative data cache is around 10% in 
a 2K-cycle observation window. This implies that only a small frac- 
tion of data cache lines need be in active mode, while the rest of the 
lines can be in drowsy mode to reduce the data cache leakage power. 
Second, more than 60% of the working sets in the ZK-cycle window 
will not be used in next consecutive windows. This means that 40% 
of the working set put into drowsy mode will not need to be woken 
up in the near future; past accesses are not always a good indication 
of the future cache line uses. In the case of equake, whose data 
cache working set is very small (5%).  the high working re-use char- 
acteristic does not impact the run-time very much. 

Unfortunately, the data cache working set characteristics, 
which makes the policy in [5] work well, are not replicated for 
instruction caches, because of the different access patterns of 
instruction caches. When a 32KB 2-way set associative instruction 
cache is used with a 2K cycle observation time window, the average 
working set percentage of the instruction cache is similar to that of 
the data cache (-IO%), but in many workloads such as cra f?  and 
vortex, the fractions of the working sets are very high, 28% and 
21%, respectively. When the policy in [5] is employed for instruc- 
tion cache leakage power control, the performance loss of those 
workloads will be significant because more cache lines need to be 
woken up in a fixed time window size. Figure 2-(b) shows the same 
working set re-use characteristics for the same size instruction 
cache. The fractions of the re-used working sets from the previous 
windows in the instruction cache are much higher than those in the 
data cache. In other words, the working sets of instruction caches 
barely change for long cycles in many workloads. In other words, 
the past access patterns for the instruction cache lines are good indi- 
cators for the future usage of the instruction cache lines. 
3.2 Policy and Window Size Effects 

Considering the working set re-use characteristics and the high 
memory impact of the instruction caches, the noaccess policy (only 
lines that have not been accessed during a fixed time period are put 
into drowsy mode) will have less run-time increases than the simple 
policy (all lines in the cache are put into drowsy mode periodically). 
The noaccess policy can be implemented with a hierarchical counter 
implementation technique-ane global counter and a 2-bit counter 
per cache line, see [4]. The "noaccess I N T  and "simple I N T  plots 
in Figure 3 show the run-time increase and the fraction of drowsy 
lines of the noaccess and simple policies. I n  this experiments, we 
used 2K, XK, 32K, and 12XK update window sizes and a I-cycle 
drowsy-line wake-up latency. As expected, the "noaccess" policy 
tracking the past access patterns of each cache line performs better 
in terms of both the run-time increase and leakage reduction for all 
workloads and update windows. The noaccess policy shows 2.4%, 
0.9%. 0.1% and -0.0% average run-time increases with 91% 85%. 
81%. and 78% average fractions of drowsy lines, while the simple 

Figure 2: Working set re-use characteristics of a 32KB 2-way set associative data and instruction caches in (a) and (b). 
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Figure 3: Policy and window Size effects. 

policy shows 4%, 2%, I%, and -0% average run-time increases 
with 91%. 84%. 80%. and 78% average fractions of drowsy lines for 
2K, 8K, 32K, and l28K window sizes. Compared to the simple pol- 
icy, the noaccess policy reduces the run-time increases by 41%, 
52%. 81%. and 88% with a slight decrease in fractions of drowsy 
lines for 2K, 8K, 32K, and 128K window sizes. 

In addition, "noaccess JITA INT" and "simple IITA I N T  in 
Figure 3 show the run-time increase and the fraction of drowsy lines 
of the noaccess and simple policies with the jest-in-rime-activation 
(JITA) of [8]. Except for the 2K window size case, "simple-JITA" 
cannot outperform the noaccess policy without JITA. However, the 
expcriment results shown in Figure 3 suggest that the 2K window 
size used in [8] does not seem to be acceptable for high-perfor- 
mance applications because of significant run-time increases. Con- 
sidefing both the leakage reduction and run-time increases, the 
noaccess policy with a window size between 8K and 32K cycles 
seems to be the optimal range and policy for 32KB 2-way set asso- 
ciative instruction caches. This is a much larger window size than 
the one for the same size data caches. 

In summary, rather than employing additional techniques to 
reduce the run-time increases like those in [SI, we can achieve simi- 
lar leakage reduction and better performance with the shove policy 
and window size that has been optimized for instruction caches. 

4. Super-Drowsy Gated Bitline Precharge 
In data caches, high-\', access transistors are used to reduce 

the bitline leakage, but it is a less desirable solution for instruction 
caches, because the instruction cache access or cycle time is critical 
in determining the cycle-time of the processor. To reduce the hitline 
leakage power, we can employ a gated bitline precharge (or bitline 
isolation) technique. In this technique, the bitlines of a currently 
accessed sub-bank are precharged and the precharge enable signals 
for the inactive suh-hanks are gated to isolate the bitlines from the 
supply voltage. This reduces the bitline leakage power. However, 
this technique--on-demand gated precharge-incurs an extra pen- 
alty cycle when a cache access pointer transitions from one to 
another sub-bank. According to [61, the run-time increases due to 
those extra cycles can he up to 20% for some benchmark programs. 

To reduce the run-time increase of the sub-hank transitions, we 
need to identify their sources and enable the precharge signals of the 
next target sub-bank in advance. The fundamental insight is that the 
transitions between sub-banks are often correlated with specific 
types of instructions. For example, the program counter, which is 
the instruction cache access index or pointer, remains in small cache 
regions for relatively long periods as a result of program loops. On 
the other hand, there are often abrupt changes in the cache access 
pointer on subroutine calls and returns. Most conditional branches 
stay within the current cache region and it is rare that these branches 
jump across page boundaries. In both SPEC2K integer and floating- 
point workloads, the unconditional jumps are responsible for an 
average of 40% of the sub-bank transitions. The sequential accesses 

Figure 4 Next target sub-bank index generation, 
to the next set in a different way (only for set associative caches) 
also causes 40% of the transitions. Hence, unconditional jumps and 
sequential accesses between two sub-bank boundaries are dominant 
factors of the sub-hank transitions. 
4.1 Next Target Sub-Bank Predictor 

The sub-bank transitions triggered by the unconditional jumps 
are quite predictable. The basic idea of the proposed next target suh- 
hank predictor is as follows. When an instruction triggering the tran- 
sitions is encountered (e.g., from the sub-hank 0x6  to 0x2). a next 
target sub-hank predictor index (e.g., Ox7e) is generated from the 
cache set index of the previous cycle access (e.g., Ox7f) and the 
sub-bank index of the current cycle one (e.g., 0x6). With the predic- 
tor index, the target sub-bank index (e.g., 0x2) is stored in the p n -  
dictor; see Figure 4 for how to generate the predictor index. When 
the cache set of 0x7f  in the sub-bank 0x6 is accessed in later 
cycles, the pointer gives the next target sub-hank index-0x2. 
Since the instructions cache equipped with a single port only allows 
the processor to access a single cache line in a cycle, the set address 
instead of the individual instruction address is enough to detect the 
sub-bank transitions and to index predictors. 

Figure 5 shows the run-time increase vs. the predictor accuracy 
for a sub-set of SPECZK integer workloads. We used a 32KB, 2- 
way set associative instruction cache of 8x4KB sub-banks with 64-, 
128.. 256.. 512.. and IK-entry predictors. As we increase the num- 
her of the predictor entries, the average accuracy increases by 76%. 
80% 83%. 86%, and 88% with 3.3% 0.9%. 0.7%. 0.6%. OS%, and 
0.4% average run-time increases, respectively for 64-, 128.. 2 5 ,  
512-, and IK-entry predictors. Compared to the run-time increase 
without the predictors (on-demand gated hitline precharge), the pro- 
posed predictor reduces the run-time increases by 72%. 78%. 81% 

Figure 5: Run-time increase vs. predictor accuracy, 
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84%. and 87%. respectively for 64, 128-, 2 5 ,  512.. and IK-enuy 
predictors. For example, with a @-entry predictor which was the 
smallest size predictor we studied, we could reduce the run-time 
increases of bzip2, craJiy, and vortex from 16%. 5%. and 15% to 
-0.0%. 2%. and 6%. respectively. For those workloads, we reduce 
the run-time increases by -1M)%, 53%. 96%. and 61%. respectively. 
Those results prove that a small size predictor is also very effective 
to reduce the performance loss by the gated bitline precharge. Theo- 
retically, this technique reduces the hitline leakage power by 88% in 
the 8x4KB suh-hank instruction cache because only one suh-hank is 
precharged among 8 sub-banks. However, it takes a finite time until 
the floated hit-line conditions are balanced [IO]. Therefore, the 
actual bit-line leakage saving is somewhat less than 88%. In previ- 
ously proposed technique [61, a conrent addressable memory 
(CAM), which is expensive, is used to store and match the full 
address hits of instructions for the next target suh-bank predictor. 
However, it turns out that we can achieve a similar accuracy with a 
much simpler structure needing less hardware. 

5. Experiments 
5.1 Simulation Methodology 

The architectural simulator used in this study are derived from 
the SimpleScaladAlpha 3.0 tool set, a suite of functional and timing 
simulation tools for the Alpha AXP ISA; see Table 1 for the proces- 
sor simulation parameters. The processor microarchitectural param- 
eters model a high-end microprocessor similar to an Alpha 21264. 
To perform our evaluation we collected results from all 25 of the 
SPEC2000 benchmarkst. For the circuit simulation parameters. we 
used the 70nm BITM [ I  I ]  models, whose VDD and VT are 1.0 and 
-0.2V. respectively. Our memory cell consumes 0.0778pW per 
active hit at VDD = IV and 0.0167pW per drowsy bit at VDD = 
0.25V with I-cycle and I15fl wakeup latency and energy penalties; 
steady-state drowsy hit leakage power become 0.00387pW when 
bit-line precharge devices are gored (or turned off). In addition, we 
set the microprocessor clock cycle time to 12xF04 or 395ps to cal- 
culate total energy consumption from total leakage power and 
cycles. 
5.2 Leakage Reduction and Run-Time Increase 

Table 2 shows the run-time increase and the normalized leak- 
age power of the proposed techniqucs-the noaccess drowsy policy 
with the JITA, and the drowsy policy with the gated hitline pre- 
charge (GPB in Table 2). A 32KB, 2-way set associative instruction 
cache of 8 4KB sub-banks with a 32K-cycle update window size for 
the nwaccess policy, an IK-entry predictor, and a 16-cycle tuming 
off delay period for the gated bitline precharge is used; although 
cache access pointer transits from one suh-hank to another, the pre- 
charge circuits of the previous suh-bank remains turned on for a 
specified number of cycles. The noaccess policy with the 32K-cycle 
update window shows only a 0.07% run-time increase with the 60% 
leakage power reduction assuming we reduces only cell leakage 
power by voltage scaling. In the worst case, vortex shows a 0.85% 
performance loss with a 21% leakage power saving. When we com- 
bine the gated precharge with the noaccess policy to reduce the bit- 
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Table 1: Processor simulation parameters. 
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Table 2: Run-time increase and leakage power. 
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28 13 
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line leakage power, the average run-time increase is 0.38% -less 
than 0.5% performance loss-while reducing leakage power by 
72%. In the worst case, vorrex shows the 3.84% performance loss 
with 31% leakage saving. In particular, bzip2, gcc, rncf, parser, vpr, 
applu, art, galgel, lucas, and swim - nearly the half of the entire 
SPEC2K workloads - show negligible or no performance losses 
while achieving more than 80% leakage power reduction for the 
combined technique. In terms of the area overhead by the IK-entry 
next target suh-bank predictor. it is less than 1.2% in terms of the 
number of bits compared to the 32KB, 2-way set associative instruc- 
tion cache. 

6. Conclusion 
In this paper, we present a single-VDD and a single-VT drowsy 

cache design that reduces both memory cell and hitline leakage 
power. The techniques are based on: 1) dynamic voltage scaling to 
reduce the cell leakage and 2) gated precharge to reduce the bitline 
leakage power. To control the cell leakage power of instruction 
cache lines, we investigated various policies and window sizes and 
we presented an optimal policy and window size derived from the 
comprehensive working-set and re-use analysis of an instruction 
cache. To reduce the hitline leakage power without using high-V, 
transistors in memory cells, we proposed a gated bitline precharge 
technique. To minimize the run-time impact, a simple hut effective 
next target sub-hank predictor with a delayed suh-hank precharge 
turn-off was proposed. 
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