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Abstract- In this paper, we dcvelop an approach for statistical 
modeling of crosstalk noise and dynamic delay degradation in coupled 
RC interconnects under process variations. The proposed model 
enables closed-form computation of mean and variance of noise peak 
and worst case dynamic delay for given variabilities in physical 
dimensions. We compare the proposed model against HSPICE Monte 
Carlo simulations and report an average error in mean and standard 
deviation of noise peak to be 2.7% and 3.7% respectively. 

1, INTRODUCTION 
The importance of process variation has been growing rapidly with 

the scaling of process dimensions [I] .  Lately, there has been a lot of 
work in modcling impact of process variations on performance and 
power. However, one area that has not been investigated in detail is 
the impact of process variation on reliability issues such as crosstalk 
noise, crosstalk delay, electromigration and IR drop. Process 
variations can affect these parameters significantly causing unexpected 
reliability failures in the manufactured products. 

In this work, we focus on modeling the impact of process variation 
on crosstalk noise glitch and delay change due to simultaneous 
switching (dynamic delay). It is not trivial to apply traditional comer 
based analysis to these problems because it is hard to identify a worst 

. case combination of process parameters that results in the worst case 
coupling noise. Even if we could identify a worst case combination, 
choosing a 3-sigma point for all parameters usually results in an overly 
pessimistic dcsign. In this paper, we develop a probabilistic model to 
account for interconnect process variations in crosstatk noise analysis. 
The proposed model allows us to express means and variances of noise 
peak and dynamic delay in a closed-form manner and hence can be 
very useful in statistical noise related physical design optimizations. 

Accurate statistical modeling of interconnect coupling requires 
accurate nominal models for interconnect delay, crosstalk noise and 
dynamic delay. Modeling interconnect delay has been a much studied 
topic and various highly accurate models exist in literature {3,4,5,6]. 
Similarly, various static noise models have also been proposed that 
exhibit a high degree o f  accuracy 17,XI. On the other hand, accurate 
estimation of dynamic delay still remains a challenging task. In this 
work, we develop a new nominal closed-form dynamic delay model 
that uses advanced waveform models like Weibull along with worst- 
case alignment to obtain peak crosstalk induced delay degradation. 
This new model along with existing static noise and delay models is 
thcn used to obtain statistical models of coupling effects under 
interconnect variations. 

The statistical modefing approach used in this work is similar to the 
variational delay metric proposed in Reference [2]. We also express 
noise and dynamic delay directly as a function of changes in the 
physical parameters. This formulation preserves all correlations and 
can be very useful in evaluating noise sensitivities due to changes in 
various physical dimensions. Our approach is based on the observation 
that if the variations in different physical dimensions (wire width, wire 
thickness and interlayer dielectric thickness etc.) are assumed to be 
independent normal random variables, then the coupling noise and the 
dynamic delay also tend to have Gaussian distribution. This allows us 
to express these distributions as a linear function of variations in 
physical dimensions. 
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2. BACKGROUND 
The first step in any statistical interconnect modeling approach is to 

capture the effect of geometric variations on the electrical parameters 
(resistances and capacitances) of the wires. It has been shown that this 
effect can be accurately captured by the simple linear approximation 
shown in Equation 1 [2 ] .  

Here, R,,, and C,,, represent nominal resisiance and capacitance 
values. AW, AT, and AH represent the change in metal width, metal 
thickness, and ILD thickness respectively. For simplicity, throughout 
the discussion in this work, we consider variations only in metal width 
(W), metal thickness (T) and interlayer dielectric thickness (H) but 
there is no restriction on the number of variables in our methodology 
and our approach can be easily extended to include other variation 
sources. The metal-to metal spacing is considered to be inversely 
correlated with variation in metal width. We' also assume that 
variations in various physical dimensions have Gaussian distributions 
and variability in one physical dimension is mutually independent with 
variations in other dimensions. 

Reference [2] shows that under these assumptions, circuit moments 
can also be expressed as linear functions of process variations. 

m ,  = m , ( -  + k , A  W + k , A T  + K A H  

m 1  = m l C m m  ) +  A w A W  + A , A T  + A , A H  

Here, m, and m2 represent first and second circuit moments under 
process variations. The linear coefficients of the circuit moments in 
Equation 2 can be easily computed using methodology discussed in 
[2]. We use these simple linearized models of circuit moments in this 
work. With this background, now we propose statistical noise model in 
the following section. 

3. STATISTICAL MODELING OF STATIC NOISE 
Static noise is defined as the noise pulse induced on a quite victim 

net due to switching of neighboring aggressors. To first order, the 
magnitude of static noise is directly proportiona1 to the ratio of 
coupling capacitance to ground capacitance. This causes noise 
magnitude to be very sensitive to variations in metal width and inter- 
wire spacing and small variations in these dimensions can result in 
large fluctuations in the noise peak. To demonstrate this claim, we 
consider a simple coupled RC interconnect testcase. The width (W), 
thickness (T), spacing ( S ) ,  and interlayer dielectric layer thickness (H) 
for the interconnect lines were randomIy chosen to be 0.4~, 0.75~, 
0.45~ and 0 . 3 ~  respectively. Moreover, the variation in W, T and H 
were taken to be 25%, 21%, 17% of the nominal values respectively 
(recall that we consider W and S to be perfectly inversely correlated). 
Figure I shows the spread of noise waveforms obtained using HSPICE 
Monte Carlo simulations, The figure shows that for this testcase, the 
noise peak varies From approximately 160 mV to 235 mV, thereby 
implying that variation in noise due to process variation can be 
significant and should be modeled accurately. 
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Fig 1: Crosstalk noise waveforms as obtained from Monte Carlo 
simulations. 

CLL CVn 

Fig 2: 6-node circuit lemplate for coupling noise estimation as  
used in Reference 171 

We use the nominal static noise peak model proposed in [7] for our 
analysis. This model approximates victim and aggressor RC 
distributed interconnects by a 6-node symmetnc template as shown in 
Figure 2. By solving this template, the noise peak induced on the 
victim line is given by 

(3) 

r x = C , . ( R Y + R r L ) ;  a=&. , J=t* 
Where 1, -1, tv -*, 

1, = C , , . R , + ( C v M  +C, ) . (R ,+R, , )+C, . (R ,  t R y L  + R F R )  

/ A  = 'RA+(c,4M + 'b~fl + 'rg)' (RA 

Further; tR is the rise time for the saturated ramp input signal at the 
aggressor line and C,r and C v c ~  are the effective capacitances for the 
right half of the aggressor and the victim line respectively as discussed 
in Reference [7]. 
In the prescnce of process variations, all resistances and capacitances 

shown in Figure 2 become correlated random variables. These random 
variables are modeled as linear hnctions of changes in physical 
dimensions as discussed in Equation I .  These resistances and 
capacitances can then he substituted in tx, tv and tA expressions. These 
expressions are then simplified by neglecting higher-order terms of 
AW,AT andAH. This assumption is highly accurate because ~ w . 4 ~  

and AH are small quantities and hence higher-order terms containing 
multiplications of these quantities can be safely ignored. Under these 
assumptions, tx, tv and tA are given by 

(4) 
t ,  =(Tx i. AT,)= T,  + kwAW +k,AT + k,AH 
t,,  =(Tv + A T Y ) = T L ,  + V ~ A W + V , A T + V , , A H  
I, =(T,  + A T , ) = T ~  + O , A W + U , A T + ~ , A H  

Here, Tx, TV, TA are nominal quantities. The results fiom Equation 4 
can now be substituted in the Noisepeak expression of Equation 3. This 
new expression is stepwise reduced by using Taylor series expansion. 
At each reduction step, higher ordcr product terms containing 
A W , A T  a n d m  are ignored. Finally, Noisepak is expressed as a 
linear function of A W ,  AT m d M .  

Nobe,, =(Noire,,, +ANoised) ( 5 )  

A = v v - T ,  ' = % " - T A  

The above formulation is linear with respect to variations in physical 
dimensions, thereby implying that for normal distribution functions for 
W, T and H,, the distribution of Noise& is also normal. Although, 
this result is obtained by making a number of approximations in 
performing the long reduction, we will show that this normal 
distribution result matches well with SPICE Monte Carlo simulations 
(shown in Section 5 ) .  

4. DYNAMIC DELAY MODELING 
Dynamic delay is defined as signal delay at the victim output when 

both aggressor and victim switch simultaneously. The aggressor 
switching can either slow down or speed up the victim depending on 
its switching polarity with respect to the victim. The victim gets 
slower in case of aut of phase switching and faster during in-phase 
switching. The delay push-out during out of phase switching can cause 
timing failures and hence must be accounted for in order to ensure 
correct operation of the circuit. 

4.1 Nominal Dynamic Delay Model 
In this section, we develop a new dynamic delay model that uses 

accurate waveform modeling along with worst-case alignmcnt to 
compute worst case delay noise. Our dynamic delay model is based on 
the superposition principle as in [10,14j. Hence, accurate estimation of 
dynamic delay requires accurate modeling of static noise and isolated 
victim switching waveform. Static noise can be modeled using 
approach discussed in the previous section. However, modeling of 
victim switching waveform is a more complex problcm. A Weibull 
function based waveform model was proposed in [13]. The Weibull 
function is given as: 

y = l - e  -M ( 6 )  

In order to fully characterize Weibull function, we match delay and 
slew of actual waveform with the above expression. If we denote the 
50% Vdd crossing time of the output waveform as D and 10% - 90% 
slew as S. Thcn we have: 

The values for D and S can bc computed analytically using any of 
the existing delay and slew metrics [3,4,5,6]. Now, these values of D 
and S can be used in Equation 7 to solve for a and p. However, the 
problem is that the Equation set 7 can only be solved by using 
numerical techniques. We make following simplifications to solve 
Equation 7 in closed form manner. 

By dividing S by D we get: 
, \  1 (In 10)'- ( I "  +)b 1 

-i J ~- 
0 (In 2 I.+ 

The above expression of S/D is evaluated for practical range of a 
(1.4-2.4) as obtained through simulations over a large set of tcstcases. 
SiD can now be fitted by a simple 2"d order polynomial. 

S (9)  -= 0.5392a2 -2.9274rw+5.124 
D 
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Fig 3: Output waveform of an RC circuit under ramp 
various analytical approximations of the waveform. 

input and 

Equation 9 can be easily solved to compute a in terms of S/D. The 
value o f  a thus obtained is then substituted in Equation 7 to estimate p. 
The values of a and p computed in this manner can now be used in 
Equation 6 to fully characterize the Weibull waveform model of an 
isolated victim. 

To venfj  this theory, we compare the analytical result with HSPICE 
simulations. Figure 3 shows that the Weibull wavefonn obtained using 
above method fits actual waveform very accurately. The figure also 
shows that simple ramp or exponential expressions are highly 
inaccurate and hence using them for dynamic delay prediction can 
result in highly erroneous results. 

Once the waveforms are modeled accurately, the next step in 
dynamic delay modeling is to superimposc the static noise on the 
isolated victim delay waveform. This superposition should be done in 
a manner that results in maximum dclay shift to model the worst-case 
switching behavior. This is achieved by aligning the aggressor and the 
victim switching such that the time when the static noise reaches its 
maximum value (NoisG,k) is matched to the time when the isolated 
victim delay waveform crosses the (OSVO~, + Nois+*) value [12]. 
For the Weibull model, the above condition results in the following 
equation for SO% switching time (150) of the victim waveform. 

The above expression of t5o can now be used to solve for worst case 
dynamic delay (xdelay) 

The *delsy thus computed gives the final expression for estimating the 
worst-case dynamic delay due to simultaneous switching of aggressor 
and victim wires. The overall modeling flow is summarized below. 

For a given coupled RC network, perform the following steps to 
compute worst-case dynamic delay: 

Compute slew (S) and delay (D) of an isolated victim line. 
Model the victim waveform by thc Weibull model. Computc 

Compute noise peak Noisepak using Equation 3. 
Use worst-case victim and aggressor alignment to calculate worst- 
case dynamic delay using Equation 11.  

4.2 Statistical Dynamic Delay Model 
In the previous section, we discussed a methodology to estimate 

worst-case dynamic delay in coupled RC interconnccts. For statistical 
modeling of delay noise, we begin with this nominal dynamic detay 
modeling methodology. Based on the above modeling flow, the first 
step is to compute slew (s) and delay (D) under process variations, 
These can be easily computed by using approach discussed in 

Weibull parameters a and 0 using Equations 7 and 9. 

Rcference [2]. The next step is to compute statistical expressions for a, 
fl and Noisepeak. Under a linear assumption, a, p, and Noise+ can be 
replaced with 

(12) 
a = anm + h a  

Noise ppuI = Noise ~ ,- f ANoise ~ 

P = P,, -k A$ 

Expressions for Moiseh have already been given in Equation 5 .  

Aa , AD are formulated by substituting S and D in Equations 7 and 9. 
After truncating to  retain only linear terms, the final reduced 
formulation for a and p is given by 

a=a,- (13) 

( 4 x O . S 3 9 2 ) . D -  ( 2 . 9 2 7 4 ) ' - 4 ~ 0 . 5 3 9 2 ~  5.124 -- ;I 

Here, D a n d  AS represent variabilities in delay and slew. 

Now, we can substitute a, p and Noisep+ in Equation 11.  Once again, 
under the Gaussian (linear) assumption the final expression for 
dynamic delay can be expressed as 

Equations 11  and 14 are our final results for nominal and statistical 
delay noise modeling. In the next section, these results are verified 
against HSPICE simulations. 

5. RESULTS 
In this section, we compare the static noise and dynamic delay 

models developed in Sections 3 and 4 against HSPICE simulations. 
All simulations were performed using IV, 130nm technology. 

First, we verify the statistical noise peak model proposed in 
Equation5 against HSPlCE Monte-Carlo simulations. As an example, 
we consider a coupled RC interconnect testcase and apply a saturated 
ramp input at the aggressor line with a rise,time of 1 lops. The width, 
thickness, spacing, and interlayer dielectric thickness are randomly 
taken to be 0 . 5 5 ~  0.44p, 0.4p, and 0.3~ respectively. The 3-a normal 
variabilities in the abovc mentioned parameters are also randomly 
chosen as l4%, 30% and 15% of the nominal values, reSpeCtiVdy. 
Again, spacing is considered to be in inverse relation to width (pitch is 
constant). Our model is based on the assumption that under normal 
distributions of process variations, the static peak noise distribution is 
also Gaussian. To test this assumption, we look at the quantile-quantile 
(9-9) plot of thc noise peak distribution obtained from HSPlCE 
simulations and compare it with the analytical model. Figure 4 shows 
this comparison and demonstrates that the q-q plots, of HSPICE 
simulations and the analytical model match very well. Figure 5 shows 
these results using histograms and Gaussian pdfs. Once again it is 
clear from this figure that noise peak distribution is Gaussian and the 
mean and variance of this distribution as obtained analytically match 
well with Monte Carlo results. 

Similarly, for testing ow dynamic delay model (Equations I 1  and 
14), we show the probability plots and q-q plots for one randomly 
selected testcase. These plots are shown in Figures 6 and 7 
respectively. The width, thickness, spacing, and interlayer dielectric 
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thickness for this arbitrarily chosen testcase are taken as 0 . 6 5 ~ ~  
0.5pm, 0.4pm, and 0 . 2 6 ~  respectively, and 3-0 variations for the 
above parameters were 23%, 1 1% and 11% of their nominal values 
respectively. Once again, it is clear from these figures that the 
Gaussian approximation is accurate and the analytical mean and 
standard deviation calculated under this assumption match well with 
SPICE simulations. 

Finally, we compare our results for 2300 random testcases generated 
by varying nominal physical dimensions and their 3-sigma 
variabilities. For each test case, the 3-sigma variability in various 
physical dimensions was randomly chosen to be between 10% and 
30% of the nominal. Tilble I shows the average error in mean and 
standard dcviation for these 2300 test eases compared to Monte Carlo 
simulations. The table shows that the model works extremely well. For 
these testcases, 3-sigma variation in noise peak ranged Erom 3% - 40% 
and the 3-sigma variation in dynamic delay ranged from 3% to 30% of 
the nominal values. These results imply that variability in coupling 
noise can be significant and must be modeled accurately. 

2300 testcases Mean (Noise peak) Stdev (Noise peak) 
Avg. Error. 2.7% 3.7% 

Mean (Dynamic Delay) Stdev (Dynamic Delay) 
AVP. Error 2.6% 12.4% 

SPICE. Ndsa Peal (mv) SPICE - Noise psaWnv) 

Fig 4: Q-Q plot for noise peak (Left) SPiCE results vs. Gaussian 
distribution (with same mean and stdev as obtained from SPICE 
simulations) with 45” reference line. (Right) SPICE result YS. 
analytical model with 45” reference line. 

SPICE Hontacplo k l F 9 l . k V .  S M s r = h V  - - GauJnlan Rt: “=a1 mv,slder=.*nv 
-“I mK&k Mean==1.7mv,SLdsr=v 

0.05 

N a b  p k  (mv 

Fig 5: Probability plot of static noise comparing SPICE Monte 
Carlo simulation results with Gaussian distributions. 

SPICE MO& Carlo: ~ s a m < S p s ,  Stdev.lfi.Zps 
-G”ianflt  maan=113pps, stdsv=6zps - - h a l y t i d m o d e l  ~ = 1 1 4 p ~ , S u l a r = B l p s  

D ~ l a y N d ~ 3  Ips) 

Fig 6: Probability plot of dynamic delay comparing SPICE Monte 
Carlo simulation results with Gaussian distributions. 

Fig 7: Q-Q plot for dynamic delay: (Left) SPICE results vs. 
Gaussian distribution (with same mean and stdev as obtained 
from SPICE simulations) with 45” reference line. (Right) SPICE 
result vs. analytical model with 45” reference line. 

6. CONCLUSIONS 
We proposed an analytical model to estimate mean and variance of 

coupling noise and dynamic delay in the presence of process 
variations. The proposed models are based on the assumption that 
distribution functions of crosstalk noise and delay can be 
approximated as normal random variables. This allows us to simplify 
the models by truncating complex expressions to retain only linear 
terms. We show that this assumption is very accurate and the mean 
and standard deviation as computed by the proposed model match well 
with SPICE simulations. Due to its effkiency and accuracy, the 
proposed analysis can be very useful in statistical noise related 
physical design optimizations. 
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