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ABSTRACT 

The progressive trend of fabrication technologies towards 
the  nanometer regime has created a number of new physi- 
cal design challenges for computer architects. Design com- 
plexity, uncertainty in environmental and fabrication con- 
ditions, and single-event upsets all conspire t o  compromise 
system correctness and reliability. Recently, researchers 
have begun to advocate a new design strategy called Bet- 
ter Than Worst-Case design that  couples a complex core 
component with a simple reliable checker mechanism. By 
delegating the  responsibility for correctness and reliability 
of the  design to the  checker, it becomes possible to build 
provably correct designs that  effectively address the chal- 
lenges of deep submicron design. In this paper, we present 
the  concepts of Better Than Worst-case design and high- 
light two exemplary designs: the DIVA checker and Razor 
logic. We show how this approach to system implementa- 
tion relaxes design constraints on core components, which 
reduces the  effects of physical design challenges and creates 
opportunities to optimize performance and power charac- 
teristics. We demonstrate the advantages of relaxed design 
constraints for the  core components by applying typical-case 
optimization (TCO) techniques to an adder circuit. Finally, 
we discuss the challenges and opportunities posed to CAD 
tools in the context of Better Than Worst-case design. In 
particular, we describe the additional support required for 
analyzing run-time characteristics of designs and the  many 
opportunities which are  created t o  incorporate typical-case 
optimizations into synthesis and verification. 

I. INTRODUCTION 
The advent of nanomcter feature sizes in silicon fabrication 

has triggered a number of new design challengcs for computer 
architects. These challenges include design complexity, device 
uncertainty and soft errors. It should be noted that these new 
challenges add to the many challenges that architects already 
face to scaIe system performance while meeting power and re- 
liability budgets. 

The first challenge of concern is design complexity. As sili- 
con feature sizes decrease, designers have available increasingly 
large transistor budgets. According to Moore’s law, which has 
been tracked for decades by the semiconductor industry, ar- 
chitects can expect that the number of transistors available 
to them will double every 18 months. In pursuit of enhanc- 
ing systcm performance, they typically employ these transis- 
tors in components that increase instruction level parallelism 
and reduce operational latency. While many of these transis- 
tors are assigned to  regular, easy-to-verify components, such as 
caches, many others find their way into complex devices that 
increase the burden of verification placed on the design team. 
For example, the Intel Pentium IV architecture (follow-on of 
the Peritiurn Pro) introduced a number of complex compo- 
nents inclnding a trace cache, an instruction replay unit, vector 
arithmetic units and staggered ALUs [ l Z ] .  These new devices, 
made affordable by generous transistor budgets, led to  even 
more challenging verification efforts. In a recent paper detail- 
ing the design and verification of the Pentium IV processor, it 

was observed. that its verification required 250 person-years of 
effort, a full threefold increase in human resources compared 
to the design of the earlier Pentirim Pro processor IS]. 

The second challenge architects face is the design uncertainty 
that is created by increasing environmental and process varia- 
tions. Environmental variations are caused by changes in tem- 
perature and supply voltage. Process variations result from 
device dimension and doping concentration variation that oc- 
cnr during silicon fabrication. Process variations are of par- 
ticular concern because their effects on devices are amplified 
as device dimensions shrink [Z]. Architects are forced to  deal 
with these variations by designing for worst-case device charac- 
teristics (usually, a 3-sigma variation from typical conditions), 
which leads to overly conservative designs. The effect of this 
conservative design approach is most evident by the extent to  
which hobbyists can overcIock high-end microprocessors. For 
example, AhlD’s best-of-class Barton 3200+ microprocessor is 
specified to run at 2.2 GHz, yet it has been overclocked up to  
3.1 GHZ 111. This is achieved by optirriizing device cooling and 
voltage supply quality and by tuning system perforruance to  
the specific process conditions of the individual chip. 

The third challenge of growing concern is providing protec- 
tion from soft errors that are caused by charged particles (such 
as alpha particles) that strike the bulk silicon portion of a die. 
The striking particle creates charge that can migrate into the 
channel of a transistor, and temporarily turn it on or off. The 
end result is a logic glitch that can potentially corrupt logic 
computation or state bits. While a variety of studies have been 
performed to demonstrate the unlikeliness of such events [E], 
concern remains in the architecture and circuit communities. 
This concern is fueked by the trends of reduced supply voltage 
and increased transistor budgets, both of which exacerbate a 
design’s vulnerability to soft errors. 

The combined effect of these three design challenges is that 
architects are forced to  work harder and harder just to  keep up 
with system performance, power and reliability design goals. 
The insurmountable task of meeting these goals with limited 
resource budgets and increasing timotc-market pressures has 
raised these design challenges to  crisis proportion. In this pa- 
per, we highlight a novel design strategy, called Better Than 
Worst-Case design, to  address these challenges. This new 
strategy cmbraces a design style which separates the concerns 
of correctness and robustness from those of performance and 
power. The approach decouples designs into two primary com- 
ponents: a core design component and a simple checker. The 
core design component is responsible for performance and power 
efficient computing, and the checker is responsible for verify- 
ing that the core computation is correct. By concentrating the 
concerns of correctness into the simple checker component, the 
majority of the design is freed from these overarching concerns. 
With relaxed correctness constraints in the core component, 
architects can more effectively address the three highlighted 
design challenges. We have demonstrated in prior work (high- 
lighted herein) that it is possiblc to  decompose a variety of im- 
portant processing problems into effcctive core/checker pairs. 
The designs wc have constructed are faster, cooler and more 
reliable than traditional worst-case designs. 

The remainder of this paper is organized as follows, Section 
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I1 overviews the Betier Than Worst-case design approach and 
presents two effective designs solutions: DIVA checker and Ra- 
zor logic. Better Than Worst-case designs have the unique 
property that their performance is related to the typical-case 
operation of the core component. This is in direct contrast 
to  worst-case designs, where system performance is bound by 
the worst-case performance of any component in the system. 
In Section 111, we demonstrate how Typical-Case Optimization 
(TCO) can improve the performance of a Better Than Worst- 
Case design. We show that a typical-case optimized adder 
is faster and simpler than a high-performance Koggc-Stone 
adder. The opportunity to exploit typical-casc optimization 
creates many new CAD challcngcs. In Scction IV, wc discuss 
the need for deeper c~bservability of run-time characteristics at 
the circuit-level and present a circuit-aware architectural sim- 
ulator that addresses this need. Section V suggests additional 
opportunities for CAD tools in the context of Better Than 
Worst-case design, particularly highlighting the opportunities 
brought by typical-case optimizations in synthesis, verification 
and testing. Finally, Section VI draws conclusions. 

11 BETTER THAN WORST-CASE DESIGN 

Better Than Worst-case design is a novel design style that 
has been suggested recently to  decoriple the issues of design 
correctness from those of design performance The name Bet- 
ter Than Worst-Caasi: design' undertines the improvcment that 
this approach represents over worst-case design techniques. 

PerformancelPawer 

Core Component 
Input Optiinired Output 

netffts and c o r m s  
operatianal Faults 

Fig. 1. Better Than Worst-Casc Dcsign Concept 

Traditional worst-case design techniques construct complete 
systems which must satisfy gnarantees of correctness and ro- 
bust operation. The previously highlighted design challengcs 
conspire to  make this an increasingly untenable design tcch- 
nique. Better Than Worst-Case dcsigiis take a markedly dif- 
ferent approach, as illustrated in Figure 1. In a Better Than 
Worst-case design, the core carriporient of the design is cou- 
pled with a checker mechanism that validates Lhc semantics 
of the corc opcratiorts. The advantage of such designs is that 
all efforts with respect to  correctness and robustness are con- 
centrated on the checker component. The performance and 
power cfficiency concerns of the design are relegated to the core 
component, and they arc addrcsscd indcpcndcntly of any cor- 
rectness concerns. By removing the correctness concerns from 
the core component, its design constraints are significantly rc- 
laxed, making this approach much morc anienable to  address 
physical design challenges. 

To find siiccess witJh a Bctter Than \%'orst-Casc design style, 
the checker corripont:nt niiist meet three design requirenients: 
i) it must be simple 60 implement lest the checker increase the 
overall design complexity, i i )  it must be capahle of validating 
all corc computatioii at its maximum processing rate lest the 
chcckcr slow system operation; and iii) it must be correctly 
implemeuted lest it introduce processing errors into thc sys- 
tem. In the following subsections we present two Better Than 
Worst-case dcsigns 1,hat dcnionstrate how simple checkers can 
meet these requirernents. The DIVA checker is an iristrriction 

'The term was coined by Bob Colwell: architect of the Intel 
Pentinin Pro and Pentiuni IV processors. 

checker that validates the operations of a microprocessor de- 
sign. Razor Logic is a circuit-timing checker that validates the 
timing of circuit-level coniputation. Using this capability to 
tolerate timing errors, a Razor design can eliminate power- 
hungry voltage margins. Additional examples of Better Than 
Worst-case designs (including Razor) have been highlighted in 
a recent issue of IEEE Computer magazine [9]. 

11-A. DIVA Instruction Checker 

At the University of Michigan we have been exploring ways 
to ease the verification burden of coniplex designs. The DIVA 
(Dynamic Implementation Verification Architecture) project 
has developed a clever microprocessor design that provides a 
near complete separation of concerns for performance and cor- 
rectness [5, 8, 171. The design, illustrated in Figure 2, employs 
two processors: a sophisticated core processor that quickly ex- 
ecutes the program, and a checker processor that verifies the 
same program by re-executing all instructions in the wake of 
the complex core processor. 

Optmzed for Opfimized for 
Performance Correctness 

I 
/ .' 

Fig. 2. Dynamic Implementation Verification Architecture 

The core processor is responsible for pre-executing the pro- 
gram to create the prcdiction stream. The prediction stream 
consists of all executed instructions (delivered in program or- 
der) with their input values and any memory addresses ref- 
erenced. In a typical design the cure processor is identical 
in every way to the traditional complex microprocessor core, 
up to the retirement stage of the pipeline (where register arid 
memory values are committed to state resources). The checker 
follows the core processor, verifying the activities of the core 
processor by reexecuting all program computation in its wake. 
The high-quality stream of instruction prcdicttons from the 
core processor is exploited to  simplify the design of the checker 
processor and to  speed up its processing. Pre-execution of the 
progratn on the complex core processor eliminates all the pro- 
cessing hazards (e.g., branch mispredictions; cache misses and 
data dependencies) that slow simple processors and necessitate 
complex microarchitectures. Thus, it is possible to build an in- 
order checker pipeline without speculation that can match thc 
retirement bandwidth of the core. In the event of the core 
producing a bad prediction value (e.g., due to a core design 
error), thc checker fixes the errant value, flushes all internal 
state from thc core processor, and then restarts the corc at the 
instruction following the errant one. 

We have shown through cycle-accurate simulation and tim- 
ing analysis of a physical checker design that our approach pre- 
serves systcni pcrformance while kccping low area overheads 
and powcr demands [5]. Fhrthcrmore, analysis suggcsts that 
the checker is a simple state machine that can be formally ver- 
ified [14], scaled in pcrformancc and possibly reused [18]. 

The simple DIVA checker addresses the concerns highlighted 
in the introduction, in that it provides significant resistance 
to design and operational faults: and providcs a convenient 
mechanism for efficient and inexpensive detection of manufac- 
turing faults. Specifically, if any design errors rernain in the 
core processor: they will be corrected (albeit ineficiently) by 
the checker processor. The iriipact of design parameter un- 
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certainty is mitigated since the core processor frequency and 
voltage can be tuned to typical-case circuit cvalnation latency. 
Thc DIVA approach uses the checker processor to  detect ener- 
getic particle strikes in the core processor. As for the checker 
processor, we have developed a re-executeon-error technique 
that allows the checker to  check itself [17]. 

11-B. Razor Logic 
Dynamic Voltage Scaling (DVS) has emerged as a powerful 

technique t o  reduce circuit energy dcmands. In a DVS system 
the application or the operating system identifies periods of 
low processor utilization that can tolerate reduced frequency. 
The switch to  a reduced frequency, in turn, cnahles similar 
reductions in the supply voltage. Since dynamic power scales 
quadratically with supply voltage, DVS technology can sig- 
nificantly reduce energy consumption with little impact on the 
perceived system performance. Razor Logic is an error-tolerant 
DVS technology [lo, 31. It incorporates timing error tolerance 
rneciianisins that eliminate thc nced for the arriple voltage mar- 
gins required by traditional worst-case designs. 

Optimized for 
Energy E~iciency 

Fig. 3. Razor Logic. The figure illustrates (a) the R m o r  
flip-Aip used to detect circuit timing errors, and (b) the 
pipeline recovery mechanism. 

Figurc 3a illustrates the Razor flip-flop, tlie mechanism by 
which Razor detects circuit timing errors. At tlie circuit level, 
a shadow latch augments each delay-critical flip-flop. A de- 
layed clock controls the shadow latch, which provides i). reliable 
second-sample of all pipeline circuit computations. In any par- 
ticular clock cycle, if the combiriatiorial logic meets the setup 
time of the niain latch, the main Ilq-flop and thc shadow latch 
will !atch the samc data and no error will be detected. In the 
event that the voltage is too low or the frcquency too high for 
the circuit computation to  meet the setup time of the niain 
latch, the main flip-Hop data will riot latch thc same data as 
the shadow latch. In this casc, the shadow latch data is moved 
into the main flip-flop where it becomes available to the next 
pipeline stage in the following cycle. To guarantee that the 
shadow latch will always latch the input data correctly, the 
allowable operating voltage is constrained at, design time so 
t,hat even under worst-case conditions. the combinational logic 
delay does not exceed t.he shadow latch’s setup tinic. 

Once a circuit-timing crror is detected, a pipeline recovery 
mechanism guarantees that timing failures will not corrupt the 
register and memory state with an incorrect value. Figure 3b 
illustrates the pipeline recovery mechanism. When a Razor 
flip-flop generates an error signal, pipeline recovery logic must 
take two specific actions. First, it generates a bubble signal to  
~iullify the coniputation in the failing stage. This signal indi- 

cates to the ncxt and subsequent stagcs that thc pipeline slot 
is empty. Second, recovery logic triggers a backward moving 
flush train which voids all instructions in the pipeline behind 
the errant instruction. Whey the Bush train reaches the start 
of the pipeline, the flush control logic restarts the pipeline at 
thc instruction following the failing instruction. 

While Razor cannot address the challenges posed by design 
complexity, it can effectively addrcss design uncertainty and 
soft errors, while at the same time providing typical-case opti- 
mization of pipeline energy demands. In a worst-case method- 
ology, design uncertainty leads to overly conservative design 
styles. In contrast, a Razor system can adapt energy and 
frequency characteristics to  the specific process variation of 
an individual silicon die, climinatiug the need for design-time 
remedies. Many soft errors manifest themselves as circuit-level 
tinling glitches, which are addressed by Razor in the same 
manner as subcritical voltagcinduced timing errors. We have 
implemented a prototype Razor pipeline in 0.18pm techriol- 
ogy. Siniulation results of the design executing the SPEC2000 
be~iclimarks showed impressive energy savings of up to  64%, 
while the energy overhead for error recovery was below 3% [IO]. 

. 

111. TYPICALCASE OPTIMIZATION 

Better Than Worst-case designs create opportunities to  op- 
timize the charactcristics of the core component based on a 
thorough analysis of operational characteristics. For exaniple, 
in a DIVA system, it is possible t o  reduce design time by func- 
tionally validating only the most likely operatioiial states of the 
core component. In a Razor design, the decreased energy re- 
quirements of frequently executed circuit paths mitigates the 
overall energy requirements of the design. We call this ap- 
proach to design Typical-Case Optimization (TCO). 

In this section we provide an example of the benefits of TCO 
by optimizing the typical-case latency of an adder circuit. We 
identify common carry-propagation paths, based on program 
run-time characteristics, and construct, a rnodifietl adder circuit 
with optimized latency characteristics for frcqucntly-executed 
carry-propagation paths. The resu!t;ing adder is simpler and 
typically faster than a high-performance Kogge-Stone adder. 

The first step in developing a TCO design is to  understand 
the relevant run-time characteristics, To optimize the carry- 
propagation delay of an adder design, we must first gain a 
detailed undcrstanding of carry-propagation distances for each 
bit position in an adder circuit, in the context of real pro- 
gram operations. To gather these measurements, we collected 
program addition vectors that were gcnerated by add, branch, 
load and store iris1 riictions invoked during the cxccution of the 
SPEC2000 benchmarks, and then ran them through a circuit- 
level representation of a 64-bit Kogge-Stone adder [E]. The 
simulator wc used to perform these measurements is presented 
in Section IV. The adder circuit was instrumented to collect 
data on i) the bit locations where carry propagations started, 
ii) the length of carry-propagation chains, and iii) the distrihu- 
tion of adder evaluation latency. To evaluate the added bene- 
fits uf TCO for real program data, we also performed a similar 
analysis on random vectors. 

Figures 4 and 5 show tlie carry-propagation results for SPEC 
2000 program data and random data, respectively. The sur- 
face graphs illustrate the carry-propagation distancc for each 
bit position of thc adder circoit. The X axis indicates the 
starting bit position of thc carry propagation, and the Y axis 
reports thc lcngth of the carry-propagation chain. For cach 
carry propagation, the Z axis gives the probability of a par- 
ticular carry-propagation initial bit position and length when 
executing the specified data set. 

As shown in Figure 4, real program data  exhibits priniarily 
short carry-propagation distances. 111 the least significant bits, 
propagation distances are nearly always less than 6 bits, whilc 
tlie inore significant bits rarely generate a carry that propa- 
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Fig. 4. Carry Propagation Distribution for Typical Data 

Fig. 5 .  Carry Propagation Distribution for Random Data 

gates for more than 2 bit positions. As expected, the proba- 
bility of a carry propagation for purely random input vectors 
is independent of the initial bit position, and the propagation 
distance probability decreases geometrically with the distance 
of the propagation, since each successive bit is equally likely to  
terminate the propagation chain. 

This carry-propagation analysis suggests that, for real pro- 
gram data, most carry propagations occurs in the least signifi- 
cant bits, arid are propagated only for a short distance. We can 
optimize an adder design for these characteristics by creating 
an efficient carry-propagation circuit optimized for frequently 
executed carry-propagation paths. Our 64-bit TCO adder is 
illustrated in Figure 6b, below the baseline Kogge-Stone adder 
of Figure 6a, a popular adder topology optimized for tninitnal 
worst-case latency. The TCO adder implements a dedicated 
carry-lookahead circuit for carry propagations of up to 6 bits 
in length and starting from any of the least-significant 9 bit 
positions of the adder. The remaining bit positions in the 
TCO adder implement a dedicated 2 bit carry propagation. 
Any computation requiring an unsupported carry-propagation 
pattern will eventually computc correctly on the TCO adder 
through the use of a fall-back ripple-carry backbone logic. 

Table I compares the relative performance of the baseline 
Kogge-Stone adder with the TCO adder. For each adder, the 
table lists the worst-case latency for any input vector (in gate 
delays), the average latency for all typical-case vectors and the 
average latency ovcr all random input vectors. 

Fig. 6. Adder Topologies. The figure illustrates the carry 
propagation logic for the (a) Kogge-Stone adder and (b) 
typical-case optimized adder. Solid lines represent; a 
carry-lookahead logic circuit: dashed lines represent a 
ripple-carry logic circuit. 

Latency (in gate delays) I Topology Adder I Worst-case Typical-Case Random 

Kogge-Stone 5.08 7.09 I TCO Adder I 1:8 I 3.03 ~ 3.69 1 
TABLE I 

RELATiVE PERFORMANCE OF ADDER DESIGNS 

The worst-case latency is indicative of the delay that would 
be expected from the adder if placed into a traditional worst- 
case style design. The worst-case performance of the Kogge- 
Stone adder is proportional to  ZogzN, where N is the number 
of bits in the adder computation. The worst-case computa- 
tion of the TCO adder is proportional to N ,  since some com- 
putation will require full evaluation of the ripple-carry adder 
backbone. As shown, thc worst-case performancc of the Kogge- 
Stone adder is much more favorable than the TCO adder, mak- 
ing the Kogge-Stone adder better for a worst-case style design. 

The typical-case latency represents the average delay for all 
the input vectors in the SPEC2000 test set to complete. The 
typical-case latency of the TCO adder is much less than the 
worst-case latency of even the highly optimized Kogge-Stone 
adder circuit. This resuIt is to  be expected since only a few 
evaluations require the use of the backbone ripple-carry logic. 
Moreover, the TCO adder performs better, on average, even 
on the random data set, since the optimized paths have enough 
impact to  contrast the rare worst-case scenarios. 

As expected, the results of the random-cme experiments on 
the TCO design, while better than worst-casc latency, can- 
not compete with the typical program data experiments. It 
is clear from the random-case results that understanding the 
typical-case operations of a component and then targeting the 
optimization to  these operations can have a dramatic effect on 
the typical-case latency of a corc component. 

As evidenced by these experiments, typical-case optimiza- 
tion of circuits can render significant improvements in typical- 
case performance, However, to  enable successful TCO designs, 
there is a need for new specialized CAD tools that are enhanced 
to eqmse  and explozb run-time operational characteristics. 
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Iv. SIMULATION AND ANALYSIS 

The developrrierit of Better Than Worst-case designs poses 
a whole new set of demands on CAD tools. One core require- 
ment of this approach is the need to gain a deeper apprecia- 
tion of which situations are typical and which situations are 
extreme and rare, when operating the system to be designed. 
For instance, for the adder circuit presented above, we need 
to  evaluate the most probable sources of carry chains and the 
most typical carry-propagation depths. Or; in the case of Ra- 
zor logic, it is important to be able to evaluate how frequently 
the recovery mechanisni intervenes to correct the system’s op- 
eration. Novel simulation solutions are needed to address this 
new class of concerns and evaluation demands. Moreover, new 
sirriulatioris tools must enable designers to evaluate the per- 
formance and correctness of these new systems, which often 
bring together circuit-level issues (such as voltage and process 
variations) with high-level solutions. To addross a t  least some 
of these simulation requiremcnts, UT have developed an archi- 
tectural simulation modeling infrastructure that incorporates 
circuit simulation capabilities. 

Speed 

a* a scope 

Circuit 
Simulator 

Observabifily 

U . - _ _ _ _ _ _ _ _ - - * -  

Fig. 7. Circuit-Aware Architectural Sirnulatiori 

Figure 7 illustrates the software architecture of our circuit- 
aware architectiiral simulator. The simulator model is based 
on the SirnpleScalar modeling infrastructure [4]. The Sim- 
pleScalar tool set is capable of modeling a variety of plat- 
forms ranging from simple unpipelined processors to  detailed 
dynamically scheduled microarchitectures with multiple levels 
of memory hierarchies. The architectural simulator takes two 
primary inputs: a configuration filc that defines the architec- 
ture model arid a prokram to execute. The corifiguratiori de- 
fines the stages of the pipeline, in addition to any special units 
that reside in those stages, such as branch predictors: caches, 
furictioiial units and bus interfaces. 

To siipport circuit-awascncss in thc architectural simulator, 
we embedded a circuit simulator (implemented in C++) within 
our SirnpleScalar models. The embedded circuit simulator 
references a combinational logic description of each relevant 
component of the architecture under evaluation, and interfaces 
with the architectural simulator on a stage-by-stage basis. At 
initialization, the circuit description of the various comporierits 
is loaded from a structural Vcrilog netlist. Concurrently, the 
interconnected wire capacitance is loaded from filcs provided 
by global routing and placement tools. In addition, a tcchnol- 
ogy model is loaded that details the switching Characteristics of 
the standard cell blocks used in t,hc physical iniplcmentathn 
During each simulation cycle, each logic block is fed a new in- 
put vector from the architectural simulator corresponding to 
the values latched at each pipelirie stage. With this informa- 
tion, t,lie circuit sirnulator can compute the relevant measures 
for the analysis under study: delay, total energy a.nd switching 
characteristics such as total current draw: 

The great chalienge in implcnient circuit-aware archit,ectural 

simulation is achieving acceptable simulation speeds. To meet 
this goal we have employed three domain-specific circuit simu- 
lation speed optimizations: i )  early circuit siniulation termina- 
tion based on architectural constraints, ii) circuit-timing mem- 
oization and iii) fine-grained instruction sampling. Using our 
optimized circuit-aware architectural simulator, we are able to 
examine the performance of a large program in detail in under 
5 hours of simulation. 

The first optimization is constraint-based circuit pruning. 
This optimization allows the architectural simulator to specify 
constraints upon which circuit simulator results are of interest 
to the architectural simulation ( i e . ,  they would perhaps cause 
an architectural-level control decision to be invoked). For ex- 
ample, a Razor simulation is interested in circuit latency only 
when the latency is known to be longer than the clock period 
of the current clock. The circuit simulator uses these con- 
straints to determine when to drop logic transition events that 
are guaranteed to not violate those constraints. 

The second optimization we implemented was circuit-timing 
menioization. We leverage program value locality to improve 
the performance of circuit-timing simulation. We construct a 
hash table that records (a.k.a. memoizes) the following map- 
ping for each circuit-level rnodule: 

(vectorstat,, vectari,, V d d )  --+ (delay,energy) 

Where vectorstate reprcsents the current state of the circuit, 
iiector,n is the current input vector, and V& is the current op- 
erating voltage. The hash table returns the circuit evaluation 
latency and the circuit evaluation energy. We index the hash 
table with a combination of vechwStat, and ,uector,,, because 
uectmstate encodes the current state of the circuit and vectorin 
indicates the input transitions. Combined with the current op- 
erating voltage Vdd the inputs to the hash table fully encode 
the factors that dctcrminc delay and energy. Whenever the 
hash table does not include the requested entry, full-scale cir- 
cuit simulation is performed to compute the delay and energy 
of the circuit computation. The result is then inserted into 
the hash table with the expectation that later portions of the 
program will generate similar vectors. 

Finally, we employed SirnPoint analysis to  reduce the num- 
ber of instructions we needed to process in order to make 
clear judgments about program perforrriance characteristics 
[7 ] .  SimPoiiit summarizes whole program behavior and greatly 
reduces simulation time by using only representative sample 
blocks of code. 

V. SYNTHESIS A N D  VERIFICATION 

Circuit-aware architectural simulation is only a small exam- 
ple of new solutions in computer-aidcd design software to re- 
spond to the new design challenges described above and the 
trends towards designs optimized for typical case scenarios. 

In the synthesis domain, the traditional approach has bcen 
to characterize library corriponents and modules by their worst- 
case metric values. For instance, given a specific feature size 
and operating voltage, the characterizing metrics would re- 
port the worst-case propagation delay and power consump 
tion. While these metrics have worked well in the past to 
design conservative systems that operate correctly under any 
possible condition, they are too lirriiting in modern designs 
whcrc pcrformaiice demands shaving off any extra margins. 
As an example, design teams must overrule worst-case metrics 
of corriponerits in isolation and focus on their electrical char- 
acteristics in the context of the system where they are used. 
The lack of synthesis software that can fully exploit these extra 
margins poses a rriuch higher demand on thc cnginccring team 
that has to manilally itcrate multiple times through the syn- 
thesis process to achieve timing closure and t o  satisfy power 
and performance requirements. 



In a Better-Than-Worst-case scenario synthesis cell libraries 
must characterize components by cost mctrics distributions, 
instead of single data points. For instance, the delay of a com- 
ponent, for a given set of operating conditions, could be sim- 
plified as a set of discrete intervals of delay values versus the 
probability of the component stabilizing within that delay. In 
relation to  the traditional approach, the delay value that is 
met with probability 1 corresponds to the delay value reported 
by a traditional synthesis library. Synthesis software slioirld 
support the designer in selecting a desired level of confidence 
in the cost metrics of the components for different portions of a 
design. In general, the checker portion of the design should be 
designed using the most conservative metrics, while the high- 
performance portion could use more aggressive selections. The 
use of statistical analysis in CAD software has been mostly 
in the area of analog design [ll: 131; recent work by Agarwal 
incorporates process variation effects in the statistical analysis 
of clock skews [Z]. These are all initial attempts of evaluat- 
ing design parameters using statistical means, while in a TCO 
design methodology statistical techniques must be much more 
pervasive in all aspects of the design process. 

Moreover, component characterization and optimized design 
of macr-modules could allow for extra optimizations if based 
on "typical" data sets, as in the addcr example of Section 111. 
Enabling designers to  explore this additional opportunity re- 
quires specialized sirriulation software that summarizes results 
in distribution curves appropriate for the synthesis process. 

While the synthesis of typical-case systems poses mostly a 
new set of challenges to CAD software, the burden of func- 
tional verification could be alleviated in the new methodology. 
Today, the challenge of design verification is to guarantee that 
a system is functionally correct under any possible input stim- 
uli. On one hand, sirnulatiowbased software can only provide 
a confidence in design correctness that is limited to  the specific 
set of tests run on the system; on the other hand, formal and 
semi-formal verification tools struggle in tackling the complex- 
ity of current designs, and can typically only focus on small 
modules and macro-blocks of thc system. In a TCO design 
setting, verification h a s  the opportunity to prioritize its focus: 
the checker portion of the design demands the highest level of 
correctness, while the focus for the high-perfurmarice portion 
is on typical-case correctness. The benefit is that the simpler! 
smaller checker portion of the design lends itself more easily 
to formal verification, as it is the case for the DIVA architec- 
ture of Section 11-A [14]. In contrast, the high-performance, 
complex portion is more suitable to simulation-based verifi- 
cation where simulation tests are mostly focused on the typ- 
ical, most frequently-used execution scenarios. Architectures 
where checker and performance portions are not a s  easily sep- 
arable, an example 0 1  which is the Razor architecture, can still 
benefit from the conceptual separation between verification- 
critical and verification-typical portions within the design. For 
instance, in the Razor design, most Verification efforts should 
focus on the execution paths through the shadow latches. 

Testing presents new challenges as wells as new opportunities 
when faced with TCO designs. Once again, the most critical 
portion to  be tested is the checker part of a design. Because 
of its simpler architccture, i t  is easier to obtain a complete 
and compact set of rests for this portion. Once the checker 
is verified, the high performance design can often be tested 
by running the system with the operational checker, and the 
checker itself can be used to evaluate the quality of the die. 
An analysis of the testability of the DIVA architecture was 
presented in j171. Complex TCO systems, however, present 
a whole set of new challenges for testing. For instance, it is 
even more critical that the checkcr is fully tested than in tra- 
ditional designs, since in TCO systems thc high-performance 
components arc expected to  bc more faulty than traditional 
designs. Moreover, when the TCO systems target the sepa- 

ration between correctness and performance through complex 
new devices, such as the high specialized Razor latches, novel 
ad-hoc testing techniques need to be developed. 

VI. CONCLUSIONS 
In this paper we have discussed Better Than Worst-case 

design methodology: A new approach to designing high per- 
formance, complex digital systems that defeats the challenges 
poscd by the increasingly high integration and small feature- 
size trends of the semiconductor industry. We discussed two 
design solutions within this domain, the DIVA checker and the 
Razor logic. We also showed an adder design example that re- 
alizes typical-case optimization and performs better than tra- 
ditional worst-case optimized solutions in the context of Better 
Than Worst-Case designs. While this novel design methodol- 
ogy is gaining increasing interest from the design community, i t  
also requires a rc-evaluation of the driving optimization goals 
in CAD tools by posing a whole new set of challenges, and 
sometimes opportunities, in synthesis, verification and testing, 
some of which have been highlighted. 
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