
Opportunities and Challenges for Better Than Worst-case Design

Todd Austin, Valeria Bertacco, David Blaauw and Trevor Mudge

Advanced Computer Architecture Lab
The University of Michigan

razor@eecs.urnich.edu

ABSTRACT

The progressive trend of fabrication technologies towards
the nanometer regime has created a number of new physi-
cal design challenges for computer architects. Design com-
plexity, uncertainty in environmental and fabrication con-
ditions, and single-event upsets all conspire t o compromise
system correctness and reliability. Recently, researchers
have begun to advocate a new design strategy called Bet-
ter Than Worst-Case design that couples a complex core
component with a simple reliable checker mechanism. By
delegating the responsibility for correctness and reliability
of the design to the checker, it becomes possible to build
provably correct designs that effectively address the chal-
lenges of deep submicron design. In this paper, we present
the concepts of Better Than Worst-case design and high-
light two exemplary designs: the DIVA checker and Razor
logic. We show how this approach to system implementa-
tion relaxes design constraints on core components, which
reduces the effects of physical design challenges and creates
opportunities to optimize performance and power charac-
teristics. We demonstrate the advantages of relaxed design
constraints for the core components by applying typical-case
optimization (TCO) techniques to an adder circuit. Finally,
we discuss the challenges and opportunities posed to CAD
tools in the context of Better Than Worst-case design. In
particular, we describe the additional support required for
analyzing run-time characteristics of designs and the many
opportunities which are created t o incorporate typical-case
optimizations into synthesis and verification.

I. INTRODUCTION
The advent of nanomcter feature sizes in silicon fabrication

has triggered a number of new design challengcs for computer
architects. These challenges include design complexity, device
uncertainty and soft errors. It should be noted that these new
challenges add to the many challenges that architects already
face to scaIe system performance while meeting power and re-
liability budgets.

The first challenge of concern is design complexity. As sili-
con feature sizes decrease, designers have available increasingly
large transistor budgets. According to Moore’s law, which has
been tracked for decades by the semiconductor industry, ar-
chitects can expect that the number of transistors available
to them will double every 18 months. In pursuit of enhanc-
ing systcm performance, they typically employ these transis-
tors in components that increase instruction level parallelism
and reduce operational latency. While many of these transis-
tors are assigned to regular, easy-to-verify components, such as
caches, many others find their way into complex devices that
increase the burden of verification placed on the design team.
For example, the Intel Pentium IV architecture (follow-on of
the Peritiurn Pro) introduced a number of complex compo-
nents inclnding a trace cache, an instruction replay unit, vector
arithmetic units and staggered ALUs [l Z] . These new devices,
made affordable by generous transistor budgets, led to even
more challenging verification efforts. In a recent paper detail-
ing the design and verification of the Pentium IV processor, it

was observed. that its verification required 250 person-years of
effort, a full threefold increase in human resources compared
to the design of the earlier Pentirim Pro processor IS].

The second challenge architects face is the design uncertainty
that is created by increasing environmental and process varia-
tions. Environmental variations are caused by changes in tem-
perature and supply voltage. Process variations result from
device dimension and doping concentration variation that oc-
cnr during silicon fabrication. Process variations are of par-
ticular concern because their effects on devices are amplified
as device dimensions shrink [Z]. Architects are forced to deal
with these variations by designing for worst-case device charac-
teristics (usually, a 3-sigma variation from typical conditions),
which leads to overly conservative designs. The effect of this
conservative design approach is most evident by the extent to
which hobbyists can overcIock high-end microprocessors. For
example, AhlD’s best-of-class Barton 3200+ microprocessor is
specified to run at 2.2 GHz, yet it has been overclocked up to
3.1 GHZ 111. This is achieved by optirriizing device cooling and
voltage supply quality and by tuning system perforruance to
the specific process conditions of the individual chip.

The third challenge of growing concern is providing protec-
tion from soft errors that are caused by charged particles (such
as alpha particles) that strike the bulk silicon portion of a die.
The striking particle creates charge that can migrate into the
channel of a transistor, and temporarily turn it on or off. The
end result is a logic glitch that can potentially corrupt logic
computation or state bits. While a variety of studies have been
performed to demonstrate the unlikeliness of such events [E],
concern remains in the architecture and circuit communities.
This concern is fueked by the trends of reduced supply voltage
and increased transistor budgets, both of which exacerbate a
design’s vulnerability to soft errors.

The combined effect of these three design challenges is that
architects are forced to work harder and harder just to keep up
with system performance, power and reliability design goals.
The insurmountable task of meeting these goals with limited
resource budgets and increasing timotc-market pressures has
raised these design challenges to crisis proportion. In this pa-
per, we highlight a novel design strategy, called Better Than
Worst-Case design, to address these challenges. This new
strategy cmbraces a design style which separates the concerns
of correctness and robustness from those of performance and
power. The approach decouples designs into two primary com-
ponents: a core design component and a simple checker. The
core design component is responsible for performance and power
efficient computing, and the checker is responsible for verify-
ing that the core computation is correct. By concentrating the
concerns of correctness into the simple checker component, the
majority of the design is freed from these overarching concerns.
With relaxed correctness constraints in the core component,
architects can more effectively address the three highlighted
design challenges. We have demonstrated in prior work (high-
lighted herein) that it is possiblc to decompose a variety of im-
portant processing problems into effcctive core/checker pairs.
The designs wc have constructed are faster, cooler and more
reliable than traditional worst-case designs.

The remainder of this paper is organized as follows, Section

0-7803-8736-8/05/$20.00 02005 TEEE. 1-2 ASP-DAC 2005

mailto:razor@eecs.urnich.edu

I1 overviews the Betier Than Worst-case design approach and
presents two effective designs solutions: DIVA checker and Ra-
zor logic. Better Than Worst-case designs have the unique
property that their performance is related to the typical-case
operation of the core component. This is in direct contrast
to worst-case designs, where system performance is bound by
the worst-case performance of any component in the system.
In Section 111, we demonstrate how Typical-Case Optimization
(TCO) can improve the performance of a Better Than Worst-
Case design. We show that a typical-case optimized adder
is faster and simpler than a high-performance Koggc-Stone
adder. The opportunity to exploit typical-casc optimization
creates many new CAD challcngcs. In Scction IV, wc discuss
the need for deeper c~bservability of run-time characteristics at
the circuit-level and present a circuit-aware architectural sim-
ulator that addresses this need. Section V suggests additional
opportunities for CAD tools in the context of Better Than
Worst-case design, particularly highlighting the opportunities
brought by typical-case optimizations in synthesis, verification
and testing. Finally, Section VI draws conclusions.

11 BETTER THAN WORST-CASE DESIGN

Better Than Worst-case design is a novel design style that
has been suggested recently to decoriple the issues of design
correctness from those of design performance The name Bet-
ter Than Worst-Caasi: design' undertines the improvcment that
this approach represents over worst-case design techniques.

PerformancelPawer

Core Component
Input Optiinired Output

netffts and c o r m s
operatianal Faults

Fig. 1. Better Than Worst-Casc Dcsign Concept

Traditional worst-case design techniques construct complete
systems which must satisfy gnarantees of correctness and ro-
bust operation. The previously highlighted design challengcs
conspire to make this an increasingly untenable design tcch-
nique. Better Than Worst-Case dcsigiis take a markedly dif-
ferent approach, as illustrated in Figure 1. In a Better Than
Worst-case design, the core carriporient of the design is cou-
pled with a checker mechanism that validates Lhc semantics
of the corc opcratiorts. The advantage of such designs is that
all efforts with respect to correctness and robustness are con-
centrated on the checker component. The performance and
power cfficiency concerns of the design are relegated to the core
component, and they arc addrcsscd indcpcndcntly of any cor-
rectness concerns. By removing the correctness concerns from
the core component, its design constraints are significantly rc-
laxed, making this approach much morc anienable to address
physical design challenges.

To find siiccess witJh a Bctter Than \%'orst-Casc design style,
the checker corripont:nt niiist meet three design requirenients:
i) it must be simple 60 implement lest the checker increase the
overall design complexity, i i) it must be capahle of validating
all corc computatioii at its maximum processing rate lest the
chcckcr slow system operation; and iii) it must be correctly
implemeuted lest it introduce processing errors into thc sys-
tem. In the following subsections we present two Better Than
Worst-case dcsigns 1,hat dcnionstrate how simple checkers can
meet these requirernents. The DIVA checker is an iristrriction

'The term was coined by Bob Colwell: architect of the Intel
Pentinin Pro and Pentiuni IV processors.

checker that validates the operations of a microprocessor de-
sign. Razor Logic is a circuit-timing checker that validates the
timing of circuit-level coniputation. Using this capability to
tolerate timing errors, a Razor design can eliminate power-
hungry voltage margins. Additional examples of Better Than
Worst-case designs (including Razor) have been highlighted in
a recent issue of IEEE Computer magazine [9].

11-A. DIVA Instruction Checker

At the University of Michigan we have been exploring ways
to ease the verification burden of coniplex designs. The DIVA
(Dynamic Implementation Verification Architecture) project
has developed a clever microprocessor design that provides a
near complete separation of concerns for performance and cor-
rectness [5, 8, 171. The design, illustrated in Figure 2, employs
two processors: a sophisticated core processor that quickly ex-
ecutes the program, and a checker processor that verifies the
same program by re-executing all instructions in the wake of
the complex core processor.

Optmzed for Opfimized for
Performance Correctness

I
/ .'

Fig. 2. Dynamic Implementation Verification Architecture

The core processor is responsible for pre-executing the pro-
gram to create the prcdiction stream. The prediction stream
consists of all executed instructions (delivered in program or-
der) with their input values and any memory addresses ref-
erenced. In a typical design the cure processor is identical
in every way to the traditional complex microprocessor core,
up to the retirement stage of the pipeline (where register arid
memory values are committed to state resources). The checker
follows the core processor, verifying the activities of the core
processor by reexecuting all program computation in its wake.
The high-quality stream of instruction prcdicttons from the
core processor is exploited to simplify the design of the checker
processor and to speed up its processing. Pre-execution of the
progratn on the complex core processor eliminates all the pro-
cessing hazards (e.g., branch mispredictions; cache misses and
data dependencies) that slow simple processors and necessitate
complex microarchitectures. Thus, it is possible to build an in-
order checker pipeline without speculation that can match thc
retirement bandwidth of the core. In the event of the core
producing a bad prediction value (e.g., due to a core design
error), thc checker fixes the errant value, flushes all internal
state from thc core processor, and then restarts the corc at the
instruction following the errant one.

We have shown through cycle-accurate simulation and tim-
ing analysis of a physical checker design that our approach pre-
serves systcni pcrformance while kccping low area overheads
and powcr demands [5]. Fhrthcrmore, analysis suggcsts that
the checker is a simple state machine that can be formally ver-
ified [14], scaled in pcrformancc and possibly reused [18].

The simple DIVA checker addresses the concerns highlighted
in the introduction, in that it provides significant resistance
to design and operational faults: and providcs a convenient
mechanism for efficient and inexpensive detection of manufac-
turing faults. Specifically, if any design errors rernain in the
core processor: they will be corrected (albeit ineficiently) by
the checker processor. The iriipact of design parameter un-

1-3

certainty is mitigated since the core processor frequency and
voltage can be tuned to typical-case circuit cvalnation latency.
Thc DIVA approach uses the checker processor to detect ener-
getic particle strikes in the core processor. As for the checker
processor, we have developed a re-executeon-error technique
that allows the checker to check itself [17].

11-B. Razor Logic
Dynamic Voltage Scaling (DVS) has emerged as a powerful

technique t o reduce circuit energy dcmands. In a DVS system
the application or the operating system identifies periods of
low processor utilization that can tolerate reduced frequency.
The switch to a reduced frequency, in turn, cnahles similar
reductions in the supply voltage. Since dynamic power scales
quadratically with supply voltage, DVS technology can sig-
nificantly reduce energy consumption with little impact on the
perceived system performance. Razor Logic is an error-tolerant
DVS technology [lo, 31. It incorporates timing error tolerance
rneciianisins that eliminate thc nced for the arriple voltage mar-
gins required by traditional worst-case designs.

Optimized for
Energy E~iciency

Fig. 3. Razor Logic. The figure illustrates (a) the R m o r
flip-Aip used to detect circuit timing errors, and (b) the
pipeline recovery mechanism.

Figurc 3a illustrates the Razor flip-flop, tlie mechanism by
which Razor detects circuit timing errors. At tlie circuit level,
a shadow latch augments each delay-critical flip-flop. A de-
layed clock controls the shadow latch, which provides i). reliable
second-sample of all pipeline circuit computations. In any par-
ticular clock cycle, if the combiriatiorial logic meets the setup
time of the niain latch, the main Ilq-flop and thc shadow latch
will !atch the samc data and no error will be detected. In the
event that the voltage is too low or the frcquency too high for
the circuit computation to meet the setup time of the niain
latch, the main flip-Hop data will riot latch thc same data as
the shadow latch. In this casc, the shadow latch data is moved
into the main flip-flop where it becomes available to the next
pipeline stage in the following cycle. To guarantee that the
shadow latch will always latch the input data correctly, the
allowable operating voltage is constrained at, design time so
t,hat even under worst-case conditions. the combinational logic
delay does not exceed t.he shadow latch’s setup tinic.

Once a circuit-timing crror is detected, a pipeline recovery
mechanism guarantees that timing failures will not corrupt the
register and memory state with an incorrect value. Figure 3b
illustrates the pipeline recovery mechanism. When a Razor
flip-flop generates an error signal, pipeline recovery logic must
take two specific actions. First, it generates a bubble signal to
~iullify the coniputation in the failing stage. This signal indi-

cates to the ncxt and subsequent stagcs that thc pipeline slot
is empty. Second, recovery logic triggers a backward moving
flush train which voids all instructions in the pipeline behind
the errant instruction. Whey the Bush train reaches the start
of the pipeline, the flush control logic restarts the pipeline at
thc instruction following the failing instruction.

While Razor cannot address the challenges posed by design
complexity, it can effectively addrcss design uncertainty and
soft errors, while at the same time providing typical-case opti-
mization of pipeline energy demands. In a worst-case method-
ology, design uncertainty leads to overly conservative design
styles. In contrast, a Razor system can adapt energy and
frequency characteristics to the specific process variation of
an individual silicon die, climinatiug the need for design-time
remedies. Many soft errors manifest themselves as circuit-level
tinling glitches, which are addressed by Razor in the same
manner as subcritical voltagcinduced timing errors. We have
implemented a prototype Razor pipeline in 0.18pm techriol-
ogy. Siniulation results of the design executing the SPEC2000
be~iclimarks showed impressive energy savings of up to 64%,
while the energy overhead for error recovery was below 3% [IO].

.

111. TYPICALCASE OPTIMIZATION

Better Than Worst-case designs create opportunities to op-
timize the charactcristics of the core component based on a
thorough analysis of operational characteristics. For exaniple,
in a DIVA system, it is possible t o reduce design time by func-
tionally validating only the most likely operatioiial states of the
core component. In a Razor design, the decreased energy re-
quirements of frequently executed circuit paths mitigates the
overall energy requirements of the design. We call this ap-
proach to design Typical-Case Optimization (TCO).

In this section we provide an example of the benefits of TCO
by optimizing the typical-case latency of an adder circuit. We
identify common carry-propagation paths, based on program
run-time characteristics, and construct, a rnodifietl adder circuit
with optimized latency characteristics for frcqucntly-executed
carry-propagation paths. The resu!t;ing adder is simpler and
typically faster than a high-performance Kogge-Stone adder.

The first step in developing a TCO design is to understand
the relevant run-time characteristics, To optimize the carry-
propagation delay of an adder design, we must first gain a
detailed undcrstanding of carry-propagation distances for each
bit position in an adder circuit, in the context of real pro-
gram operations. To gather these measurements, we collected
program addition vectors that were gcnerated by add, branch,
load and store iris1 riictions invoked during the cxccution of the
SPEC2000 benchmarks, and then ran them through a circuit-
level representation of a 64-bit Kogge-Stone adder [E]. The
simulator wc used to perform these measurements is presented
in Section IV. The adder circuit was instrumented to collect
data on i) the bit locations where carry propagations started,
ii) the length of carry-propagation chains, and iii) the distrihu-
tion of adder evaluation latency. To evaluate the added bene-
fits uf TCO for real program data, we also performed a similar
analysis on random vectors.

Figures 4 and 5 show tlie carry-propagation results for SPEC
2000 program data and random data, respectively. The sur-
face graphs illustrate the carry-propagation distancc for each
bit position of thc adder circoit. The X axis indicates the
starting bit position of thc carry propagation, and the Y axis
reports thc lcngth of the carry-propagation chain. For cach
carry propagation, the Z axis gives the probability of a par-
ticular carry-propagation initial bit position and length when
executing the specified data set.

As shown in Figure 4, real program data exhibits priniarily
short carry-propagation distances. 111 the least significant bits,
propagation distances are nearly always less than 6 bits, whilc
tlie inore significant bits rarely generate a carry that propa-

1-4

Fig. 4. Carry Propagation Distribution for Typical Data

Fig. 5 . Carry Propagation Distribution for Random Data

gates for more than 2 bit positions. As expected, the proba-
bility of a carry propagation for purely random input vectors
is independent of the initial bit position, and the propagation
distance probability decreases geometrically with the distance
of the propagation, since each successive bit is equally likely to
terminate the propagation chain.

This carry-propagation analysis suggests that, for real pro-
gram data, most carry propagations occurs in the least signifi-
cant bits, arid are propagated only for a short distance. We can
optimize an adder design for these characteristics by creating
an efficient carry-propagation circuit optimized for frequently
executed carry-propagation paths. Our 64-bit TCO adder is
illustrated in Figure 6b, below the baseline Kogge-Stone adder
of Figure 6a, a popular adder topology optimized for tninitnal
worst-case latency. The TCO adder implements a dedicated
carry-lookahead circuit for carry propagations of up to 6 bits
in length and starting from any of the least-significant 9 bit
positions of the adder. The remaining bit positions in the
TCO adder implement a dedicated 2 bit carry propagation.
Any computation requiring an unsupported carry-propagation
pattern will eventually computc correctly on the TCO adder
through the use of a fall-back ripple-carry backbone logic.

Table I compares the relative performance of the baseline
Kogge-Stone adder with the TCO adder. For each adder, the
table lists the worst-case latency for any input vector (in gate
delays), the average latency for all typical-case vectors and the
average latency ovcr all random input vectors.

Fig. 6. Adder Topologies. The figure illustrates the carry
propagation logic for the (a) Kogge-Stone adder and (b)
typical-case optimized adder. Solid lines represent; a
carry-lookahead logic circuit: dashed lines represent a
ripple-carry logic circuit.

Latency (in gate delays) I Topology Adder I Worst-case Typical-Case Random

Kogge-Stone 5.08 7.09 I TCO Adder I 1:8 I 3.03 ~ 3.69 1
TABLE I

RELATiVE PERFORMANCE OF ADDER DESIGNS

The worst-case latency is indicative of the delay that would
be expected from the adder if placed into a traditional worst-
case style design. The worst-case performance of the Kogge-
Stone adder is proportional to ZogzN, where N is the number
of bits in the adder computation. The worst-case computa-
tion of the TCO adder is proportional to N , since some com-
putation will require full evaluation of the ripple-carry adder
backbone. As shown, thc worst-case performancc of the Kogge-
Stone adder is much more favorable than the TCO adder, mak-
ing the Kogge-Stone adder better for a worst-case style design.

The typical-case latency represents the average delay for all
the input vectors in the SPEC2000 test set to complete. The
typical-case latency of the TCO adder is much less than the
worst-case latency of even the highly optimized Kogge-Stone
adder circuit. This resuIt is to be expected since only a few
evaluations require the use of the backbone ripple-carry logic.
Moreover, the TCO adder performs better, on average, even
on the random data set, since the optimized paths have enough
impact to contrast the rare worst-case scenarios.

As expected, the results of the random-cme experiments on
the TCO design, while better than worst-casc latency, can-
not compete with the typical program data experiments. It
is clear from the random-case results that understanding the
typical-case operations of a component and then targeting the
optimization to these operations can have a dramatic effect on
the typical-case latency of a corc component.

As evidenced by these experiments, typical-case optimiza-
tion of circuits can render significant improvements in typical-
case performance, However, to enable successful TCO designs,
there is a need for new specialized CAD tools that are enhanced
to eqmse and explozb run-time operational characteristics.

-5

Iv. SIMULATION AND ANALYSIS

The developrrierit of Better Than Worst-case designs poses
a whole new set of demands on CAD tools. One core require-
ment of this approach is the need to gain a deeper apprecia-
tion of which situations are typical and which situations are
extreme and rare, when operating the system to be designed.
For instance, for the adder circuit presented above, we need
to evaluate the most probable sources of carry chains and the
most typical carry-propagation depths. Or; in the case of Ra-
zor logic, it is important to be able to evaluate how frequently
the recovery mechanisni intervenes to correct the system’s op-
eration. Novel simulation solutions are needed to address this
new class of concerns and evaluation demands. Moreover, new
sirriulatioris tools must enable designers to evaluate the per-
formance and correctness of these new systems, which often
bring together circuit-level issues (such as voltage and process
variations) with high-level solutions. To addross a t least some
of these simulation requiremcnts, UT have developed an archi-
tectural simulation modeling infrastructure that incorporates
circuit simulation capabilities.

Speed

a* a scope

Circuit
Simulator

Observabifily

U . - _ _ _ _ _ _ _ _ - - * -

Fig. 7. Circuit-Aware Architectural Sirnulatiori

Figure 7 illustrates the software architecture of our circuit-
aware architectiiral simulator. The simulator model is based
on the SirnpleScalar modeling infrastructure [4]. The Sim-
pleScalar tool set is capable of modeling a variety of plat-
forms ranging from simple unpipelined processors to detailed
dynamically scheduled microarchitectures with multiple levels
of memory hierarchies. The architectural simulator takes two
primary inputs: a configuration filc that defines the architec-
ture model arid a prokram to execute. The corifiguratiori de-
fines the stages of the pipeline, in addition to any special units
that reside in those stages, such as branch predictors: caches,
furictioiial units and bus interfaces.

To siipport circuit-awascncss in thc architectural simulator,
we embedded a circuit simulator (implemented in C++) within
our SirnpleScalar models. The embedded circuit simulator
references a combinational logic description of each relevant
component of the architecture under evaluation, and interfaces
with the architectural simulator on a stage-by-stage basis. At
initialization, the circuit description of the various comporierits
is loaded from a structural Vcrilog netlist. Concurrently, the
interconnected wire capacitance is loaded from filcs provided
by global routing and placement tools. In addition, a tcchnol-
ogy model is loaded that details the switching Characteristics of
the standard cell blocks used in t,hc physical iniplcmentathn
During each simulation cycle, each logic block is fed a new in-
put vector from the architectural simulator corresponding to
the values latched at each pipelirie stage. With this informa-
tion, t,lie circuit sirnulator can compute the relevant measures
for the analysis under study: delay, total energy a.nd switching
characteristics such as total current draw:

The great chalienge in implcnient circuit-aware archit,ectural

simulation is achieving acceptable simulation speeds. To meet
this goal we have employed three domain-specific circuit simu-
lation speed optimizations: i) early circuit siniulation termina-
tion based on architectural constraints, ii) circuit-timing mem-
oization and iii) fine-grained instruction sampling. Using our
optimized circuit-aware architectural simulator, we are able to
examine the performance of a large program in detail in under
5 hours of simulation.

The first optimization is constraint-based circuit pruning.
This optimization allows the architectural simulator to specify
constraints upon which circuit simulator results are of interest
to the architectural simulation (i e . , they would perhaps cause
an architectural-level control decision to be invoked). For ex-
ample, a Razor simulation is interested in circuit latency only
when the latency is known to be longer than the clock period
of the current clock. The circuit simulator uses these con-
straints to determine when to drop logic transition events that
are guaranteed to not violate those constraints.

The second optimization we implemented was circuit-timing
menioization. We leverage program value locality to improve
the performance of circuit-timing simulation. We construct a
hash table that records (a.k.a. memoizes) the following map-
ping for each circuit-level rnodule:

(vectorstat,, vectari,, V d d) --+ (delay,energy)

Where vectorstate reprcsents the current state of the circuit,
iiector,n is the current input vector, and V& is the current op-
erating voltage. The hash table returns the circuit evaluation
latency and the circuit evaluation energy. We index the hash
table with a combination of vechwStat, and ,uector,,, because
uectmstate encodes the current state of the circuit and vectorin
indicates the input transitions. Combined with the current op-
erating voltage Vdd the inputs to the hash table fully encode
the factors that dctcrminc delay and energy. Whenever the
hash table does not include the requested entry, full-scale cir-
cuit simulation is performed to compute the delay and energy
of the circuit computation. The result is then inserted into
the hash table with the expectation that later portions of the
program will generate similar vectors.

Finally, we employed SirnPoint analysis to reduce the num-
ber of instructions we needed to process in order to make
clear judgments about program perforrriance characteristics
[7] . SimPoiiit summarizes whole program behavior and greatly
reduces simulation time by using only representative sample
blocks of code.

V. SYNTHESIS A N D VERIFICATION

Circuit-aware architectural simulation is only a small exam-
ple of new solutions in computer-aidcd design software to re-
spond to the new design challenges described above and the
trends towards designs optimized for typical case scenarios.

In the synthesis domain, the traditional approach has bcen
to characterize library corriponents and modules by their worst-
case metric values. For instance, given a specific feature size
and operating voltage, the characterizing metrics would re-
port the worst-case propagation delay and power consump
tion. While these metrics have worked well in the past to
design conservative systems that operate correctly under any
possible condition, they are too lirriiting in modern designs
whcrc pcrformaiice demands shaving off any extra margins.
As an example, design teams must overrule worst-case metrics
of corriponerits in isolation and focus on their electrical char-
acteristics in the context of the system where they are used.
The lack of synthesis software that can fully exploit these extra
margins poses a rriuch higher demand on thc cnginccring team
that has to manilally itcrate multiple times through the syn-
thesis process to achieve timing closure and t o satisfy power
and performance requirements.

In a Better-Than-Worst-case scenario synthesis cell libraries
must characterize components by cost mctrics distributions,
instead of single data points. For instance, the delay of a com-
ponent, for a given set of operating conditions, could be sim-
plified as a set of discrete intervals of delay values versus the
probability of the component stabilizing within that delay. In
relation to the traditional approach, the delay value that is
met with probability 1 corresponds to the delay value reported
by a traditional synthesis library. Synthesis software slioirld
support the designer in selecting a desired level of confidence
in the cost metrics of the components for different portions of a
design. In general, the checker portion of the design should be
designed using the most conservative metrics, while the high-
performance portion could use more aggressive selections. The
use of statistical analysis in CAD software has been mostly
in the area of analog design [ll: 131; recent work by Agarwal
incorporates process variation effects in the statistical analysis
of clock skews [Z]. These are all initial attempts of evaluat-
ing design parameters using statistical means, while in a TCO
design methodology statistical techniques must be much more
pervasive in all aspects of the design process.

Moreover, component characterization and optimized design
of macr-modules could allow for extra optimizations if based
on "typical" data sets, as in the addcr example of Section 111.
Enabling designers to explore this additional opportunity re-
quires specialized sirriulation software that summarizes results
in distribution curves appropriate for the synthesis process.

While the synthesis of typical-case systems poses mostly a
new set of challenges to CAD software, the burden of func-
tional verification could be alleviated in the new methodology.
Today, the challenge of design verification is to guarantee that
a system is functionally correct under any possible input stim-
uli. On one hand, sirnulatiowbased software can only provide
a confidence in design correctness that is limited to the specific
set of tests run on the system; on the other hand, formal and
semi-formal verification tools struggle in tackling the complex-
ity of current designs, and can typically only focus on small
modules and macro-blocks of thc system. In a TCO design
setting, verification h a s the opportunity to prioritize its focus:
the checker portion of the design demands the highest level of
correctness, while the focus for the high-perfurmarice portion
is on typical-case correctness. The benefit is that the simpler!
smaller checker portion of the design lends itself more easily
to formal verification, as it is the case for the DIVA architec-
ture of Section 11-A [14]. In contrast, the high-performance,
complex portion is more suitable to simulation-based verifi-
cation where simulation tests are mostly focused on the typ-
ical, most frequently-used execution scenarios. Architectures
where checker and performance portions are not a s easily sep-
arable, an example 0 1 which is the Razor architecture, can still
benefit from the conceptual separation between verification-
critical and verification-typical portions within the design. For
instance, in the Razor design, most Verification efforts should
focus on the execution paths through the shadow latches.

Testing presents new challenges as wells as new opportunities
when faced with TCO designs. Once again, the most critical
portion to be tested is the checker part of a design. Because
of its simpler architccture, i t is easier to obtain a complete
and compact set of rests for this portion. Once the checker
is verified, the high performance design can often be tested
by running the system with the operational checker, and the
checker itself can be used to evaluate the quality of the die.
An analysis of the testability of the DIVA architecture was
presented in j171. Complex TCO systems, however, present
a whole set of new challenges for testing. For instance, it is
even more critical that the checkcr is fully tested than in tra-
ditional designs, since in TCO systems thc high-performance
components arc expected to bc more faulty than traditional
designs. Moreover, when the TCO systems target the sepa-

ration between correctness and performance through complex
new devices, such as the high specialized Razor latches, novel
ad-hoc testing techniques need to be developed.

VI. CONCLUSIONS
In this paper we have discussed Better Than Worst-case

design methodology: A new approach to designing high per-
formance, complex digital systems that defeats the challenges
poscd by the increasingly high integration and small feature-
size trends of the semiconductor industry. We discussed two
design solutions within this domain, the DIVA checker and the
Razor logic. We also showed an adder design example that re-
alizes typical-case optimization and performs better than tra-
ditional worst-case optimized solutions in the context of Better
Than Worst-Case designs. While this novel design methodol-
ogy is gaining increasing interest from the design community, i t
also requires a rc-evaluation of the driving optimization goals
in CAD tools by posing a whole new set of challenges, and
sometimes opportunities, in synthesis, verification and testing,
some of which have been highlighted.

ACKNOWLEDGEMENTS

This work is supported by grants from ARM, NSF, and the
Gigascale Systems Research Center.

VII. REFERENCES
0verclockers.com website, overclockers forum.
http://www. overclockers com, 2004.
A. Agarwal, V. Zobtov, and D. Blaauw. Statistical clock skew
analysis considering intra-die process variations. IEEE
Transactaons on Computer- Aided Resign of Integrated Circuits
and Sys tems , 23(8):1231-1242, Aug. 2004.
T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making typical
silicon matter with Razor. I E E E Computer , Mar. 2004.
T. Austin, E. Larson. and D. Emst. Simploscalar: An
infrastructure for computer system modeling. I E E E Computer,
Feb. 2002.
T. M. Austin. Diva: A reliable substrate for deep submicron
microarchitecture design 32nd IntenLational Sympos ium on
Microarchitecture (MICRO-92) , Dec. 1999.
R. M. Bentley. Validating the pentium 4 microprocessor.
Irr lenratrorra l Confeference on Dependable Systems and Networks
iDSNi-2OO1), July 2001.
B. Calder. SiInpoirit website. In
http://www. cse.ucsd.edu/ cdder /s impoin t / , 2003.
S . Chatterjee, C. Weaver, and T. Austin. Efficient checker
processor design. In 337.d Internateonal Symposium on
Mdcroarcliitecture (MICRO-33), Doc. 2000.
B. Colwell. We may need a new box. I E E E Computer, 2004.
D. Ernst, N. S. Kim. S. Das, S. Pant, T. Pham, R. Rao, C. Zieslei-,
D. Blaauw, T. Austin, T. Mudge, and K. Fiautner. Razor: A
low-power pipeline based on circuit-level timing speculation. In
36th Annual Intcmatzonal Symposium Microarchitecture
(MICR0-36), Dec. 2003.
N. Herr and J. Barnes. Statistical circuit simulation modeling of
CMOS VLSI. IEEE Transactions on Carcuats and Systems,
5(1):15-22, Jan. 1986.
G. Hinton, D. Sager, M . Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel. The microarchitecture of the Pcntium 4 processor.
Intel Technology J o u m ~ l , Feb. 2001.
C. Michael and M . Ismail. Statistical Modeling f o r
Computer-Azded Design of M O S VLSI Circuits. K~UWCT
Academic Publishers, 1993.
M. Mneimneh, F. Aloul, S. Chatterjee, C. Weaver, K. Sakallah,
and T. Austin. Scalable hybrid verification of complex
microprocessors In 78th Design Automat ion Conference
(DAC-ZOOl), June 2001.
S . S. h4ukherjee, C. T. Weaver, J. Emer, S . K . Reinhardt, and
T . Austin. Measuring architectural vulnerability factors. IEEE
MICRO, Dec. 2003.
J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital
Integrated Czrcuits. Prentice-Hell, 2003.
C. Weaver and T. Austin A fault tolerant approach to
microprocessor design. In I E E E In temat ional Conference o n
Dependable Sys tems and Networks (DSN-ZUOl), Jane 2001.
C . Weaver, F. Gehara, T. Austin, and R. Brown. Remora: A
dynamic self-tuning processor. UM Technical Report
CSE-TR-46U-U0, Jiily 2002.

1-7

http://0verclockers.com
http://www
http://www
http://cse.ucsd.edu

