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ABSTRACT

In this paper we present a second-generation sensor network processor
which consumes less than one picoJoule per instruction (typical processors
use 100s to 1000s of picoJoules per instruction). As in our first-generation
design effort, we strive to build microarchitectures that minimize area to re-
duce leakage, maximize transistor utility to reduce the energy-optimal volt-
age, and optimize CPI for efficient processing. The new design builds on our
previous work to develop a low-power subthreshold-voltage sensor proces-
sor, this time improving the design by focusing on ISA, memory system de-
sign, and microarchitectural optimizations that reduce overall design size
and improve energy-per-instruction. The new design employs 8-bit data-
paths and an ultra-compact 12-bit wide RISC instruction set architecture,
which enables high code density via micro-operations and flexible operand
modes. The design also features a unique memory architecture with prefetch
buffer and predecoded address bits, which permits both faster access to
the memory and smaller instructions due to few address bits. To achieve
efficient processing, the design incorporates branch speculation and out-
of-order execution, but in a simplified form for reduced area and leakage-
energy overheads. Using SPICE-level timing and power simulation, we find
that these optimizations produce a number of Pareto-optimal designs with
varied performance-energy tradeoffs. Our most efficient design is capable
of running at 142 kHz (0.1 MIPS) while consuming only 600 fJ/instruction,
allowing the processor to run continuously for 41 years on the energy stored
in a miniature 1g lithium-ion battery. Work is ongoing to incorporate this
design into an intra-ocular pressure sensor.

Categories and Subject Descriptors

B.5.1 [Design]: Arithmetic and logic units, Control design, Data-
path design, Memory design
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1. INTRODUCTION

The size scaling trends in computer design have seen supercom-
puters shrink into minicomputers, then desktops, then handhelds,
and most recently into sensor processors. With each reduction
in size, systems have enjoyed decreased cost and power require-
ments and new computing applications. Sensor processors repre-
sent a new level of compact and portable computing. These small
processing systems reside in the environment they monitor, com-
bining sensing, computation, storage, communication, and power
supplies into small form factors. Sensor processors encompass a
vast array of applications, ranging from medical monitoring, to
environmental sensing, to industrial inspection, and military sur-
veillance. The untethered nature of sensor processors requires that
they survive for long periods of time on stored or scavenged en-
ergy, making energy efficiency the primary design factor. Fortu-
nately, this goal is well served by their low performance require-
ments, as environmental sensing data rates are typically low, per-
mitting designs on the order of 100s of KIPS to a few MIPS. Table
1 shows the benchmarks used in this study, which includes a variety
of data processing, communication and sensing algorithms. These
programs represent a broad slice of the types of applications one
could expect to see on an ultra-low energy sensor network proces-
sor platform. Also shown in the table are the data rate requirements
for a number of low to mid-level ambient data sources. Additional
details on these benchmarks and data sources can be found in [13,
3, 4]. As shown in Table 2, processing demands are quite low, all
data rates permit processing of samples to take on the order of mil-
liseconds, with some applications permitting even seconds between
data samples.

Table 1: Sensor Network Applications.

Application | Description

adRout Ad-hoc router control algorithm [14]
CompRLE Run-length encoded compressor [5]
TEA TEA encryption algorithm [16]
CRC8 Cyclic redundancy code generator
intFilt 4-tap signed FIR filter

tHold Threshold detector w/ noise margin
insertSort In-place insertion sort

binSearch Binary search

runAvg Running average

Hist4 4-bin histogram generator
maxFinder Maximum value search




Table 2: Sensor Network Data Sources

Phenomena Sample Rate (Hz)
Atmospheric temperature 0.017-1
Barometric pressure 0.017 -1

Body temperature 0.1-1

Natural seismic vibration 0.2 - 100
Blood pressure 50-100

Engine temperature/pressure | 100 - 150
ECG (electro-cardiogram) 100 - 250

Figure 1 illustrates the performance of these benchmarks on a
variety of commercial microcontrollers (the figure is from [13]).
For each processor, we show the performance of the low and mid-
bandwidth benchmark sets (i.e., at or below 100 Hz data rates).
Each processor is implemented in a 130nm CMOS process tech-
nology running at the listed voltage. The results are shown as
an xRT (times-real-time) rating. This value indicates how many
times faster than real-time the processor can handle the worst-case
mid/low-bandwidth benchmark data stream rate. For example, the
ARM720T [1] at 1.2V with a 100 MHz clock is able to process
worst case mid-bandwidth data stream 2965 times faster than real-
time. Or in other words, the ARM720T in the example would have
a duty cycle of 1/2965 for the worst-case benchmark. Clearly, the
commercial microprocessor offerings (i.e., the first four designs
shown in Figure 1) are much more powerful than necessary for
these sensor processor applications.
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Figure 1: Performance Analysis on Varied Designs.

Given the performance headroom for current designs, it becomes
possible to gain energy efficiency by reducing supply voltage. A re-
duced supply voltage, while requiring commensurate reductions in
clock frequency, will render quadratic reductions in dynamic en-
ergy demands. Figure 1 also shows, in the last three bars, the
performance of our previously proposed (firstgeneration) sensor
processor design, running at a nominal 1.2V, the lowest super-thre-
shold voltage of 0.5V, and an energy-optimal subthreshold voltage
of 0.232V. It is certainly the case that the low performance require-
ments of these applications enable significant voltage reduction.
The 0.5V design still runs the mid-bandwidth benchmarks more
than 100 times faster than necessary. Consequently, we must con-
sider the possibility of running designs at subthreshold levels. The
first-generation design at 0.232V still performs four times faster
than real-time. Given the performance headroom of these designs,
even at subthreshold voltages, it is clearly the case that the primary
concern for the design of sensor processors is not performance, but
rather energy per unit effort (e.g., instructions).

In this context, our first-generation subthreshold-voltage sensor
processor made the contribution of showing the link between mi-
croarchitectural design and energy-efficiency in the subthreshold
voltage domain. There are a number of implications of subthresh-
old voltage operation, in particular, the preclusion of differential
signaling (e.g. differential bit-lines and sense amplifiers), tri-state
buffers and dynamic logic. From an architectural perspective, the
most crucial aspect of subthreshold-voltage design is the existence
of an energy minimal design point. This is in direct contrast to
super-threshold design where, without regard for performance, it is
always possible to reduce energy requirements by lowering voltage.
In contrast, subthreshold voltage levels exist where reducing volt-
age can result in slower operation and larger energy requirements.
The reason for this energy minimal point is illustrated in Figure
2. As shown in the figure, a decreasing supply voltage results in
quadratic reductions in the active (dynamic) energy component. At
the same, leakage currents decrease linearly. However, this reduc-
tion in leakage current leads to an exponential increase in circuit
latency, and ultimately an exponential increase in leakage (static)
energy. As shown in Figure 2, these two contrasting energy trends
create a minimal-energy voltage, Vmin [17].
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Figure 2: Energy vs. voltage.

In [13], we designed a simple architecture with variable-length
instructions, capable of reaching energy-efficiency levels of 1.38
pJ/instruction. In addition, through the analysis of a wide array of
microarchitectures, we found that to optimize energy efficiency:

e Area must be minimized as it is a critical energy factor due
to the dominance of leakage energy at subthreshold voltages.

o Transistor utility must be maximized because effective tran-
sistor computation offsets static leakage power, which per-
mits a lower operating voltage and lower overall energy con-
sumption for the design.

o CPI must be minimized at the same time, otherwise, gains
through small area and high transistor utility are squandered
on inefficient computation.

The baseline design was implemented in an IBM 130nm CMOS
fabrication technology, and the previously presented simulated re-
sults and our simulation environment were validated against the
actual hardware measurements [12].

In this paper, we take the baseline design of [13] and concentrate
on optimizing the instruction set and microarchitecture to reduce
overall design size and improve performance and energy per in-
struction. The new designs presented utilize 8-bit datapaths and a
highly compact 12-bit RISC instruction set architecture. To fur-
ther enhance code density and reduce code size requirements, we
incorporate micro-operations into our ISA, by fusing memory op-
erations to ALU operations. In addition, our ISA incorporates flex-
ible operand handling, permitting low-overhead updating of condi-
tion codes and pointer values. Furthermore, we introduce a num-
ber of application specific instructions targeted at improving the
performance of sensor network applications. At the microarchi-
tectural level, we incorporate a prefetch mechanism and a novel



memory architecture that utilizes row-address predecode. Program
instructions specify a memory page, which sets up the row-address
decoders prior to memory accesses. All memory accesses to the
currently active memory page are completed in a single cycle; all
remaining accesses take two cycles. Additionally, our microarchi-
tecture incorporates a number of latency tolerance features to en-
sure a low CPI and high energy efficiency. We incorporate branch
speculation and out-of-order execution, but in a simplified form to
reduce area and leakage overheads. Using SPICElevel timing and
power simulation, we find that our new design features produce
a number of pareto-optimal designs that demonstrate a variety of
performance and energy trade-offs. Our most efficient design is ca-
pable of running at 142 kHz (0.1 MIPS) while consuming only 600
fl/instruction, allowing the design to run continuously for 41 years
on the energy stored in a 1g lithium-ion battery.

The remainder of this paper is organized as follows. Section 2
details the ISA optimizations implemented to improve code density
and execution performance. Section 3 describes our application-
driven memory optimizations, and Section 4 details microarchitec-
tural optimizations, including branch speculation and support for
out-of-order execution. We evaluate our proposed design features
with SPICE-level simulation in Section 5, demonstrating the en-
ergy and performance tradeoffs for a variety of designs. Finally,
Section 6 details related work, and Section 7 draws conclusions
and suggests future research directions.

2. INSTRUCTION SET ARCHITECTURE
OPTIMIZATIONS

Minimizing leakage currents is imperative for a subthreshold
sensor processor that must survive extended periods of time on
stored or scavenged energy. Since memory comprises the single
largest factor of leakage energy, efficient designs must reduce mem-
ory storage requirements. To this end, we focus on the devel-
opment of instruction set architectures (ISAs) that improve code
density and simplify decode logic, thereby resulting in small im-
plementation area and minimal leakage. In the following subsec-
tions, we present these ISA optimizations we made for our second-
generation design.

2.1 RISC Encoding

Our second-generation design is based on a RISC architecture,
which replaces the 4-bit variable length CISC ISA used in the first-
generation design. CISC-style architectures allow instructions with
multiple widths, thereby providing the ability to create dense code
that has few unused bits, especially if the granularity of the in-
struction units is small (like the 4-bit nibbles used in our first-
generation). On the other hand, RISC-style architectures typically
have more unused bits (due to the fixed instruction size) which
results in a larger application footprint, but the simplicity of in-
struction decoding allows for much simpler and smaller decoder
logic. Consequently, these two ISA design styles generate com-
peting trends between code density and decoder logic complexity,
both of which have a direct impact on the energy consumption of
the sensor processor. In this second-generation design, we exploit
the best of both worlds by developing a RISC-style architecture that
yields simple, small control logic and dense code through the use
of a highly compact 12-bit instruction encoding. In fact, for our
12-bit instruction encoding, 3942 of the 4096 possible instruction
encodings are defined as valid instructions, resulting in an encoding
efficiency of 96.2%. Our new RISC-style ISA encoding is summa-
rized in Figure 3.
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Figure 3: ISA Organization.

2.2 Two-Operand Format with Memory
Operands

One critical decision in designing an ISA is the number and va-
riety of operands to support. The major options are stack-based,
accumulator-based, register-memory and load-store architectures.
Our analysis shows that stack-based ISAs yield the simplest con-
trol logic, but it results in large code sizes as most applications
require three to four instructions per ALU operation (two PUSH,
one POP and the ALU instruction itself). A second alternative, an
accumulator-based architecture, was utilized in our first-generation
design. This ISA style, which writes all results to a single ac-
cumulator register, still has relatively simple decoder logic, but,
again, requires as many as two to three instructions per ALU oper-
ation. Only very special applications, such as TEA, where the re-
sult of one operation is again used for the second operation, benefit
from accumulator-style architectures. In our second-generation de-
sign, we are using a load-store architecture with an 8-entry register
file. We choose this architecture over the other alternative, register-
memory, because it is simpler and less expensive to pipeline. The
drawback of a load-store architecture with a small register file is
that it may result in inefficient code which spends time loading
the registers and storing them back to memory, rather than doing
useful work. We address these deficiencies with the use of micro-
operations, as described later in this section.

Having adopted a load-store style architecture, we evaluated the
implication of utilizing a two vs. a three operand encoding. In a
two-operand architecture, one of the operands is both a source and
destination, while in a 3-operand architecture the destination may
be different from both sources. A two-operand architecture results
in shorter instructions, but in cases where the source should not
be destroyed, extra copying of the register is required. Therefore,
the code-density benefits of a two-operand encoding are dependent
on the application domain. We choose a 2-operand architecture
as our study shows that for the representative set of applications,
the 3-operand choice generates code that is about 10% larger than
the 2-operand one. However, we use a simple technique to op-
tionally prevent destruction of the source operand: we include a
preserve/update bit (P/U) in ALU instructions to indicate whether
the source operand should be preserved. In this case, the result is
written to register RO instead of the specified source register, and
it can later be accessed by subsequent instructions. This facility is
especially useful in two common scenarios. The first scenario is
when the result is not required, e.g., only condition bits are set after



the operation. The second scenario is when intermediate results are
calculated, and RO suffices as a scratch register.

For addressing modes, we include both direct and indirect mem-
ory access, along with 2-bit immediate values and direct register
operands.

2.3 Micro-operations

To further improve code density and reduce register pressure
we include support for microoperations. Micro-operations can im-
prove code density by combining two processor operations into a
single instruction encoding. Simple control logic converts instruc-
tions with memory operands into a load micro-operation followed
by an ALU micro-operation. This scheme allows the simplicity
of a load-store architecture along with code density of a register-
memory architecture. Moreover, since the data arriving from mem-
ory to the load micro-operation can be stored in a temporary regis-
ter (i.e., a latch), it reduces register pressure on the register file

2.4 Application-Specific Instructions

Efficient Pointer and Carry Manipulation: In our first-gene-
ration design, we showed the usefulness of having instructions for
loading, incrementing and decrementing pointers. In our second-
generation design, we augment this facility with additional pointer
manipulation capabilities. This instruction compares the pointer
with a value in memory which holds the address of the end of the
array, to check if the pointer is within bounds. It involves two mi-
cro operations: a load to the temporary register and a subtraction
between pointer and register, which only affects the Carry and Zero
bits.

In addition, a few sensor network applications (such as error cor-
rection and encryption algorithms) require more precision than 8
bits (the precision of our architecture). Larger data widths such as
16 and 32 bits are necessary to make relevant use of these applica-
tions. Shifting and arithmetic operations are common in these ap-
plications, so providing a mechanism to handle bit traversal across
8-bit boundaries will reduce computation time and energy demands.
We allow for the use of the previously computed carry bit as an ad-
ditional option for operand B. This special carry operand may be
used in all arithmetic and load instructions.

Event Scheduler Control: Our design includes a hardware-
based event scheduler that can be controlled using either external
interrupts or software commands. The scheduler is a 4-entry circu-
lar queue that contains partial pointers (3 bits each) to the highest
eight lines of data memory. These lines of data memory contain
event handler pointers and are used to dispatch events to handler
code. The event scheduler has two modes: active and idle. In
idle mode, the scheduler waits for a function to complete (indi-
cated with the software command SCH FINISH). In active mode,
the scheduler is waiting for a new event to enter the queue (either
through an interrupt or software command SCH ENQ). When the
queue is non-empty, the event handler is dispatched by fetching the
event handler PC from memory, and the scheduler enters idle mode.
For example, an averaging function can push a threshold detection
function onto the scheduler queue just before it finishes. Once the
scheduler becomes active, it will start the threshold detection func-
tion. This allows smaller functions to be chained together to form
a more complex data manipulation routine.

Timer Control: Our design includes a hardware-based, softwa-
re-controlled 32-bit timer. The timer has basic control functional-
ity including start, stop, and reset (TMRC [START — STOP —
RESET]). It can be read and written in 8-bit segments (through
LOAD and STOR ). With a clock frequency of 50kHz, the timer
can achieve a maximum unique time range of 24 hours.

2.5 Code Density Analysis

Figure 4 shows the code density benefits of each of the pro-
posed ISA enhancements. No Optimizations indicates the rela-
tive code size of our second-generation RISC ISA, without any
of the extensions described in this section. The bar CISC uArch
is the relative size of our firstgeneration CISC ISA, described in
[13]. The remaining bars show the benefits of the optimizations
described in this section. W/Preserve shows the code size im-
provements with source operand preservation. W/Carry Operand
and W/PTR Sub shows the benefits of carry and pointer manipu-
lation extensions, for extended precision operations and array tra-
versals, respectively. W/uOperation shows the benefits of micro-
operations. The W/PAGE optimization is related to memory ar-
chitecture, which is discussed in Section 3. W/AIl optimizations
shows the combined benefit of all ISA optimizations. All optimiza-
tions combined provide nearly a 30% reduction in the RISC-style
code size. Compared to our first-generation nibble-size variable
length ISA, our new RISC-style ISA still achieves a 17% reduction
in overall code size. Combined with a 36% reduction in decode
logic size, the new RISC-style ISA provides a significant opportu-
nity to reduce design size and leakage energy.
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Figure 4: Code Density Analysis.

3. APPLICATION-DRIVEN MEMORY
OPTIMIZATIONS

Our second-generation sensor processor employs an optimized
memory architecture which improves code density and CPI at the
same time. This architecture takes advantage of spatial locality
through the use of a row-address pre-decode stage, without use of
a data cache.

As illustrated in Figure 5, the data memory architecture is di-
vided into 16-entry pages. A PAGE instruction is used to specify
the current page in the memory. Having chosen the current page,
only four bits are needed within a LOAD instruction to directly
address a memory operand. Moreover, the upper bits of the ad-
dress, supplied by the PAGE instruction, are used to implement
row-address pre-decode, by pre-selecting the 16-byte memory be-
fore execution of the LOAD instruction. The use of address pre-
decode reduces the latency of memory operations from two to one
cycle. The only exception to this scenario is accessing memory
through pointers, i.e. indirect memory accesses. As there is no
restriction on the content of pointers, they can specify an access
outside the specified page. In such case, it will take two cycles to
perform the access, and the pipeline must be stalled to accommo-
date this latency.
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Similarly, as shown in Figure 6, the instruction memory is di-
vided into 16-entry banks and a PAGE instruction is used to spec-
ify the working page. The main difference is that in the instruc-
tion memory, the page is automatically incremented as the program
counter reaches the end of the page, whereas in the data memory,
the data page is only changed manually. Another characteristic of
the instruction memory is that it has double bandwidth to enable
fetching more instructions in less number of cycles.

4. MICROARCHITECTURAL
OPTIMIZATIONS

The second generation processor design is based on a 3-stage
pipeline as shown in Figure 7. The number of stages is chosen
based on the observation that energy-efficient designs in subthresh-
old operation need to strike a balance between area and transistor
utilization. Increasing the number of pipeline stages potentially in-
creases the transistor utilization because transistors residing on the
shorter logic paths will switch more often. However, the more the
stages, the greater the number of flip-flops needed to store interme-
diate values. We explored a 4-stage pipeline solution for this ar-
chitecture and our primary analysis showed that the area overhead
due to extra flipflops overshadows the gains from higher transistor
utilization. On the other hand, a 2-stage design resulted in a poorly
balanced solution as registers and memory accesses must be serial-
ized in the second stage. Consequently, we found that the 3-stage
pipeline solution strikes the best balance between design area and
transistor utilization.

The first pipeline stage includes instruction fetch and decode
logic. There is a small 4-entry instruction prefetch buffer in this
stage, which enables single-cycle access to the next instruction.
The logic that drives the memory control signals is also gener-
ated in this stage. The second stage performs memory accesses
and ALU operations. Finally, the last stage is the write-back stage,
where the result, either from ALU or memory is written back to the
register file. The front end of the base pipeline performs a simple
Branch Not Taken speculation. In case of misprediction, which is

detected in the second stage, the pipeline is flushed with a 2-cycle
penalty. As mentioned previously, the baseline pipeline is stalled
for one cycle when accessing memory through pointers. Two dif-
ferent optimizations, namely, out-of-order execution and Branch
Taken speculation, that are frequently used in super-threshold de-
signs to alleviate the penalties incurred from misprediction and true
data dependencies, are implemented on top of our base processor.
In the remainder of this section, we study the effect of these opti-
mizations on instruction latency and energy-per-instruction.

4.1 Out-of-Order Execution

The purpose of this optimization is to fill the wasted cycle in a
micro-operation between a load using a pointer and a dependent
ALU operation. Our approach to out-of-order execution is illus-
trated in Figure 8. If the LOAD does not access the current mem-
ory page, it takes two cycles to finish the LOAD operation, thus the
ALU operation needs to be stalled before the data is ready. The
wasted cycle before the LOAD finishes could be filled by an inde-
pendent instruction, however, since the load and ALU operation are
combined in a single instruction, this cannot be accomplished by
the programmer/compiler. To facilitate latency tolerance of LOAD
operations, we implement a limited out-of-order execution feature,
which monitors just one instruction ahead in the instruction stream
(in the prefetch buffer) and if it is independent, it is fed into the
pipeline before the dependent ALU operation.

4.2 Taken Branch Speculation

Branch speculation is a well-known technique to tolerate the la-
tency of branch dependencies, however, these techniques typically
rely on costly logic and storage components, such as branch target
buffers, return stack buffers, history tables, etc. In a sensor proces-
sor with a limited energy budget and an acute sensitivity to leakage,
these devices consume too much energy to provide value. In order
to avoid such overheads, our first-generation sensor processor im-
plements a basic Not-Taken branch speculation mechanism. How-
ever, while inexpensive, this facility has limited benefits as the vast
majority of branches in our sensor processor workload are taken
branches. To further improve CPI, we have implemented a sta-
tic Taken speculation mechanism. As the branch target is directly
specified in the instruction, it is possible to predict the target by just
looking one instruction ahead in the instruction prefetch buffer.

5. ENERGY-PERFORMANCE ANALYSIS

5.1 Experimental Framework

To evaluate our design solutions, we start by implementing each
of the analyzed designs in synthesizable Verilog. Then we use De-
sign Compiler, a Synopsys tool, to synthesize the design to Artisan
standard cells for IBM 130 nm CMOS technology. The exceptions
to this design flow are storage devices, such as the register file and
prefetch buffer, which are manually designed at the gate-level to
achieve energy-efficient latch-based storage. Subsequently, Sedsm,
by Cadence, is used to place and route the design. The wire-load
and capacitance information extracted from the placed and routed
design is then used to accurately simulate the design and extract
power usage for each application. On the other hand, SPICE simu-
lations are used to characterize standard cells at different voltages.
This data can be used to estimate how frequency, leakage power,
and active power are scaled by changing voltage. Based on this in-
formation, the optimal energy voltage point, along with the instruc-
tion latency and energy consumption per instruction is calculated.
For the experiments in this section, we set the voltage for all ex-
periments to the energy-optimal voltage of the baseline RISC-style
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sensor processor design, which is 200 mV. Finally, our simulation
environment has been validated against the actual hardware mea-
surements from our first generation design.

5.2 Simulated Results

Figure 9 shows the energy-performance tradeoffs for 13 design
variants, based on our first and second-generation sensor proces-
sors. Each design was synthesized to an IBM 130 nm CMOS fabri-
cation process. The first-generation designs are labeled to indicate:
i) the number of pipeline stages (1s, 2s, or 3s), ii) the number of
memories (v - single memory, h - I and D memory), iii) the data-
path width (8w, 16w, or 32w), and iv) the existence (r) of explicit
registers (designs without explicit registers store register values in
memory). The second-generation designs (shown in the blown-up
graph) are as follows: Ideal is an ideal un-implementable design
that has single-cycle access for all data memory accesses. Base
is a design that requires two cycles for indirect memory accesses.
Sched is our base design with the scheduler and timer added, this
design exposes the energy requirements of timer and scheduler.
Spec is a design that incorporates only taken branch speculation,
and Oo0O incorporates out-of-order execution and all other opti-
mizations including branch speculation and ISA extensions.

In order to compare the performance and energy consumption of
the first and second generation, we normalized the energy per in-
struction and instruction latency of the first generation. Our analy-
sis of the set of representative applications shows that each second
generation RISC instruction is worth an equivalent of 1.9 instruc-
tions in the first generation CISC ISA, the low density can be pri-
marily attributed to the accumulator-based architecture of the first
generation design. Thus, energy per instruction and instruction la-
tency of the first generation designs are scaled by a factor of 1.9.

In Figure 9, designs that lie closer to the origin are faster and
more energy-efficient than designs further away. The designs that
are closest to the left and bottom of the graph are pareto-optimal
designs, as they represent the best designs developed, with varying
energy and performance trade-offs. All other designs are not worth
implementing because at least one of the pareto-optimal designs
is both faster and more energy efficient. Clearly, this is precisely
the case for all our second-generation processors compared to the
first-generation designs. Moreover, a number of second-generation
designs are pareto-optimal. Some solutions that do not include all
of the optimizations described also fall into pareto-optimal con-
figurations because they improve energy demands while reducing
performance.

Figure 10 validates the circuit-level analysis presented in [13].
For the five studied designs, the CPI shows a correlation with the
minimum-energy voltage, especially for the three middle designs.
Here, the higher the CPI, the higher is the minimum energy volt-
age. The reason is that if the total number of transistor switching
required to complete an instruction is similar between two designs,
the one with higher CPI has lower switching activity in a given time
period, therefore a low activity rate. This in turn results in higher
minimum energy voltage. The first and last designs in this graph do
not show the same correlation with Vmin, as the first one is an ideal
design where no penalties are assumed for indirect access memory,
which makes its CPI better than the other designs without an archi-
tectural penalty. The last design does not follow the general trend
because it is a variant of Base, with only the scheduler added which
does not improve CPL.

Figure 11 presents the energy distribution of different compo-
nents of the base processor at two different voltages, nominal volt-
age and energy-optimal voltage. The darker (blue) slices represent
stages of the pipeline, whereas the lighter (yellow) slices repre-
sent storage units, register file and prefetch buffer. As shown, the
energy consumed by the register file and prefetch buffer increases
from 34% to 45% when moving from nominal voltage to minimum-
energy voltage. In general, the storage devices have a more signif-
icant impact on energy consumption at subthreshold voltages com-
pared to super-threshold because they usually require less activity
than other components, and thus their leakage energy prevails.
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6. RELATED WORK

Although numerous studies have been done in the area of sensor
network system design, research on energy-efficient sensor proces-
sors is fairly new and the number of studies on this topic is lim-
ited. Most sensor network testbeds [11, 15, 6] use off-the-shelf
microcontrollers such as such as the 8-bit ATMegal28L operating
between 4MHz and 8MHz and consuming about 1.5nJ/instruction
(more than three orders of magnitude more energy than the proces-
sors studied in this work). Some of the high-end sensor network
platforms [7, 2] use Intel StrongArm/XScale processor, consuming
InJ/instruction.

Burd et al., presented some of the early work on energy-efficient
processor designs in [8]. They acknowledge the fact that prior to
their work, traditional architectural design methodologies for mi-
croprocessor systems had focused primarily on performance, with

ergy consumption, with performance requirements of portable de-
vices being the focus. However, their study is mostly concentrated
on circuit-level optimizations with little focus on the processor core
architecture.

In the sensor processing domain, Clever Dust 1 and 2 [15], de-
veloped as part of the Smart Dust project at UC-Berkeley, are two
microcontrollers specifically designed for Dust sensor motes with
the objective of reducing energy consumption. Clever Dust 2, in-
spired by the low-power CoolRISC microprocessor, is a load-store
RISC Harvard architecture and no pipelining. It reportedly con-
sumes 12 pJ per instruction to execute general instructions exclud-
ing memory operations and the energy consumption for instruc-
tion fetch. SNAP/LE is a sensor node processor based on an asyn-
chronous data-driven 16-bit RISC core with a low-power idle state,
and low-latency wakeup response [9]. SNAP/LE has an in-order,
single-issue core that does not perform any speculation. It has a
16-bit datapath consuming 24 pJ per instruction. An application-
driven architecture, which offloads immediate event handling from
the general purpose component and leaves it idle, has been pre-
sented by Brooks, et. al [10]. With a 10% duty cycle (i.e. system
being idle 90% of the time), this system consumes 2W at 100kHz,



which, assuming a CPI of 1, results in about 20 pJ per instruction.
Finally, our previous work in sensor processor design involved a
CISC based 8-bit processor, which consumes 1.34pJ per instruc-
tion.

The vast majority of work in sensor processor design has been
concentrated on super-threshold voltages, resulting in higher en-
ergy consumption and delivering more-than-needed performance.
In our subthreshold design the power consumed while the proces-
sor is active is usually lower than the idle power consumption of
other sensor processors. The processors presented in this paper rep-
resent a new level of energy efficiency for sensor network proces-
sors. Our second generation solution is nearly three times more
energy-efficient than our previously proposed design and 25 times
more energy-efficient than the most energy-efficient design we had
found in the literature.

7. INSIGHTS AND FUTURE WORK

We have presented a second-generation sensor processor that in-
cludes ISA optimizations, application-specific memory optimiza-
tions, and microarchitectural optimizations. The design is based on
observations from a first-generation sensor processor design. Com-
bined together, our optimizations result in a 54% energy savings,
with our best design running at 600 fJ/instruction. To our knowl-
edge, this design represents the most energy efficient computing
design ever proposed, surpassing its predecessors by a factor of
three. From another perspective, our most energy-efficient proces-
sor would run continuously for 312 years on the energy of a single
AAA battery (7.6g of Lithium-Ion with a 3160 J energy payload).

Our ISA optimizations focus on compact encodings for reduced
memory requirement. Reduced memory sizes are crucial to mini-
mize system leakage. We achieve this by using a compact 12-bit
RISC encoding with a two-operand format that supports memory
operands. In addition, we introduce micro-operations and present
application-specific instructions added to support fast pointer ma-
nipulation, explicit carry handling, and ISA support for schedulers
and timers. Given all these ISA optimizations, we achieve about a
17% compaction in code size and a 36% reduction in the size of
decoder logic, compared to our first-generation CISC ISA design.

We highlight a number of successful microarchitectural optimi-
zations that improve CPI and energy-per-instruction. We introduce
a memory system architecture with row-address predecode, and in-
clude ISA extensions that permit the programmer to specify the
most likely storage addresses for future accesses. Accesses to this
active page result in faster memory access and lower energy de-
mands. In addition, we introduce instruction prefetching, branch
speculation, and limited out-of-order execution that allows most
memory access latencies to be tolerated.

We simulated our design using a SPICE-level simulation envi-
ronment developed for our firstgeneration design, and subsequently
validated against our manufactured first-generation design. We find
that the design features introduced in this paper compose a variety
of design solutions that realize a number of pareto-optimal design.
Our lowest energy design requires 600 fJ/instruction, our fastest de-
sign performance level is at 0.115 MIPS with a 660 fJ/instruction
energy demand.

We are in the process of taping-out this design to be manufac-
tured by IBM in their 130nm CMOS fabrication technology. The
manufactured design includes on-chip solar cells as power sources.
In addition, it will include a selection of processor and memory im-
plementations built with a variety of standard cell designs, ranging
from low-Vth commercial cells to high-Vth experimental cells op-
timized for subthreshold operation. The test memories range from
standard memories, implemented with MUX-combined SRAM ar-

rays to experimental memories with 4- and 3-transistor low-leakage
SRAM cells. Finally, the test harness provides a SCAN interface
between the outside world and all the state (memory and registers)
contained on the test chip. In addition, the SCAN interface can be
used to reset and restart any processor or test harness contained on
the test chip. We will report on the results of this test chip in future
work.

Finally, work is ongoing to incorporate our second generation
sensor processor into an intraocular pressure sensor. The system is
designed to grip the inner surface (vitreous) of the eyeball. The sys-
tem will be installed via out-patient surgery, and it will provide pa-
tients with real-time feedback on the interior eye pressure. Recent
medical studies have shown that careful monitoring and subsequent
control of intra-ocular pressure can delay the onset of blindness in
glaucoma and diabetes patients. The intra-ocular pressure measure-
ment system includes a subthreshold sensor processor, 384 bytes of
memory, 1024 bytes of ROM, a MEMOS-based pressure sensor, a
Peltier-based energy scavenging mechanism (which utilizes tem-
perature gradients within the eyeball to produce electricity), and
a communication system based on inductive coupling. The entire
system is currently under design, but a paper prototype has been
shown to be less than 2 cubic-millimeters. The work in this paper
significantly reduces the energy requirements of the sensor proces-
sor and memory system, permitting the system to be powered by
energy scavenged from the human body. This effort is an ongo-
ing collaboration with the Kellogg Eye Center at the University of
Michigan.
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