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ABSTRACT
Statistical static timing analysis (SSTA) is emerging as a solution
for predicting the timing characteristics of digital circuits under
process variability. For computing the statistical max of two arrival
time probability distributions, existing analytical SSTA approaches
use the results given by Clark in [8]. These analytical results are
exact when the two operand arrival time distributions have jointly
Gaussian distributions. Due to the nonlinear max operation, arrival
time distributions are typically skewed. Furthermore, nonlinear de-
pendence of gate delays and non-gaussian process parameters also
make the arrival time distributions asymmetric. Therefore, for com-
puting the max accurately, a new approach is required that accounts
for the inherent skewness in arrival time distributions. In this work,
we present analytical solution for computing the statistical max op-
eration. First, the skewness in arrival time distribution is modeled
by matching its first three moments to a so-called skewed normal
distribution. Then by extending Clark’s work to handle skewed
normal distributions we derive analytical expressions for comput-
ing the moments of the max. We then show using initial simulations
results that using a three moment based max operation can signifi-
cantly improve the accuracy of the statistical max operation while
retaining its computational efficiency.

1. INTRODUCTION
Process control precision is worsening with continuous process

scaling due to smaller dimensions, smaller number of doping atoms
and aggressive lithographic techniques. This results in an increase
in process parameters fluctuations, that causes variations in electri-
cal characteristics of transistors and interconnects. These variations
in electrical characteristics of circuit components affect timing and
result in chip operating frequency variation. Traditionally corner
based static timing analysis have been used to guard against yield
loss resulting from these variations; however, with increasing num-
ber of sources of variation, corner based methods are becoming
overly pessimistic and computationally expensive.

An alternative approach, namely, statistical static timing analysis
(SSTA) has emerged as a possible solution for statistically quan-
tifying the variability in timing performance. Existing SSTA ap-
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proaches can be broadly classified into block based SSTA [13, 4, 1,
9, 6, 17] and path based SSTA [14, 2]. A path-based SSTA requires
enumeration of an exponential number of paths, therefore, block-
based SSTA is considered to be a more efficient technique. Among
these, the analytical1 methods, presented in [3, 6, 17], appeal to
be the more promising approaches for a computationally efficient
implementation of SSTA. In [3], the author introduced a linear time
analytical SSTA algorithm assuming uncorrelated normal random
variables for delay distribution. Using a first order parametric de-
lay model, a method for handling correlations in global sources
of variation due to both spatial correlation and path reconvergence
was presented in [6, 17]. Their SSTA algorithm included a PERT-
like topological traversal of a circuit graph, where at each node
the maximum arrival time distribution is computed in terms of the
parametric delay model. For propagating arrival time distributions,
one needs to compute the sum and the maximum of two arrival
time at each node in the circuit graph. The computation of the sum
function is relatively simple; however, the statistical max of two
correlated arrival time variables is non-trivial.

The max operation in existing SSTA approaches is invariably
based on analytical results given in [8]. Clark derived analytical
expressions for finding the moments of the max of two correlated
normal random variables and an expression for computing the cor-
relation of the resulting max with any other jointly normal variable.
The Clark’s max results are exact when the two operand random
variables have a bivariate normal distribution. However, the result
of the max of two normal variables is typically a positively skewed
non normal distribution. Skewness is a statistical parameter used
to describe asymmetry in a random variables probability distribu-
tion. A probability distribution is said to have positive(negative)
skewness if it has a long tail in the positive(negative) direction (see
Figure 1). Both the above mentioned analytical approaches [6, 17],
use these expressions for computing the moments of statistical max
of two arrival time random variables. Unfortunately in SSTA, the
asymmetric non-normal arrival time distributions resulting from the
max operation performed at one node are inputs to the max opera-
tion which is needed to be performed at a downstream node. Addi-
tionally, variations in interconnect and few process parameters also
have asymmetric non-normal distributions [19]. However, existing
analytical SSTA approaches have to approximate the non-normal
arrival time distribution with a normal distribution for applying
Clark’s max. The error of this approximation increases when the
difference of the mean relative to the standard deviation decreases
and it becomes maximum when two means are equal [8]. For a
typical design, there can be several thousand critical paths and the

1As the focus of the paper is on block based analytical approaches
here we limit discussion to relevant previous work on block based
analytical SSTA methods.



means of their output arrival time distributions and arrival time dis-
tributions at common internal nodes will be closely aligned with
each other. Therefore, in such a case Clark’s max based SSTA
methods may result in inadequate accuracy, in particular, for power
optimized designs having a large number of nodes with zero or
small slack. Recently, SSTA algorithms using higher order nonlin-
ear parametric delay models with non gaussian distributions were
proposed in [7, 12, 18, 19]. However, for computing the max op-
eration, these approaches either use numerical techniques and/or
employ the Clark’s max requiring normal approximation. A condi-
tional max based heuristic analytical method was presented in [19]
where the max operations is postponed until the two arrival time
distributions are skewed.

In this work, we extend Clark’s max approach and give analyti-
cal results for computing an improved approximation for the max-
imum of a set of asymmetric random variables by preserving the
first three moments. The problem of computing the max of a fi-
nite set of random variables has been well studied. Several ap-
proaches derived Clark’s results using different methods [11, 5].
In our method, given the first three moments of any asymmetric
distribution, we give analytical expressions to map it to a skewed
normal (explained later) representation having same moments. We
then derive analytical results for computing the moments of the
max of two correlated skewed normal distributions. The derivation
is similar in spirit to Clark’s approach, although it is more general
since we can compute the moments for a bivariate skewed normal
random variables.

The rest of the paper is organized as follows. In Section 2 we
explain the skewed normal distribution and give analytical expres-
sions for computing the parameters of a skewed normal distribution
from the mean, variance and skewness of arrival time distribution.
A bivariate skewed normal distribution and the derivation for the
proposed max operation are given in Section 3. In Section 4, we
give numerical results illustrating the efficacy of the proposed max
operation. Section 5 concludes the paper.

2. MODELING SKEWNESS
Arrival time distributions and circuit delay distributions are typ-

ically positively skewed, due to the nonlinear max operation and
nonlinear dependence of delay on process parameters. We need
an analytical representation that is flexible enough to capture the
skewness in asymmetric arrival time distributions and at the same
time be of the functional form which allows analytical derivation
of the statistical max operation. After studying several skewed rep-
resentations, in [10], we found a general method for introducing
skewness into any unimodal symmetric distribution. Their basic
idea is to simply introduce inverse scale factors in the left and the
right half real lines around the mean. Letf(x) be the normal dis-
tribution with meanµ and varianceσ given by

f(x) =
1

σ
φ(

x− µ

σ
), whereφ(x) =

1√
2 π

e−
x2
2 .

Using the method presented in [10], a skewed normal distribu-
tion fγ(x) can be computed from the normal distributionf(x), by
scaling its left half and right half by factorsγ and its inverse1/γ,
respectively. This gives us the skewed normal distribution,

fγ(x) =
2

σ (γ + 1/γ)

�
φ(

(x− µ)γ

σ
)I(−∞,µ](x)

+ φ(
x− µ

γσ
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Figure 1: Examples for Asymmetric PDFs

where,I(−∞,µ](x) andI(µ,∞)(x) are the Indicator functions:

IA(x) =

�
1 if x ∈ A
0 otherwise.

For a skewed normal distribution, we can observe that scaling
variablex corresponds to an inverse scaling of the standard de-
viation σ around its mean. Therefore,fγ(x) can be alternatively
written as

fγ(x) =
2

σl + σr

�
φ(

(x− µ)

σl
)I(−∞,µ](x)

+ φ(
x− µ

σr
)I(µ,∞)(x)

�
,

where,

σl = σ
γ

and σr = σγ.

Note that the resulting skewed distributionfγ(x) has a func-
tional form similar to the original non-skewed distributionf(x). If
the skewness parameterγ is greater(less) than unity thenfγ(x) is
positively(negatively) skewed. Forγ = 1 we get back the original
symmetric normal distribution. Furthermore,fγ(x) is both contin-
uous and differentiable and is completely defined by only three pa-
rametersµ, σ andγ. These were the key appealing properties that
motivated us to use this representation for deriving the proposed
max operation.

Existing SSTA approaches model and propagate only the mean
and variance of the arrival time distribution. For improving the ac-
curacy of SSTA algorithm, in addition to the mean and variance,
we wish to propagate the skewness in asymmetric arrival time dis-
tributions. In such an SSTA framework, the input parameters of the
max operation will include mean, variance and skewness of the two
input arrival time distributions and their correlation. We first want
to map the arrival time distribution characterized by its mean, vari-
ance and skewness to a skewed normal distributionfγ(x). Let µγ ,
σγ andSkγ be the given mean, standard deviation and skewness of
a skewed arrival time distribution andµ, σ andγ are the three pa-
rameters that define the desired skewed normal distributionfγ(x).
For findingfγ(x), we express the mean, variance and skewness of
the skewed normal distribution as function of its parametersµ, σ
andγ and then match these to theµγ , σγ andSkγ of a skewed
arrival time distribution to solve forµ, σ andγ. The analytical
expressions for meanµγ , varianceσ2

γ and skewnessSkγ of fγ(x)
derived in terms of its parameters (µ, σ andγ) are given as follows:

µγ = µ +

r
2

π

�
γ − 1

γ

�
σ (1)

σ2
γ =

�
π γ4 − 2 γ4 − π γ2 + 4 γ2 + π − 2

�
σ2

π γ2
(2)
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Figure 2: The γ parameter of fγ(x) vs. SkewnessSkγ

Figure 3: Comparison between Skewed Normal distribution
and Normal distribution for a typical Monte Carlos based Ar-
rival Time distribution.

The skewness of distribution defined by the ratio of the third
centered moment and cubed standard deviation is given by

Skγ =

√
2
�
1− γ2

� �
π
�
γ4 − 3 γ2 + 1

�
− 4

�
γ2 − 1

�2�
�
π (γ4 − γ2 + 1)− 2 (γ2 − 1)2

� 3
2

.

(3)
Fortunately, the skewnessSkγ (Eq. 3) is only a function ofγ

and is independent of the other two parametersµ andσ. A plot of
this function is given in Figure 2, where it can be seen that skew-
nessSkγ is a well behaved function and it monotonically increases
with γ. Therefore, for a givenSkγ , one can efficiently computeγ
either using pre-computed look-up tables or using numerical meth-
ods with very fast convergence. Usingγ, σγ andµγ we can analyt-
ically solve equations 2 and 1 for parametersσ andµ, respectively.
Thus given mean, variance and skewness of an arrival time dis-
tribution we can easily map it to a skewed normal distribution. In
Figure 3, we show plots of a typical skewed arrival time distribution
approximated by a skewed normal distribution and normal distribu-
tion. It is evident that compared to existing normal approximations,
skewed normal is a much better representation that can accurately
capture the inherent skewness in arrival time distributions.

3. SKEWED NORMAL MAX OPERATION
Based on the skewed normal representation explained in the pre-

vious section, we now present the skewed normal max operation.
For analytically expressing the max function of two correlated ar-
rival time random variablesX andY , we need to know their joint
probability distribution function. In [8], the author uses the fol-

Figure 4: Standard deviations of a bivariate Skewed Normal
distribution and seven regions of integration forµx > µy

lowing bivariate normal distribution for the two operand random
variables.

f(x, y) =
1

2πσxσy
φ
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,
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1p
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e
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Recall that bivariate normal representation being symmetric will
introduce errors in the computation of the recursive max operation
for SSTA purposes. Therefore, similar to the univariate skewed
normal presented in the previous section, we add two inverse scale
parametersγx andγy for random variablesX andY around their
respective meansµx andµy for introducing skewness
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!
;

σxl = σx
γx ; σyl = σy

γx ; σxr = σx γx; andσyr = σy γy.

Due to the correlationρ, the normalizing constant termΓ dif-
fers from the univariate case. We use this bivariate skewed nor-
mal distribution as a better approximation for modeling the jointly
skewed arrival time distributions. Figure 4 graphically illustrates
how the two indicator functions partition theX, Y plane into 4
quadrants having different standard deviations around the mean
vector(µx, µx). Let v(i) be theith moment of max(X, Y ) given
by



v(i) =

Z ∞
−∞

Z ∞
∞

(max(x, y))ifγ(x, y) dydx

=

I
(x,y)∈X>Y

xifγ(x, y) d(x, y)

+

I
(x,y)∈X≤Y

yifγ(x, y) d(x, y)

As shown in Figure 4 the regionX > Y gets further partitioned
into 4 sub-regionsx1, x2, x3 andx4 where the sub-script denotes
the standard deviation quadrant and likewise, regionX ≤ Y gets
partitioned into sub-regionsy1, y2 andy3. Therefore, we can write
theith moment of max(X, Y ) as

v(i) =

3X
j=1

vy,j(i) +

4X
j=1

vx,j(i)

where,vx,j(i))andvy,j(i) are theith moment of max(x, y) in the
j th quadrant. The complete derivation ofv(i) over all the seven
regions is too long and tedious. Therefore, in this paper we will
present the key steps encountered while deriving the expression for
moments of sub-regiony1. Theith moment of max, forY > X in
the1st quadrant, is given as follows:

vy,1(i) =
1

Γσxσy

Z ∞
µx

Z ∞
x

yiφ
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x− µx

σxr
,
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σyr
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dydx

Using the Lebnitz rule, we compute the partial derivative ofvy,1(i)
with respect toµx:

∂vy,1(i)
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We first change order of integration variables in the inner integral,

∂vy,1(i)
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Now, the inner integral of the first term in the above expression is
in an integrable form. We evaluate this integral and an additional
term due to the integration cancels out the second term and gives
us the following simplified result.
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Similar to [8], we first make the substitutiony =
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where,

a2 = σx2
r + σyr − 2ρσxrσyr

Now note that form = ∞, the random variableX >> Y and
therefore, atm = ∞ all momentsvy,1(i) = 0. Using this obser-
vation one can expressvy,1(i) as follows:

vy,1(i) =
1
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e−
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a
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a
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For a given positive integer value of i, the above integral can ex-
pressed in terms of well known special functions. For example the
first moment can be written as

vy,1(1) =

√
π

Γ
√

2
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where, erfc(x) = 1 − 2√
π

R x

0
e−t2dt is the complementary error

function andT (x, y) is the Owen’s T-function [15], given by

T (x, y) =
1

π

Z y

0

e−
1
2 x2(1+t2)

1 + t2
dt.

The special functions erfc(x) and T (x, y) are commonly en-
countered while integrating univariate and bivariate normal distri-
butions, respectively. Precise numerical tables or accurate closed
form analytical approximations exist for both erfc(x) andT (x, y).
As theT (x, y) function was not readily available for ease of im-
plementation we used numerical integration to evaluateT (x, y);
however, for real SSTA implementation either numerical tables or
analytical approximations can be used [16]. Thus similar to [8], the
moments of the max can be found in a computationally efficiently
manner. Likewise, higher moments can also be found by evaluating
the integral given in Equation 4 at higher values ofi. Using simi-
lar manipulations, the moments of max in all seven regions can be
computed.

4. NUMERICAL RESULTS
After deriving analytical expressions for the first three moments

, we implemented the new max function in C++. Our goal is to
eventually use the proposed max operation in an SSTA framework.
Therefore, to emulate the actual use of the true statistical max oper-
ation in an SSTA framework, we collected a test suite consisting of



Figure 5: Example: Input X PDF.

Figure 6: Example: Input Y PDF.

skewed arrival time distributions by running 50,000 Monte Carlo
simulations on a small circuit. For each max operation performed,
the two input operand arrival time distributions and their resulting
maximum arrival time distributions were recorded. For compari-
son purposes, we also implemented the 5-parameter Clark’s max
function. The error in both the proposed max operation and Clark’s
max operation is computed relative to the Monte-Carlo results of
the output arrival distribution for each test case.

Now for every test case, we computed the statistical parameters
of the two input arrival time distributions, namely,µxγ , σxγ , Skxγ ,
µyγ , σyγ , Skyγ andρ. These 7 statistical parameters were the in-
put to the proposed skewed normal function. Using the moment
matching method presented in Section 2, we first map these para-
meters to a bivariate skewed normal distribution and then compute
the output moments of max(X, Y ) using the analytical results de-
rived in the previous section. An example illustrating the efficacy
of the max operation is given in Figure 5, 6 and 7. Given the sta-
tistics of X(1060.55, 58.56, 0.56), Y (1045.53, 66.73, 0.80) and
their correlation, first the parameters of skewed normal probability
distribution function are computed. It can be seen from these fig-
ures that the skewed normal distribution accurately represents the
Monte Carlo generated skewed arrival time distribution as com-
pared to the symmetric normal for both the inputs. Consequently,
as shown in Figure 7 a skewness based treatment of the input ar-
rival time distribution gives max(X, Y ) distribution that accurately
matches the MC simulation results.

We found that the error in the max operation based on a normal
assumption increases significantly with increase in skewness of the
two input arrival time distributions. This is illustrated in Figure 8
where, we show a plot of percentage error in computing the stan-
dard deviation of the max(X, Y ) as a function of the skewness in
X, Sk. The error in mean was found to be less 1 % in both the

Figure 7: Example: Result max(X, Y ) PDF.
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Figure 8: Comparison of standard deviationσmax error (%) as
a function of input arrival time skewnessSkx

cases. It is evident from this plot that the proposed skewed normal
max operation can significantly improve the accuracy of existing
SSTA approaches.

Furthermore, as mentioned in [8], the error of the max operation
also increases when the difference betweenµxγ andµyγ decreases.
We observed a similar trend in our simulation results. In Figure 9
we present error plots of percentage error in standard deviation of
output arrival time as a function of

µxγ−µyγ

a
. It is clear from this

plot that the proposed method exhibits much better robustness to
difference in the mean of input arrival time distribution.

5. CONCLUSION
In this work we derived novel analytical results for computing
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Figure 9: Comparison of standard deviationσmax error (%) as
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the statistical max of two arrival time distributions operation. Us-
ing moment based matching given the mean, variance, skewness
and correlation of two input arrival time distribution we show how
the mean, variance and skewness of the max function can be com-
puted. Thus the proposed skewness based proposed max function
can be used to extend existing SSTA framework to propagate the
first three moments. A statistical analysis tool that can accurately
compute the asymmetry in the circuits arrival time distribution can
prove to be extremely useful in statistical optimization. Our numer-
ical results show that the proposed max operation can significantly
improve the accuracy of existing SSTA approaches.
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