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Abstract
Statistical static timing analysis (SSTA) has become a key method

for analyzing the effect of process variation in aggressively scaled
CMOS technologies. Much research has focused on the modeling of
spatial correlation in SSTA. However, the vast majority of these
works used artificially generated process data to test the proposed
models. Hence, it is difficult to determine the actual effectiveness of
these methods, the conditions under which they are necessary, and
whether they lead to a significant increase in accuracy that warrants
their increased runtime and complexity. In this paper, we study 5 dif-
ferent correlation models and their associated SSTA methods using
35420 critical dimension (CD) measurements that were extracted
from 23 reticles on 5 wafers in a 130nm CMOS process. Based on
the measured CD data, we analyze the correlation as a function of
distance and generate 5 distinct correlation models, ranging from
simple models which incorporate one or two variation components to
more complex models that utilize principle component analysis and
Quad-trees. We then study the accuracy of the different models and
compare their SSTA results with the result of running STA directly
on the extracted data. We also examine the trade-off between model
accuracy and run time, as well as the impact of die size on model
accuracy. We show that, especially for small dies (< 6.6mm x
5.7mm), the simple models provide comparable accuracy to that of
the more complex ones, while incurring significantly less runtime
and implementation difficulty. The results of this study demonstrate
that correlation models for SSTA must be carefully tested on actual
process data and must be used judiciously.

1.  Introduction
Static timing analysis (STA) has become a key method in the per-

formance verification of modern chip designs and is the primary
technique that abstractly incorporates manufacturing variation into
design. Recently, the shortcomings of STA have become apparent
with its inability to efficiently include within-die (intra-die) variation
in process parameters such as gate length, oxide thickness, and dop-
ing levels. STA, in its most common form, is a case-based analysis:
designers perform simulations given best-, nominal-, and worst-case
conditions and all devices are assigned the same process parameter
value. However, with continued process scaling past 65nm, within-
die variation has become more prominent and also exhibits consider-
able spatial correlation. Intra-die variation tends to average out over
the length of a circuit path and hence can reduce the circuit delay dis-
tribution. On the other hand, the presence of significant intra-die
delay variation in two converging paths increases their maximum
delay distribution. With a case based STA analysis, it is therefore dif-

ficult to construct a guaranteed bound on the actual timing distribu-
tion of a circuit without being overly conservative.

To address this issue, statistical static timing analysis (SSTA) was
developed and received considerable attention in the CAD research
community in recent years [1][3][5][6]. SSTA models process
parameters, such as gate length and doping concentration, as random
variables and propagates these random variables through the circuit
in topological fashion, analogous to the propagation in its determinis-
tic counterpart. 

The first efforts in STA [2] modeled all process parameter varia-
tions, as well as the propagated arrival times, as independent random
variables. This assumption significantly simplified the analysis but
compromised accuracy. In [1][3][4], process parameters variations
were still considered as independent, but correlations between arrival
times due to reconvergence in the circuit were accounted for. In the
latest generation of SSTA tools [1][5][6], correlations between the
process parameters of different gates in the circuit were also
accounted for. 

Process parameter correlation exhibits both a die-to-die compo-
nent (causing all device parameters in a die to vary by some common
amount) and a spatially defined component (where devices with
close proximity are more likely to have similar process parameter
values). While die-to-die correlations can be incorporated relatively
easily by enumerating a small number of die conditions, the so-called
spatial correlations increase the complexity of SSTA substantially.
Accounting for these correlations requires both a model which
expresses the correlations in an amendable form, as well as an
accompanying SSTA engine that can operate on this model. 

The spatial correlation model proposed in [5] uses a grid-based
approach where the process parameters of all gates that fall within
the same grid square are assumed to be identical. The correlation
between different grid squares is decomposed using principal compo-
nent analysis (PCA), and then modeled as a weighted sum of inde-
pendent random variables (the principle components). A different
grid-based model was developed in [1]. Here, the authors combine
multiple grids with varying granularity in a tree-like fashion, where
each grid square is assigned an independent random variable and
each gate is associated with every grid square in which it resides.
While the Quad-tree uses a larger total number of random variables
than the PCA approach (given the same grid granularity), less infor-
mation is associated with each individual gate. One important item
we address in this paper that was not included in [1] is a method for
fitting the Quad-tree model to measured data.

Extensive work has been performed on modeling spatial correla-
tions and improving the accuracy of SSTA using the discussed mod-
els. To our knowledge, however, no study has been published
demonstrating the effectiveness of these methods on real process
data. In fact, all above referenced SSTA methods used artificially
constructed process data for verifying the accuracy of their approach.
This is due, in part, to the lack of published data on process variation
characteristics, such as the behavior of correlation as a function of
spatial separation. However, without verification of the proposed
models on actual process data, it is difficult to determine the accuracy
of the approaches. Furthermore, it is possible that while the proposed
methods are accurate, the correlation in actual process data is such
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that even simpler models provide sufficient accuracy, making the
complexity and runtime of the more complex methods unwarranted. 

In this paper, we obtained measured critical dimension (CD) data
through electrical linewidth measurement (ELM) of a 130nm test
chip design. The test chip consists of 8 different test structures (vari-
ous densities and orientations of polysilicon lines) [7] repeated at 308
sites per field over 23 fields and 5 wafers for a total of 35420 mea-
surements. Note that this paper does not address CD variation due to
layout. Since layout variation is deterministic, it can be included
orthogonally to this work. Instead, the focus is on statistical variation
and spatial correlation model testing. Specifically, the ELM data is
used to study the correlation characteristics of actual CD variation as
well as the effectiveness of different correlation models and their
SSTA analyses.

Based on the measured data, different die sizes were extracted
ranging from 6.6mm to 30.7mm on a side. For the smaller die sizes,
multiple die could be positioned in a single field. Then, we analyzed
general characteristics of the CD variation as well as the spatial cor-
relation as a function of separation distance. We found that the corre-
lation function differed significantly for vertical and horizontal
separations, which had significant implications for correlation mod-
els. We then tested 5 different correlation models using the measured
CD data and ran SSTA on these models. The 5 models include the
PCA and Quad-tree methods, as well as three simpler methods that
model the process parameters using a die-to-die and/or an indepen-
dent variation component. For Quad-tree, we introduce a new fitting
method which derives the model parameters from measured data. 

The ability of the correlation models themselves to accurately rep-
resent the correlation structure was first studied by generating a large
set of sample dies using Monte Carlo simulation on the correlation
models and running STA on each generated sample die. In addition,
SSTA was also performed directly on the generated models. By com-
paring these two circuit delay distributions with that obtained by run-
ning STA on the actual set of die (using the measured data), the
accuracy of the different correlation models and the SSTA accuracy
was studied. We also investigated the dependence of the analysis
accuracy on the granularity of the models, their parameters, and the
size of the die.

In our analysis, we found that both the PCA and Quad-tree
approaches, combined with a Clark-based SSTA approach [8],
resulted in an accurate estimation of the actual mean and variance of
the circuit delay distributions. However, we also found that, espe-
cially for smaller die, their accuracy was not significantly higher than
the accuracy obtained using the much simpler model which expresses
the correlation using the sum of an inter-die component and random
components. Hence, this study indicates that these more complex
models may only be necessary for very large die and shows the
importance of testing correlation models on actual process data and
their judicious use.

The remainder of this paper is organized as follows: Section 2
describes the background information of different process variation
sources and correlation models. Section 3 presents an analysis of the
measured CD data and its correlations. In Section 4, the five correla-
tion models are introduced and their effectiveness in SSTA is com-
pared. The paper is concluded in Section 5.

2.  Background
2.1  Process Parameter Variation

In today's fabrication processes, there are three process parameters
that exhibit the most pronounced variation impact: doping, interlayer
dielectric (ILD) thickness, and gate length.

2.1.1  Doping
The first major source of variation in today's circuits is caused by

changing doping levels. The key mechanism behind this variation is
known as random dopant fluctuation (RDF). However, unlike the
other two process parameters, this variation is random and indepen-
dent of other sources of variation [9]. Therefore, RDF can be mod-
eled more easily than the other process parameters and does not
require a spatial correlation model. Hence, we did not include it in
our current analysis. However, the proposed analysis methodology
can easily incorporate this additional source of variation.

2.1.2  Interlayer Dielectric Thickness
ILD variation affects interconnect parasitics and is caused by

chemical-mechanical polishing (CMP) and variation in layout topog-
raphy. However, since this is a relatively systematic variation that
depends heavily on the density of the metallization in the design, it is
possible to reduce this variation significantly or to model it determin-
istically.

2.1.3  Gate Length Variation
Out of the three main process parameters discussed here, gate

length variation remains the dominant source of delay variation. This
is due to the fact that there are numerous sources of gate length varia-
tion that affect the device at different stages throughout the fabrica-
tion process, such as etch rate variation, lithography dose variation,
focus variation, lens imperfections, scanner variation, etc. [7]. Most
of the gate length variation is due to imperfections in the lithographic
system. These imperfections can contribute multiple levels of varia-
tion at any point during the fabrication process. For example,
changes in the wafer machinery over long periods of time can intro-
duce wafer-to-wafer variation. Also, within-wafer variation origi-
nates from non-uniformities in temperature, laser intensity
fluctuations or film-thickness changes [7]. Below the scale of intra-
wafer variation lies reticle variation, which can be caused by devia-
tions in dose and focus. Lastly, the optical system can induce within-
die variation if there are imperfections in the lens as the scanner
moves through a reticle.

Most of the sources of gate length variation are systematic in
nature, and previous work has shown that it is possible to remove
these systematic variations, given sufficient information about the
topology surrounding a device [7]. Hence, in this work, we focus on
the random component of variation (as opposed to its systematic
component), which can exhibit spatial correlation.

2.2  Types of Gate Length Variation
Within the random component of gate length variation, we can

further distinguish three types of variation: independent, die-to-die,
and spatially correlated. For this section all variables ∆Lx are
assumed to be zero mean, unit variance random variables.

2.2.1  Independent
In this case, each device in the design has variations in its process

parameters that are independent from the variations in process
parameters of other devices. Independent variations can be modeled
using independent random variables. If the gate lengths in a die are
completely specified by independent variations, the length of gate i
can be expressed as follows:

, (1)

where Lnom,i is the nominal value of gate length for that gate, ∆Lrnd,i

Lg i, Lnom i, σri∆Lrnd i,+=
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is the random device length variation for gate i, and σri is the sensi-
tivity of gate i to changes in ∆Lrnd,i.

2.2.2  Die-to-Die
Die-to-die variation, on the other hand, describes variation that is

common for all devices on a particular die. When only inter-die vari-
ation is considered, all gate lengths within a particular die become
perfectly correlated. Therefore, the gate length of gate i, only consid-
ering die-to-die variation, can be expressed as:

, (2)

where Lnom,i is the nominal value for gate i, ∆Ldie-to-die is a single
random variable that is applied to all gates in the circuit, and σdd is
the global gate sensitivity to changes in ∆Ldie-to-die.

2.2.3  Spatially Correlated
The last type of variation that we consider is spatially correlated

variation. Most process variation within a single die is spatially cor-
related, and generally, correlation decays as a function of distance
between two points. Generally, in statistical timing analysis, the
desire is to express correlation using a weighted sum of independent
random variables, as shown below,

, (3)

where ∆Lk is the variation of the kth component and αk is the sensi-

tivity of the gate length to changes in the kth component. By main-
taining this form throughout the timing analysis, correlation
information between the arrival times can be maintained. The spe-
cific values of the sensitivities and the number of components will
vary between the different correlation models, which are discussed in
the following subsection.

2.3  Correlation Models
As briefly mentioned in the introduction, the five correlation mod-

els analyzed in our experiments are: die-to-die (D2D), independent
(commonly referred to as random and hence forth referred to as such
in this paper), D2D + random, PCA, and Quad-tree.

2.3.1  D2D, Random, and D2D + Random
The equations used to express the length variation of a particular

gate for the die-to-die and random cases are equal to (1) and (2) dis-
cussed in the previous section. Therefore, the die-to-die + random
variation is a combination of (1) and (2):

, (4)

Once we know the forms of these equations, it is simple to
develop sensitivity matrices, which are the input to our statistical
timing tool. For instance, the sensitivity matrices for D2D, random,
and D2D + random are shown in (5) as D, R, and DR, respectively.

, (5)

where σdd is the standard deviation of only the die-to-die component,

σri is the standard deviation of the ith random component, and σ’ri is

the standard deviation of the ith random component when the die-to-
die component has been removed.

2.3.2  PCA
The PCA model is a grid-based model (shown above in Figure 1)

that separates the die into n grids. Each grid is associated with a prin-
cipal component, and all n principal components are independent,
normal random variables with zero mean and unit variance. Here,
PCA deals with spatially correlated distributions, so we know that its
equation is going to look similar to (3). In fact, for a gate i, its length
can be expressed as:

, (6)

where ∆Lj is the jth component and αij is calculated as stated in (6) –

σi is the standard deviation associated with grid i, vij is the ith ele-

ment in the jth eigenvector of the correlation matrix, and λj is the jth

eigenvalue of the correlation matrix [5]. Therefore, the sensitivity
matrix, P, for the PCA model will be of the form,

, (7)

where each grid is associated with one column and one row.

2.3.3  Quad-Tree
Quad-tree is another grid model that utilizes various grid levels

combined in a tree-like structure – shown in Figure 2 – to include
spatial correlation. The Quad-tree has l+1 levels, and each level, k,
contains 2k-by-2k squares [1]. Levels are numbered where “level 0”
represents the top level and l is bottommost level. Level 0 only has
one grid, while level k has 4k grids. All of the regions at different lev-
els of the tree are associated with an independent random variable
that includes part of the total intra-die variation. For a gate located
within bottommost region r, the associated variation is a sum of all
the intra-die variation components that intersect region r as you
progress up the tree (i.e. in Figure 2 grid (2,13) intersects grid (1,3)
and (0,1)). For example, the equation for gate length for a gate that
lies in grid (2,7) is,

. (8)

Lg i, Lnom i, σdd∆Ldie to– die–+=

Lg i, Lnom i, α1 L∆ 1 α2 L2∆ α3 L∆ 3 …+ + + +=

Lg i, Lnom i, σdd∆Ldie to– die– σri∆Lrnd i,+ +=
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Thus, the sensitivity matrix is similar to the PCA's matrix in (7),
where all grids (including all levels of the tree) are given one row in
the sensitivity matrix, while only the bottommost grids are assigned
to individual columns. All grids that do not intersect with a particular
bottommost grid (assigned column i in the matrix) will have a zero
sensitivity value at its row j in the matrix (i.e., element [i, j] equals
zero).

As stated in the introduction, the authors in [1] did not explain
how to fit actual data to their model. After examining several differ-
ent algorithms, we derived a Quad-tree fit that is efficient, simple and
provides good accuracy. Prior to fitting, we discovered that closely
matching the die-to-die component was very important to overall
accuracy, therefore, this fitting method was designed to accurately
capture the die-to-die component first with zero error.

Essentially, the fitting method starts at level 0 and works its way
down the tree. At each level you stop there, determine how many
grids you have at that level (4k for grid level k). Next, you parse
through each grid at that level and calculate its mean. You do this for
all dies across all reticles and wafers and then calculate the standard
deviation of grid mean for that particular grid. This is what goes in
your sensitivity matrix. As stated previously, do this for all grids in a
level, then move to the next level down.

The pseudo code for the fitting algorithm is as follows:
Begin at level = 0.
while (level < total number of levels)

grid = 1.
while (grid < 4 ^ level)

compute grid µ
compute σi of grid i mean for all dies
enter σi into sensitivity matrix

end
end

3.  Experimental Data and Analysis
As stated earlier, our analysis is based on 130nm ELM data taken

from horizontal polysilicon lines that have optical proximity correc-
tions (OPC) included [7]. We investigated 5 different wafers, each
wafer contained 23 fields, and each field included 308 measurement
points: 14 points in the horizontal direction and 22 points in the verti-
cal direction. Individual measurement points were spaced horizon-
tally by 2.19mm and vertically by 1.14mm.

An example of one wafer of ELM CD measurements is shown in
Figure 3. As shown, not only do the measurements vary across the
wafer (the lower right corner has smaller CD values than the upper
right corner), but specific patterns occur within the reticles (the upper
and lower boundaries of the field have a higher CD than the center
points.) For these 5 wafers, we divided the reticles into various die
sizes in order to investigate the effects of die size on the CD varia-
tion. Initially, we diced a reticle into 4 die, (a 2-die by 2-die configu-
ration where each die is 15mm x 12mm). Then, we examined a
number of characteristics including the mean, standard deviation, and
correlation of all the dies.

The mean values for each data point in a die using a 2 x 2 diced
reticle are shown in Figure 4 (a). As can be seen, the typical die has
lower values in the center of the die, and CD values increase as you
approach the edges of the die. In Figure 4 (b), the standard deviation
over mean is plotted for this particular case. Again, the figure shows

Figure 2. Quad-tree Model Example

(2,1) (2,2) (2,3) (2,4)

(2,5) (2,6) (2,7) (2,8)

(2,9) (2,10) (2,11) (2,12)

(2,13) (2,14) (2,15) (2,16)

(1,1) (1,2)

(1,3) (1,4)

(0,1)

Figure 3. Quad-tree Model Example

Figure 4. (a) Mean CD Values for Die (2x2 reticle dice)
(b) Standard Deviation/Mean for Die (2x2 reticle dice)

(a)                                                 (b)

Figure 5. (a) Mean CD Values for Die (4x4 reticle dice)
(b) Standard Deviation/Mean for Die (4x4 reticle dice)

(a)                                                 (b)
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the edge effects in the die. To contrast the 2 x 2 diced reticle, we have
also included the 4 x 4 diced versions in Figure 5.

On average, the 4 x 4 dicing merely divides the 2 x 2 case into
two-by-two grids of its own. Thus, it can be seen that the 4 x 4 mean
plot is a quarter of the 2 x 2 plot, with the spot effect seen in the 2 x 2
case lying on the inner portion of the 4 x 4 die. Similarly, the standard
deviation-over-mean plot also resembles a quarter of the 2 x 2 case,
with the lower deviation occurring at the top edge of the typical 4 x 4
die. It should be noted, however, that the variation structure is quite
different between the 2 x 2 and 4 x 4 diced cases. 

In addition to the mean and standard deviation, the correlation was
also extracted for different size die. Plotted in Figure 6 is the average
correlation versus separation distance. It is easily identifiable that this
function is not monotonically decreasing with distance, x. On the
contrary, we see many distinctive peaks where correlation falls and
then spikes up at a particular distance. From this investigation, it
became clear that correlation versus horizontal distance is different
from the correlation versus vertical distance (i.e. correlation is typi-
cally stronger along a particular axis). This is confirmed in Figure 7
(a) where correlation is plotted separately for spacing in horizontal
and vertical directions. 

As shown, correlation in the x-direction is actually stronger which
can be explained by the fact that during fabrication only a narrow slit
in the x-direction is being printed while the entire y-dimension of the
reticle is being printed. Thus, vertically, the reticle sees all of the
variation in the lithographic system (particularly lens aberrations) but
as the reticle is scanned across x, this variation does not change sig-
nificantly, creating higher correlation in the x direction. Figure 7 (b)
also shows similar behavior for a much smaller die size.

Lastly, we plotted probability density functions for each point
within a die. One example is shown in Figure 8, which is a plot of
point 76 within the 15mm x 12mm die (2x2 reticle) and point 14
within the 7mm x 6mm die (4x4 reticle).

4.  Variation Modeling and SSTA Results
After analysis of the experimental data, we used the data to test the

accuracy of different correlation models and their associated SSTA
runs. For our test circuit, we utilized the behavioral Verilog from an
industrial, 15000 gate implementation of a Viterbi decoder. Then
Synopsys's Design Compiler was used to synthesize the design and
balance the paths. Lastly, the test circuit was placed and routed using
Cadence's Silicon Ensemble, in order to generate the placement
information needed by the SSTA tool. The authors would like to note
that we did not actually layout the Viterbi decoder. It was merely
used as a simulation benchmark to test the accuracy of our spatial
correlation models.

The general flow of our analyses is illustrated in Figure 9. There
are effectively three branches in the flow. All branches start with the
same wafer data. Then, in the first case (the left branch), we perform
static timing analysis on all N die, where,

Figure 6. Average Correlation vs. Distance

Figure 7. Average Correlation vs. Distance (1-dimension only)
(a) 2x2 reticle dice (b) 4x4 reticle dice

  (a)                                                  (b)

Figure 8. PDF Plot for ELM Measured CD

Figure 9. Timing Analyses Flow
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, (9)
X is the number of die per reticle in the horizontal direction, and Y is
the number of die per reticle in the vertical direction (23 is the num-
ber of reticles, 5 is the number of wafers). From deterministic STA,
we obtain N timing reports from which we can extract a final distri-
bution for critical path delay of the circuit. We consider this our
golden statistical analysis of the circuit delay since it is based directly
on the underlying measured data.

The two paths on the right both begin with a model generation step
which involves fitting one of the 5 discussed models to the data.
These two paths then diverge. The center path (referred to as model-
based Monte Carlo) essentially follows a similar analysis as the enu-
meration-based timing analysis (TA), with the major difference that
the STA is performed on random die generated based on the fitted
model instead of the actual measured data. The final left path per-
forms SSTA directly on the fitted correlation model.

In the end, this TA flow gives us three outputs available for com-
parison. By comparing the enumeration-based TA with the model-
based Monte Carlo TA, we can determine the inherent accuracy of
the correlation model for timing analysis. Similarly, by comparing
the probabilistic TA distribution to the model-based Monte Carlo TA,
the accuracy of SSTA run on a particular correlation model can be
determined. Lastly, we can determine the overall accuracy of using
SSTA with a specific correlation model by directly comparing the
enumeration-based TA to the probabilistic TA.

Table 1 includes the results of our TA verification flow. Included
are all three TA flow outputs: enumeration-based, model-based
Monte Carlo, and probabilistic. Additionally, Figure 10 shows sam-
ple probability density plots for 3 of the models, including the enu-
meration-based and two PCA models (model-based and
probabilistic). All of the curves in Figure 10 are from the 4 x 4 reticle
dice experiment.

When examining the model-based Monte Carlo TA results in
Table 1, it is clear that even the simple die-to-die models only deviate
from the enumeration-based results by less than 10%. The random
model is more accurate than die-to-die with regards to the mean, but
is significantly off with regards to standard deviation. The reason for
this is that die-to-die variation tends to produce variation in the cir-
cuit delay where as random or spatially correlated variations tend to
average out over the circuit paths and therefore instead result in a
shift of the mean value of circuit delay. Since the random correlation

model does not model die-to-die variation at all, it incurs a signifi-
cant error in the standard variation of the circuit delay. The “Die-to-
die + random” correlation model improves over die-to-die due to the
fact that it models what appear to be the two most important compo-
nents of the variation. Overall, it is clear from the simple models that
both random (independent) and die-to-die variation are significant to
the accuracy of the model, but die-to-die is substantially more signif-
icant.

Table 1 also shows the two more complex spatial models for
model-based Monte Carlo TA. The error in PCA is negligible, falling
below 1%, while that of the Quad-tree is somewhat higher. The fact
that the PCA correlation model out-performs the Quad-tree for model
based Monte Carlo TA is not surprising since it utilized a much large
number of principle components to fit the measured data. 

One of the more surprising results is that when we look at the error
of the probabilistic TA for the 5 models, PCA and Quad-tree report
very comparable results despite the fact that PCA reported better
results for model based Monte Carlo TA. Both are less than 1% away
from the means of the enumeration-based run, and approximately 3%
off from the standard deviations. Hence, the PCA model is more
accurate than the Quad-tree model, but the execution of SSTA on
PCA incurs more error than SSTA execution on the Quad-tree, mak-
ing the final results approximately equal. This behavior was also seen
consistently for different tests that were performed. We postulate that
this behavior is the result of the large number of independent compo-
nents associated with each gate in PCA. This flexibility allows PCA
to obtain a better fit of the data in its correlation model, but also
makes the SSTA task more difficult and introduces a higher error in
the Clark based max function that is performed inside the SSTA tool.
Finally, it is noteworthy that the simple die-to-die + random model
performs nearly as well on the probabilistic TA flow as the more
complex models.

4.1  Model Accuracy vs. Die Size
Next, we studied the affect that die size had on the models and

SSTA accuracies. That result is shown above in Table 2. The cells in
the first row contain the enumeration-based results for mean and
standard deviation, while the rest of the table displays the percent
deviation from the enumeration-based TA. In general die-to-die, die-
to-die + random, and Quad-tree models become more accurate (in
terms of overall accuracy) as the die gets smaller. This is intuitive in
terms of the die-to-die model because by shrinking the die, we are
making more of the variation inter-die variation, and since we fit the
Quad-tree to die-to-die variation first, it also follows this trend.

N X Y 23 5×××=

Table 1. Enumeration-Based, Model-Based, and Probabilistic TA Results

Analysis Method µ (ns)
% Error 

from 
Enum.

σ (ns)
% Error 

from 
Enum.

Enumeration-based TA 2.049 0.152

Model-based 
Mont Carlo 

TA

Die-to-Die 1.934 5.623% 0.139 8.326%
Random 2.087 1.849% 0.058 62.12%
D2D + 
Random

2.006 2.117% 0.146 3.784%

PCA 2.033 0.800% 0.151 0.428%
2-level 
Quad-tree

2.006 2.111% 0.159 4.556%

Probabilistic 
TA

Die-to-Die 1.945 5.108% 0.146 3.789%
Random 2.130 3.934% 0.040 73.70%
D2D + 
Random

2.006 0.769% 0.146 3.793%

PCA 2.071 1.043% 0.148 2.694%
2-level 
Quad-tree

2.061 0.577% 0.157 3.198%

Figure 10. Probability Density Plots for 3 Models (Enumeration-
Based, PCA Model-Based Monte Carlo, and PCA Probabilistic)
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The random model, on the other hand, actually becomes less accu-
rate as die size decreases because it models all within-die variation as
uncorrelated, and the dies will, on the whole, become more correlated
as you shrink them due to the inverse relation between correlation
and distance.

The last model, PCA, has a minimum in terms of accuracy. For
large die (i.e., die that are larger than one-quarter of the reticle) and
small die (like the 4x4 reticle case) PCA does not do as well, where
as for medium size die it is more accurate. The results show that the
relative model accuracy changes based on die size and hence, differ-
ent models may be appropriate for different die size scenarios.

4.2  Grid Model Behavior
The way in which PCA and Quad-tree behaved while varying their

characteristics, such as the number of principal components for PCA
and number of tree levels for the Quad-tree, was also investigated. 

First of all, limiting the number of principal components within
PCA is commonly used since principal components are arranged in
order of decreasing importance. For our purposes, we investigated
the minimum number of principal components needed to obtain
accurate results from SSTA. The behavior of the mean and standard
deviation of SSTA versus number of principal components is given
in Figure 11, and both are normalized to their respective value that
includes all principal components. As you can see, both curves flat-

ten out around 3 principal components, and approach 1 as the number
of principal components gets large

Also of interest was the number of levels included in Quad-tree.
However, for the tests that we ran, any number of levels above 3 did
not give much additional gain in accuracy, since the Quad-tree SSTA
already had errors of <1% for means and ~1% errors in standard
deviation, as compared to the enumeration based model.

5.  Conclusion
In our analyses, we found that the grid-based models were supe-

rior, both in the model-based simulations as well as the probabilistic
TA. On average, Quad-tree was consistently more accurate with
respect to the mean, and it outperformed PCA when the die size was
small (6mm x 5mm). However, in all cases, the “die-to-die + ran-
dom” model was only a couple percent behind Quad-tree and PCA in
terms of error. Thus, the “die-to-die + random” model is a much sim-
pler method of getting in the same ballpark as PCA and Quad-tree if
you can tolerate a certain amount of error.
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Figure 11. Mean and Standard Deviation versus Number of Principal 
Components (Normalized to Probabilistic Mean and Standard 

Deviation with all Principal Components)

Table 2. Model versus Die Size

Run Type
23mmx19mm (1.2x1.2 reticle dice) 15mmx13mm (2x2 reticle dice) 8mmx6mm (4x4 reticle dice)

µ (ns) σ (ns) µ (ns) σ (ns) µ (ns) σ (ns)

Enumeration-based TA 2.022 0.156 2.049 0.152 1.975 0.167

Model-based 
Monte Carlo TA

Die-to-Die (D2D) 4.176% 6.733% 5.281% 2.138% 2.407% 2.405%
Random 2.136% 68.176% 1.772% 62.396% 4.545% 51.130%
D2D + Random 0.029% 3.605% 1.105% 3.050% 0.103% 2.799%
PCA 0.271% 6.259% 0.303% 3.472% 0.315% 1.209%
1-level Quad-tree 3.165% 6.131% 3.098% 0.239% 0.173% 4.542%
2-level Quad-tree 0.873% 8.979% 1.056% 1.688% 0.675% 2.039%

Probabilistic TA

Die-to-Die (D2D) 3.825% 8.492% 5.108% 3.789% 1.469% 3.192%
Random 3.176% 83.625% 3.934% 73.703% 8.841% 62.472%
D2D + Random 1.245% 11.247% 0.767% 3.793% 1.585% 3.188%
PCA 0.099% 8.049% 1.043% 2.694% 2.138% 4.740%
1-level Quad-tree 2.468% 7.451% 1.549% 1.424% 0.341% 0.280%
2-level Quad-tree 0.794% 7.326% 0.027% 1.983% 1.002% 0.069%
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