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Abstract—Reliability failure mechanisms, such as time-depen-
dent dielectric breakdown (TDDB), electromigration, and nega-
tive bias temperature instability (NBTI), have become a key con-
cern in integrated circuit (IC) design. The traditional approach
to reliability qualification assumes that the system will operate at
maximum performance continuously under worst case voltage and
temperature conditions. In reality, due to widely varying environ-
mental conditions and an increased use of dynamic control tech-
niques, such as dynamic voltage scaling and sleep modes, the typ-
ical system spends a very small fraction of its operational time at
maximum voltage and temperature. In this paper, we show how
this results in a reliability ‘“slack” that can be leveraged to provide
increased performance during periods of peak processing demand.
We develop a novel, real time reliability model based on work-
load driven conditions. Based on this model, we then propose a
new dynamic reliability management (DRM) scheme that results in
20%-35% performance improvement during periods of peak com-
putational demand while ensuring the required reliability lifetime.

Index Terms—Integrated circuit (IC) reliability, reliability man-
agement, system-level reliability modeling.

1. INTRODUCTION

RADITIONAL stress-based reliability qualification tech-
T niques, such as the JEDEC JESD-47 Standard [1], qualify
designs by stressing sample systems under pessimistic environ-
mental conditions with a zero failure pass/fail criteria. While
the traditional approach is an accepted method of ensuring re-
liability, the limits it places on supply voltage and temperature
leave a significant and increasing reliability margin between
circuit performance at worst case conditions and at typical
conditions. Widely varying environmental conditions linked
to portable products combine with dynamic power reduction
techniques to exacerbate the limitation of this conventional
worst case qualification methodology.

Hence, the need for alternative approaches to ensuring life-
time reliability under dynamic operating conditions is clear.
An alternative to stress-based qualification, knowledge-based
risk assessment is one alternative to simplistic corner-case
stress testing. The knowledge-based approach (a framework for
knowledge-based qualification is defined by JEDEC JESD-34
[2]) requires careful characterization and analysis of individual
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Fig. 1. Reliability degradation over time.

failure modes to assess a reasonable system reliability risk
factor given the reliability targets for the system. In this paper,
we propose the use of so-called dynamic reliability management
(DRM), where real-time workloads and thermal information
provides accurate inputs to real-time knowledge-based relia-
bility models for projecting the degradation caused by various
failure mechanisms. We then use the projected failure proba-
bility to control the maximum voltage assigned by a dynamic
voltage scaling (DVS) algorithm.

The concept of DRM is conceptually motivated in Fig. 1. The
line labeled worst case profile shows the accumulated damage
due to a failure mechanism, such as oxide breakdown, over a
10-year time span under worst case operating conditions (max-
imum operating frequency, voltage, and ambient temperature).
In traditional analysis, the maximum supply voltage is set such
that at the accumulated damage at the 10-year mark results in
a failure probability that meets the specified constraint (such
as 63.2%, or 1 — e~1). However, performance traces collected
from an actual desktop processor show that the processor spends
over 85% of its time in low power or sleep modes where the
incurred damage rate is significantly lower. The accumulated
damage from such typical usage is shown in Fig. 1 with the line
labeled typical profile and results in a much lower final damage
at the 10-year mark. Hence, the failure probability for this typ-
ical usage is well below that of the specification and the max-
imum allowed operating voltage was unnecessarily constrained
resulting in a loss of potential performance.

Since the maximum supply voltage is currently set a priori
at design time or during post-fabrication testing, it is becoming
increasingly difficult to anticipate the actual usage of a part and
hence worst case conditions must be assumed. Under DRM,
however, it is possible to dynamically monitor the operating
voltage and temperature during part operation. With this oper-
ating condition history, we propose the use of models to project
the expected reliability and to dynamically adjust the maximum
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supply voltage available to a DVS algorithm such that the re-
quired reliability constraint is met while delivered processing
performance during peak demand is maximized. DRM has the
added potential benefit of theoretically allowing a user to se-
lect a desired lifetime or degradation envelope. Furthermore,
DRM provides designers and architects with the ability to con-
trol lifetime reliability independently for individual projects in
a manner that is transparent to the manufacturing technology.

The concept of DRM was first introduced in [3] using a sum
of failure rates method while considering multiple reliability
mechanisms. Lu et al. [4] analyzed electro-migration (EM) ef-
fects and suggested dynamic thermal management. However,
both approaches focus on short time scales that are not indica-
tive of realistic reliability requirements, and more critically, do
not propose an actual control system required to obtain perfor-
mance gains.

In this paper, we explore a DRM framework for digital
logic using physics-based failure models for oxide breakdown,
EM, thermal cycling, and negative bias temperature instability
(NBTI) expressed as incremental damage mechanisms using
a linear cumulative damage model referred to as Miner’s rule
[5]. The reversibility of NBTI damage is modeled and lifetime
projection and the recovery effect on achievable system per-
formance are explored. The performance impact of DRM in
systems with DVS control techniques is analyzed with a focus
on macro-level user collected processor usage profiles rather
than traditional benchmark applications. The DRM system
sets a maximum supply voltage based on the degradation
characteristics modeled during operation and exceeds the nom-
inal supply voltage when possible while meeting the required
reliability constraints. With the proposed implementation of a
specific control DRM algorithm, this work demonstrates and
quantifies the potential performance improvements of DRM
utilizing dynamic voltage scaling.

This paper is organized as follows. Section II describes the
adapted reliability models used to estimate failure rates under
variable conditions. Section III describes the projection of
failure rate at a desired lifetime using inputs from the relia-
bility models. The DRM control system that enables operation
beyond nominal voltages is presented in Section IV, while
the simulation setup and results discussion are presented in
Section V. Section VI summarizes the simulation results and
highlights the contributions of this paper.

II. RELIABILITY MODELING

In order to implement a real-time dynamic reliability man-
agement scheme, we require accurate models that can compre-
hend dynamic stress behavior with minimal computational ex-
pense. High level compact models for oxide breakdown, EM
and thermal cycling are addressed in the following sections.
The models are adapted from state-of-the-art physics of failure
work and applied to real-time DRM. In our proposed approach,
we cast all reliability models such that they express wear-out
in terms of an accumulated damage or fraction of lifetime con-
sumed. This approach allows simple projections of the failure
rate at the desired lifetime and is key to the efficient computa-
tion of total failure probability which drives the proposed DRM

control method. It also allows the use of degradation dependent
models for each reliability mechanism, a capability that is lost
when dealing directly with probabilities.

A. Oxide Breakdown

Oxide breakdown, or dielectric breakdown, is a degradation
mechanism that results in a low-impedance path through an
insulating or dielectric barrier. During normal operation, each
electron passing a dielectric barrier has a small probability to
enter a high-energy state to tunnel through the insulating layer.
Defect paths in the dielectric barrier reduce the energy level re-
quired for conduction through the layer, and therefore increase
the probability that electrons will travel through the layer.

Each tunneling charge has a small probability of creating a de-
fect when passing through the oxide. This probability of defect
generation is the wear-out mechanism for thin dielectric films.
When a critical defect density is reached, there is a high proba-
bility that a low-impedance defect path exists in the oxide and
arunaway current path through the insulating film will develop.
The exact microstructure and nature of the defects is not well
understood and less than 1% of defect paths ultimately lead to
an uncontrolled current path and oxide breakdown. The relation-
ship between charge tunneling through the oxide and the defect
density is expressed in (1), where Npp is the defect density,
Ppg is the probability of defect generation, and I;ynne is the
tunneling current, V' is the voltage across the oxide, and 7' is the
temperature [6]

t

NBD ~ /PDG(V7 T)Itunnel(‘/;T)dt- (1)

A simple simulation methodology for estimating the critical
defect density required for a low-impedance defect path was
originally developed by Degraeve [7] using a percolation con-
cept. The percolation model places defects of a certain size into
a 3-D oxide volume until a path of overlapping defects is cre-
ated between the top and bottom planes. By running this simula-
tion repeatedly for a given dielectric thickness, one can obtain a
probability density function modeling the probability of a defect
path related to the defect density. From this PDF, the approxi-
mate reliability of a thin-film dielectric is determined. The PDF
generated by Monte Carlo simulation of the percolation model
is fit to a Weibull distribution and used to calculate the proba-
bility of entering the onset of defect-induced oxide breakdown
for an individual device.

The tunneling current through a gate oxide is calculated using
BSIM4 model equations, yet alternative methods could be em-
ployed. The BSIM4 model for gate oxide leakage is well-suited
for this calculation due to readily available parameters for most
processes and the significant validation efforts to ensure accu-
racy. The probability of defect generation is a technology-spe-
cific term with a increasing exponential trend with increasing
supply voltage and an Arrenhius temperature relationship. In
this paper, published defect generation relationships from an
IBM technology node are used in the simulations [6]. This oxide
breakdown model allows an incremental summation of defect
density at variable supply voltage and temperature stress con-
ditions. This closed-form, high-level oxide breakdown model
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is therefore ideal for a real-time DRM system considering dy-
namic stress conditions.

B. EM

EM is a failure mechanism caused by the movement of metal
atoms through wires, creating voids (vacancies) and hillocks
(deposits) that force open and short circuits in the surrounding
wire networks. The transport phenomenon is primarily caused
by electrical current, temperature gradients, and diffusion pro-
cesses in the conductors. Black’s formula [8] is a well-known
relationship between the mean time to failure of an interconnect
and the current density, temperature, and physical dimensions
of the wire as shown in (2)

MTF = AJ~" exp(E, /kT). )

The term A is a constant related to the materials and the geo-
metric structure of the wire and it generally increases with both
width and thickness of the structure. .J is the current density,
E, is activation energy for atom transport, k is the Boltzmann
constant, and 7' is temperature. The value of n is also a constant
that depends on the criterion for EM failure and the treatment of
wire-self heating. Typical values of n lie in the range of 1.0 to
2.0 when wire self-heating is considered, although larger values
may fit data more accurately when self-heating is not consid-
ered. When the criterion for failure is related to a critical void
size, a value of n close to 1.0 is used, whereas when considering
a critical value of stress, a value of 2.0 is commonly used. The
results in this paper are presented using a value of n = 2.0.

Ideally a model for a DRM should be expressed as a wear-out
mechanism, with a quantifiable stress or damage term that is
summed over time. Black’s formula is instead expressed as a
lifetime estimate based upon a single current density and tem-
perature. We, therefore, use Miner’s rule [5] (linear cumula-
tive damage) to estimate the EM lifetime of a conductor by
adding the percentage of lifetime consumed during each period
of varying stress

MTFref

o= ot Ay, 3
ol = ZL MTF(J,T) )

Equation (3) summarizes the adaptation to Black’s formula
that allows variable stress conditions to be expressed as a
percentage of lifetime, ojire. MTF .o is a reference value that
would be characterized at worst case conditions for the design
and MTF(J,T) is an MTF calculation that is performed with
varying current density and temperature averaged over a time
window At.

A Weibull distribution is again used to convert the percentage
of lifetime figure (oy;5) to a probability of failure. Due to the
scarcity of published distributions of failure relating to EM, the
specific parameters are not available and a Weibull curve similar
to the oxide breakdown curve is used. This Weibull distribution
would need to be characterized for the specific process and geo-
metric structures in the interconnect stack to provide sufficient
accuracy for DRM. A self-consistent temperature is calculated
for wires in each layer considering the thermal effects of wire
resistance and the current density at a given supply voltage [9].
Equation (4) relates the resistance of the wire to the temperature

(Twire), thickness of the wire (), and resistivity of the material
(po at Tp)

Rwiro = % [1 + O5(1—7wirc - TO)] (4)
Twire = Tsub + Rthermaleire~ (5)

Equation (5) demonstrates that the temperature of the wire
is a function of the power, which is a function of the resis-
tance Ryire. The thermal resistance, Ripermal depends upon the
layer of the interconnect stack and increases for upper levels
of metal which are typically dominated by power and ground
wires. The EM modeling in this paper is limited to unidirec-
tional currents (power/ground network) due to the greatly re-
duced experimental observation of failures in wires with bidi-
rectional current [10]. However, the analysis could be extended
to include bidirectional current carrying interconnects as well.

C. Thermal Cycling

Thermal cycling related failures are a growing concern in
microelectronic devices as continued scaling has led to rising
power densities and temperatures. Systems with power saving
techniques (such as DVS or sleep modes) exacerbate the inci-
dence of thermal cycling by modulating the power consumption,
and therefore temperature, at a much greater frequency than in
a conventional system.

Thermal cycling is a mechanical stress mechanism that is
manifested in many locations on an integrated circuit including
solder connections and thin-film interfaces. As the temperature
of the component materials on a chip changes, the components
will expand and contract at differing rates, since most materials
will have different thermal coefficients of expansion. The in-
termolecular bonds in materials will actually change length as
they store increased amounts of energy, leading to a change in
volume for a component. These changes in volume over time
can eventually create adhesion problems between layers, or po-
tentially create shorts or opens in extreme cases. Reducing the
number of thermal cycles a system undergoes will decrease the
rate at which such mechanical stress abnormalities are observed.

Blish [11] related the number of cycles of thermal fatigue of
various materials on a silicon die to the thermal swing via the
well-known Coffin—Manson equation [12]

Neye = (AT)™™ (6)
_ (ATref)_m
Neye = Z AT (7

The number of cycles Ny before breakdown is related
to the thermal swing AT and a coefficient depending upon
the materials involved. In this paper, we consider thin-film
cracking damage with a Coffin-Manson exponent of 8.4 [11]
and again use Miner’s rule to express (6) as a percentage of
lifetime. Equation (7) formalizes the use of Miner’s rule with
the Coffin-Manson equation.

In (7), AT,et is a reference thermal swing that the system is
designed to withstand and AT represents a measured thermal
swing that may differ from the reference. Temperature traces are
monitored in real-time to detect thermal swings. Equation (7) is
used to sum the damage caused by thermal swings to express
their contribution in terms of equivalent cycles of a larger swing
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AT,et. Due to the lack of availability of information (related to
the difficulty in isolating this effect) regarding the probabilistic
behavior of thermal cycling related wearout, some assumptions
are made regarding the distribution of failures. A weibull distri-
bution centered at 10 000 cycles of max thermal stress is used to
approximate the effect of thermal swings on system reliability.
As empirical data becomes available, this approximation should
be improved and validated.

D. NBTI

The NBTI leads to shifts in parameter values (Vryg and
Ipsat) in pMOS devices after extended periods of stress at
negative voltages across the gate to channel region. The effect
is caused by the dissociation of hydrogen atoms from Si-H
bonds that are present near the interface of the dielectric oxide
layer and the doped silicon channel region. NBTI is primarily
observed at elevated temperatures when the device is biased
in the inversion regime, when interaction with holes weakens
the Si-H bonds. The dissociation of a hydrogen atom leaves
a dangling Si+ bond that serves as an interface trap for free
electrons in the surrounding area. The creation of interface
states near the oxide-silicon surface leads to a reduction in the
effective saturation current (Ipsar) of pMOS devices and is
often modeled as an increase in the threshold voltage (Vru) of
the MOSFET device.

A unique characteristic of the NBTI effect, is the recovery
phenomenon that occurs when the electric field and temperature
are relaxed. The dissociated hydrogen atoms return to the oxide
interface and anneal many of the interface states that were cre-
ated during the period of stress, leading to a partial recovery in
the saturation current of the pMOS device. Although the exact
mechanisms governing the recovery effect are under debate in
various physics journals, data collected from several test chips
[13] indicates a strong link between the temperature of the de-
vice during stress and the extent to which recovery is possible.
The model used in the proposed DRM system attempts to cap-
ture the dynamics and qualitative nuance of the stress phase and
the temperature-limited recovery phase.

The reaction-diffusion (R-D) model [14] is the standard
chemistry model for the reaction that governs interface state
(Ni¢) creation and annealing. The R-D model is detailed as
follows in (8) and (9):

dN; .
- =k INo = Ni] = N N (8)

dNy . dNg 8 dNm

o P ety ®

Equation (8) represents the reaction-rate component of the
R-D model where the forward reaction constant k; depends on
the initial Si-H bond density /N, and the current density of in-
terface states, Nj;. The reverse reaction is governed by k., the
reverse reaction rate Nj;, and the concentration of hydrogen at
the interface N;. The diffusion equation models the outflow of
hydrogen from the interface and the inflow of hydrogen across
the oxide interface of dimension ¢. The reaction rate equation
dominates initial creation of interface traps, leading to a rapid

increase in NBTI damage when stress is applied. After the ini-
tial period of damage, the diffusion component of the reaction
becomes the limiting factor and subsequent generation of inter-
face traps slows considerably.

The R-D model matches measured circuit degradation well,
yet is unsuitable for use in a DRM system due to the computa-
tional requirements of solving each iteration numerically. The
following model, adapted from Cao [15] uses a piecewise func-
tion that is a numerical solution of the R-D model for a hypo-
thetical stress phase and recovery phase. A piecewise function is
an excellent candidate for use in a traditional integrated circuit
(IC) with a static power supply, or even with a sleep mode IC
with well defined stress and recovery phases. In a DRM system,
using DVS to actuate the reliability mechanisms, it is difficult
to define stress and recovery phases

Ny, =/ K227 + N2, (10)
Oszs :|
KU:AtOX Cox VS_VI 11—
Vo=V [1= 255
x (Fox/Eo)o(=Ea/kT), (11)

Equations (10) and (11) model the accumulation of interface
traps based upon the voltage and temperature stress and the pe-
riod of time the circuit has been stresses. K, is the stress factor,
t, is the time under stress, n is a technology dependent factor
that is usually around 0.25-0.3 and Ny is the initial concentra-
tion of interface traps when the stress period was initiated. The
stress factor K, is a strong function of Vg, and the related Ey,
and follows an arrenhius relationship with temperature. If Vg
does not equal zero, the NBTI stress is reduced at the drain or
source end and results in a lower incidence of hydrogen disso-
ciation. The 2" term in the stress phase equation captures the
initial rapid increase in interface traps and the transition to a dif-
fusion limited reaction where trap generation slows

Nie = (Nuo = 8,) [1 = v/alty =) [tr] . (12)

Equation (12) is the model used by Cao for NBTI recovery
when the electric field across the oxide is removed and hydrogen
atoms have a probability of annealing the interface traps con-
tributing to NBTI degradation. Vi is the initial interface trap
concentration at time ¢y, n is a technology dependent variable
around 0.35, and t,. is the recovery time elapsed since ty. This
piecewise function that alternates between stress and recovery
has some significant drawbacks that required resolution for use
in the proposed DRM system.

The stress equation cannot handle varying voltage and tem-
perature due to the reliance on a fixed time component ¢ in the
formulation. For example, if voltage increases slightly, the term
K, will see an increase and ¢ will remain the same, leading to
a discontinuity in the calculated interface trap concentration Nj;
that is not present in measured data in the literature. To utilize
this stress equation in a DVS system with frequently changing
voltage and temperature stress, each time K, changes, the time
t, must be recalculated. The recalculated ¢, is an “effective
time” given the previous stress, to maintain continuity in the
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trap generation curve and correctly model the future trend in

trap generation
2 —2n
s,eff — .
Kg,new

Equation (13) is the simple method used to calculate the “ef-
fective” time at stress K, new thatis required to reach the current
interface trap density. This value of ¢ is used with the NBTI
stress equation until another change in the stress value of K, is
encountered or the model transitions to the recovery function.

Consider the following scenario. NBTI stress begins and the
initial Ni; curve follows the ¢2 trend, a brief period of stress re-
laxation occurs, then the stress is reapplied. In this circumstance,
there should be a minor period of recovery, but the overall in-
terface trap concentration should follow a trend line similar to
that of an uninterrupted period of stress, as the simulation con-
tinues. If the Njo term is used in (10) following the recovery
period and ¢ is reset to 0, the final trend line for interface trap
generation will greatly exceed that of an uninterrupted period
of stress. Intuitively and chemically, there is no evidence that
this behavior should occur. Using the “effective” time calcula-
tion from (13) and ignoring the Njo term in (10) will prevent
this abnormality that comes up quite frequently in a DVS system
modeled by these equations, as seen in (14). In (14), time ¢y is
the time that the stress factor K, nw Was recalculated and Njo
was the accumulated interface trap density at that time

Niz —2n
(m—) (t=to)

v,new

Another simple modification to the recovery model is to ac-
count for the limited annealing following stress at high temper-
ature. There are no known models for this damage “lock-in”
effect of high temperature, but adding a generic function will
allow more sophisticated models of this effect to be added as
they are verified and come into use. A simple model of the re-
covery is shown in (15)

(13)

2n

Nit = | K2 pone (14)

Nit = NitO 1- /l/}(‘/ddaTv Nit,max)

let

Il/}(vd(hT; Nit,max) ~ 0.4. (15)

The 1) function is estimated to be around 0.4 for circuits with
stress temperatures in the 85 °C—100 °C range from published
data in [16]. This effectively represents a limitation to a recovery
of 60% of the interface traps that were created during the stress
period preceding.

The final challenge in implementing the piecewise function
modeling NBTI degradation and annealing in a DVS system,
is defining what a recovery phase is and when is the circuit
in a stress phase. Particularly important is the transition from
recovery to stress phases following a slight reduction in stress.
When the system is binary, either at maximum voltage or in
sleep mode, the definition is simple. However, the task of
defining the NBTI degradation when the system experiences

Calculate K,

If (Ky >> K, prev){
CASE 1: Increasing Stress
Calculate T gross
Calculate Ny, Ny perm

}

Else If (K, << K| prey) {
CASE 3: Initiate Recovery

Save Tcurrent
Calculate Nj; (Nj; perm influences recovery)
Calculate T gyress

}
Else {
CASE 2: Continuation
If (Recovery){ Il Case 2.3
Calculate N oy (Using recovery model)
Calculate Nil.slress (using Telf‘s[ress)
If( Nit,s!ress >= Nit,recov ) { Enter Damage Mode }
Else{ Ni = Nt recov }
}
Else{/l Case 2.1
Calculate Ny, Nit perm
}
}

Fig. 2. Piecewise NBTI modeling function.

a 300 mV reduction in supply voltage or a 40 °C reduction
in temperature is addressed in Fig. 2. When the NBTI model
is in the recovery state and the stress is unchanged, both an
updated interface traps value using the recovery phase model
and the stress phase model are calculated using the current
conditions. This models the annealing effect of recovery and
the simultaneous creation of new traps, allowing a shift to the
stress phase of the model when the N sress Value exceeds
the Ni¢ recov Value. These modifications to Cao’s NBTI model
allow it to be used effectively within a DVS-DRM framework.

One final step to projecting NBTI damage over a varying
workload is needed, since the computation overhead for sim-
ulating yearlong traces of behavior is prohibitive. The previous
reliability mechanism models, especially oxide breakdown and
thermal cycling are particularly amenable to projection, since
the defect density and thermal cycles can be directly summed
to create a lifetime estimate. This allows shorter application
traces to be characterized with the detailed models and a life-
time trace to be constructed by superposing the results from the
short traces to construct a longer trace. With the V;; value in the
NBTI model, the generation is nonlinear and a simple summa-
tion does not suffice for projecting shorter traces to a lifetime
value. The approximation used in this paper is translating the
N;¢ value from a trace to an “effective” time, in (13), of stress
considering nominal voltage and temperature, and summing the
damage in the time domain to create a reasonable estimate of
lifetime degradation due to the NBTI mechanism.

III. SYSTEM LEVEL MODELING

This section presents an efficient approach to calculating
system-level probability of failure that can be tailored to the
desired level of detail. In this paper, a single failure due to
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any reliability mechanism for any structure on the chip is a
sufficient condition to declare that the chip has failed. In reality,
individual dielectric breakdown events or EM voiding effects
may not induce total system failure and certain components in a
design (i.e., memory) may have built-in redundancy. However,
this assumption will not significantly alter the conclusions
reached.

The models outlined in Section II calculate actual probabili-
ties of failure for individual oxides and wires, considering the
historical stress pattern of voltage and temperature in a dynamic
system. Since the primary parameters that cause correlation
between these failure mechanisms (voltage, temperature) are
directly used in the calculation of accumulated stress over
the simulated time span, the correlation between these failure
mechanisms is naturally considered. This allows system-level
probability calculations using probabilistic independence
and greatly simplifies the mathematical formulation, as now
described.

In order to derive the total projected system failure probability
at the end of lifetime #y;., we perform two tasks: 1) based on the
existing stress history and accumulated damage for a particular
failure mechanism and device at the current time ¢1, we project
the probability of failure for that failure mechanism and device
at t;;7.; and 2) we combine the failure probabilities for all con-
sidered failure mechanisms and devices. We discuss each step
in the following.

For each mechanism discussed in Section II, some concept
of the degradation over time is maintained, typically expressed
as a damage value. For oxide breakdown, the relevant metric is
an estimate of defect density in a typical oxide layer, and NBTI
damage is tabulated as the density of interface traps near the
oxide-silicon interface Vi;. Thermal cycling damage is counted
in cycles normalized to the maximum expected thermal swing,
and EM is defined as the projected MTF due to average current
and stress conditions for lack of a suitable damage variable.

In the system, the damage (D) at time ¢; is extrapolated to
the damage (Dyf) at time tjg based on history information
about the rate of damage up to time ¢; using the following simple
linear extrapolation:

Liife

Dyt = D .
lif 1

(16)

Equation (16) accounts for environmental conditions and
workload history intrinsically, providing a lifetime projection
that is tailored to the exact stress conditions historically experi-
enced on the chip. The model implicitly assumes that the future
is similar to the past. However, we show in Section V that, even
under use profiles that display significant shifts over time, the
proposed DRM algorithm provides stable control. Given the
projected accumulated damage at tiife, the probability of failure
of an individual structure is then calculated using a cumulative
distribution function for the relevant reliability mechanism
characterized for the given process technology.

Equation (16) is useful for scaling the damage done in the
near-linear damage model equations, such as oxide breakdown,
thermal cycling and the basic EM model described in Section II,
but it is inaccurate for a nonlinear mechanism like NBTI. To
extrapolate the NBTI damage, the relationship between time and

damage is implemented from the actual NBTI model itself to
provide decent projections of actual NBTI damage

tie 0.25
Diite nB11 = D1 ( ) . an

Equation (17) is very similar to (16), where the damage, D1,
at time #; is scaled to a lifetime damage prediction at #j;¢, using
the (t1i/t1)%-%° relationship from the NBTI model presented in
Section II.

Individual device reliability projections are used to compute a
chip-level reliability projection across all devices and all failure
mechanisms using the following expression:

b d
(1 - Pox) = HH (1 - cl)x—b)
b I n
(1 - Pem) = HHH (1 - Plilebfl)
b
(1= Poye) = [T (1 = Plyes)

(1 — PNBTI) = min (1 - Pll\TBTIfb) . (18)

P is the probability of oxide failure, Pgy; is the probability
of an EM failure, and P,y is the probability of a thermal cycling
failure. Oxide breakdown failure probability is calculated based
on the number of devices per functional unit (decibels) with
a specific failure rate for a device from each individual func-
tional unit (P’ __,). Electro-migration failure rate is projected
from the individual failure rate (Pgy;_,_;) across the number
of wires (n), in each layer (/) and in each block (b). Thermal cy-
cling failure is calculated as a component from each functional
unit, since separate blocks undergo vastly different temperature
traces. In future work, thermal cycling will consider the tem-
perature gradients between functional units for this projection.
NBTI failure probability is calculated differently from the other
mechanisms, since the nature of an NBTI failure is much dif-
ferent (circuit timing failure versus fundamental device/material
failure). NBTI reduction in saturation current of pMOS devices
is tracked at the block level and the minimum probability of cor-
rect operation for any block is used to represent the NBTT failure
contribution, PNBTI. The total chip failure rate is estimated by
using the contributions of each failure mechanism in (19)
Prjjure=1 — ((1 = Pxpr1)(1 — Pox)(1 = PeMm)(1 — Peye)) -

19)

Equation (19) is the combination of the failure rates due
to each individual mechanism contributing to overall failure,
Praiture- The simplicity of the chip failure rate calculation
allows it to be used directly to drive a DRM control algorithm,
which is described in Section IV.

IV. DRM SYSTEM

Dynamic reliability management is implemented in this work
using dynamic voltage scaling, which selects clock frequency
and supply voltage pairs based upon workload demand and re-
liability model feedback. The scope of the DRM in this paper
includes digital logic blocks degrading from EM, NBTI, oxide
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Fig. 3. DRM system block diagram.

breakdown, and thermal cycling. The framework can be ex-
tended to include other wear-out mechanisms, such as channel
hot carrier effects, or to consider the impact on analog, input/
output (I/O) circuits, or even packaging degradation with a sim-
ilar modeling approach. For this paper, DVS is an ideal control
scheme for managing reliability concerns, since oxide break-
down and electromigration are both strongly voltage dependent
and reductions in supply voltage greatly reduce the effect of
these wear-out mechanisms. Thermal cycling is intuitively ex-
acerbated by the increased variation in power consumption in
a DVS system, yet thermal swings can be indirectly limited by
capping the absolute maximum supply voltage, which limits the
maximum temperature. If necessary, it is possible to further ad-
dress reliability degradation due to temperature cycling by lim-
iting the rate of voltage change in the DVS algorithm. In our
analysis, however, this was found to be unnecessary.

Fig. 3 details the organization of the DRM system that is im-
plemented for maximizing the peak performance of a micropro-
cessor system. Processor utilization traces are used to generate
voltage/frequency traces for the DVS microprocessor. The se-
lection of a voltage/frequency pair is converted to a block-based
power consumption value that is derived from Wattch [17] appli-
cation traces. Thermal information for each block is calculated
using HotSpot [18] in the simulation flow, but can be replaced by
a thermal sensor in an actual silicon implementation. The com-
bination of voltage and thermal information is supplied to the
four reliability mechanism models described in Section II and
the output of each model is combined to generate the probability
of chip failure at the desired lifetime as described in Section III.
Chip failure probability information is then used in a propor-
tional-integral—derivative (PID) control algorithm to set a max-
imum allowable voltage used in the DVS voltage assignment
step.

A PID-based control algorithm is proposed as the key
mechanism to provide maximum improvement in peak circuit
performance when necessary, without affecting steady-state
performance or comprising reliability.

Equation (20) describes the behavior of a PID control
system, where e(t) is an error signal and v(t) is the output
being controlled

Oe(t)

v(t) =v(t —to) + P [e(t) + R/e(t)dt +D——=1|. (20)

ot

P is the proportional gain, R is the reset or integral gain, and
D is the derivative gain. In general, proportional gain controls
the response time of the controller, integral gain corrects for
offset, and the derivative gain limits overshoot in the error term.
In the proposed DRM system, e(¢) is the probability of system
failure projected to the lifetime, ¢y, and v(t) is the maximum
voltage available to the DVS algorithm.

The DRM system described is a discrete, nonlinear, time-
varying control system. Most of the reliability models are inher-
ently nonlinear with stress input and any models with a time-de-
pendence or recovery mechanism (NBTI) are also time-varying,
preventing a straightforward expression of the transfer function
of the system. Therefore, it is unfeasible to present a general
proof of system stability under all conditions. The results sec-
tion presents some evidence of system stability under dramatic
workload shifts using the impulse response of the system. An
alternative to a closed-form proof of system stability could be
achieved by fitting a mathematical model of the system response
for a given implementation to collected data. Given this model,
and the general PID equation, a proof of stability should be pos-
sible. Since the system is discrete in reality, (21) reflects the
modifications made to the theoretical model of PID control in
(20)

v(t)=v(t—1)+P |e(t)+R Z e(k)+D (e(t)—e(t—1))|.

2

Tuning of the control algorithm is dependent upon the desired
response time and the length of time to correct offset issues.
Overshoot, or selecting a maximum voltage that is too large,
leads to a number of negative side-effects in a DVS system. To
compensate for the excessive amount of wear-out damage, the
algorithm will reduce the clock frequency below nominal which
could limit performance in subsequent time periods. In severe
cases of poorly set proportional gain, oscillation between high
and low voltages is observed in a classic case of an unstable
feedback loop. The integral gain plays a very small and incon-
sequential role in this system and the control system could be
reduced to a P-D system without much impact on the selected
voltages. Setting a relatively high derivative gain (on the order of
proportional gain) delivers near-optimal control performance in
the proposed DRM system by allowing a decent response time
to processing demand requests, yet minimizing overshoot and
undershoot when correcting the voltage setting.

In order to evaluate the effectiveness of the PID control
system in achieving gains in processor frequency by using the
available “reliability slack,” the figure of merit, peak perfor-
mance improvement (PPI) is defined. PPI is a measure of the
relative improvement in processor frequency possible when the
system is operating at its peak demand. Essentially, it is a mea-
sure of how far the frequency can be “overclocked” during peak
usage to deliver critical results. PPI is not a measure of overall
system speedup, since it does not include any information
regarding the proportion of total calculation time the processor
may spend at the elevated voltage/frequency pairing, however,
applications in parallel processing systems can be limited by
the peak performance of a critical thread. Many parallel algo-
rithms require global or semi-global reductions or calculations
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Fig. 4. PID control gain versus peak performance improvement.

that often function in a sequential fashion that benefits greatly
from the potential increased single processor performance
offered by the proposed system. Synchronization in parallel
applications is another bottleneck that can potentially benefit
from elevated peak performance to minimize the contention
for data. Any system that involves user input and interaction
can also potentially benefit from the peak performance gains
available from the DRM-DVS concept. Although the PPI figure
is not a measure of total system performance, it is certainly a
metric of interest in many applications.

Fig. 4 shows the improvement in peak performance (PPI)
using the PID control system with varying values of propor-
tional gain and derivative gain. Tuning the control system is
somewhat dependent upon the variation in processor demand
seen in the workload traces. In this plot, the average PPI is
plotted for each set of values over a compilation of varying
workload traces. An explanation of the workload trace collec-
tion is included in Section V.

An actual implementation of the DRM system could take
several forms, from purely hardware driven to purely software
controlled. Several factors point in the direction of a pre-
dominantly software-oriented approach with limited hardware
support. 1) Calculations to update the projected lifetime of the
system and update the maximum assignable DVS voltage are
needed infrequently, as the timescale of degradation is signifi-
cantly greater than the timescale of computation. 2) Updating
the models for a given system after development will be sig-
nificantly easier for a system designed in software. Hardware
components may consist of distributed sensors and a com-
munication network, or temporary memory-mapped storage
registers to maintain information on voltage and temperature
history or the output of the sensors. Given infrequent updates,
the overhead of the DRM system should be minimal in terms
of performance when implemented in software, particularly
when run on systems with significant “sleep” time. Area over-
head should also be minimal for a software controlled system,
with reasonable amounts of sensors. Assuming flexibility in
placement of the sensors (placement in available whitespace),
and routing, no more than 1%-2% area overhead should be
incurred. The remaining factor is the overhead of the DVS

TABLE I
SIMULATION TECHNOLOGY SPECIFICATION AND SELECTED
MODEL PARAMETERS OF INTEREST

Symbol Quantity Value
Lrawn channel length 130 nm
Vino device threshold voltage 250 mV
VDDyom nominal supply voltage 1.2V
Tox oxide thickness 1.8 nm
Wi, wire width (local) 140 nm
Ty, wire thickness (local) 350 nm
Wg wire width (global) 450 nm
s wire thickness (global) 1200 nm
Po wire resistivity (em model) 1.68x10% ohm-m
To wire resistivity reference temperature 293.15K
Kox wire thermal conductivity 0.25 W/K-m
NEM technology constant (em model) 2.00
Arpe thermal cycling constant 5.05x10%1
OUTFC thermal cycling constant -0.33
MTEC thermal cycling constant 8.4
NNBTI NBTI constant (stress/recovery) 0.25/0.35
ANBTI NBTI constant 1.80x107

system, which has been implemented in an existing industrial
processor [19] and shown to have no significant area overhead.

V. RESULTS AND DISCUSSION

Workload data from several desktop computers was collected
over several months to provide realistic processor utilization in-
formation with a wide-range of system behavior. A processor
layout similar to the Alpha 21264 is used with process param-
eters based on 130-nm industrial models, which are summa-
rized in Table 1. The hypothetical processor is divided into 15
sub-blocks representing individual functional units on the chip
(i.e., arithmetic logic unit (ALU), memory, decode unit). Ini-
tial power estimates are generated by Wattch and used with the
processor utilization data collected to generate workload-based
voltage, frequency, and power traces. The PID controller as-
signs voltage-frequency pairs based upon the requested perfor-
mance and the reliability state of the system. HotSpot 2.0 is used
to calculate temperatures for each functional unit in the design
using power numbers adjusted according to the selected supply
voltage. The PID controller updates the maximum voltage every
50 ps in the short-time limit simulations presented and every
hour in 10-year lifetime simulations.

The technology specification utilized for simulation is an ag-
gressive 130-nm technology based on values from several indus-
trial models, predictive technology models, the SIA roadmap
and available figures from the literature on the relevant relia-
bility mechanisms. The relative impact of each mechanism is
a strong factor in the simulation results. Given the values used
in this study, oxide breakdown was the dominant mechanism in
the results presented for the work with oxide breakdown, EM
in power wires and thermal cycling. The EM model had a mod-
erate impact on results, with thermal cycling showing a min-
imal impact (when considering the on-chip component, thin film
cracking). When considering the NBTI effect, it had a similar
magnitude to the oxide breakdown mechanism, using aggres-
sive figures for degradation. The NBTI effect in this paper scaled
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Fig. 5. DRM operation for workload C630 (16 s).

up to 15%—17% reduction in circuit speed, which is somewhat
higher than figures from more recent published models, which
cite 8%—9% expected degradation [20].

A. Results (Without NBTI Model)

A figure of merit to quantify the performance gains available
with DRM that will be used throughout the results discussion is
“peak performance improvement.” This figure is a measure of
the improvement in attainable frequency (%) during periods of
peak CPU demand. This is a convenient measure of how well
DRM provides additional performance when it is needed most
by the user or application.

The traces in Fig. 5 are of a DRM simulation over a time span
of only 16 s, allowing a detailed look at the interplay between the
voltage assignment, workload, temperature, and the projected
failure rate at the 10-year lifetime. The horizontal line across
the supply voltage trace is the nominal supply voltage 1.2 V
and the line across the failure rate curve is the target failure rate
of 63.2% at 10 years. The plot clearly shows the increase in
projected failure rate during periods of high supply voltage and
temperature across this high activity profile. Longer simulations
result in a much smoother failure rate projection curve, as the
slope of the damage projection becomes more stable over time.

The histogram in Fig. 6 shows the frequency of different
voltage assignments in the conventional voltage supply range
and the boosted DRM voltage range. The distribution is for the
Alpha 21264 system running the workload that was plotted in
detail in Fig. 5. The plot is bimodal since all tasks that require
peak performance are executed at the maximum supply voltage
allowed by the PID controller. Although there is no voltage limit
upon the system, Fig. 6 shows no data points beyond 1.7 V and
the majority of the boost voltage usage occurs below 1.5 V. In
an actual implementation of a DRM system, an upper bound
on voltage could therefore be placed at 1.5 V to accommodate
power distribution or voltage regulator limitations.

Fig. 7 displays the 10-year performance of the DRM control
algorithm over a randomized selection of 10 representative
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Fig. 6. Voltage histogram for workload in Fig. 5.

T T T T T T T T T
s :-jWWWMWWWMMWMMWMMWWMWW
E o2
JD 1 Nominal Supply Voltage
o r 4
>
08[ 1 1 1 L L L L L 1 .|
0 1 2 3 4 5 6 7 8 9 10
80
IS Target Failure Rate @I 10yr. ' ! ' ! ! ' !
o BOF 7 A
2
<
40 4
e
2 20 —
T
o 0 1 1 I I I ( I I 1
0 1 2 3 4 5 6 7 8 9 10

40

i MWMWWMMWMMMMMWWM

ion (%)

L

©
=)

i
=
%
-

Peak Performance
o

IS
t=)

Time (years)

Fig. 7. Ten-year reliability simulation.

1-h workloads collected from an actual desktop machine. The
randomization process selects a workload and then selects
a random duration for that workload (ranging from 1 h to
2 weeks), which the 1-hr trace is then repeated to fill that dura-
tion. The Vpp limit graph in each section of the plot represents
the upper limit placed upon the DVS algorithm by the DRM
mechanism, not the actual voltage during the entire trace. The
PID controller does an excellent job of maintaining the target
error rate over the long lifetime simulation. Although the nature
of the calculation of error rate prevents any straightforward
analysis on the stability of the control algorithm, it is possible to
provide evidence of stability with extreme inputs to the system.

Fig. 8 represents the response of the control algorithm to a
sudden change in workload at the 6-year period, representing a
pessimistic scenario for the proposed system. Tuning the con-
troller involves a tradeoff between response time and stability.
In Fig. 8, there is a very small undershoot on the voltage limit,
demonstrating the ability of the control algorithm to respond
to sudden changes in the workload. The response time of the
system can be improved at the expense of the magnitude of
the undershoot which could result in unnecessary performance
throttling where the Vyq limit drop below the nominal supply
voltage.

Peak performance gains over the 10-year workloads ranged
from 20% to 35% compared to a nominal DVS controlled
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Fig. 9. Peak performance and max supply voltage versus workload activity
considering NBTI.

system. Specifically, the profile in Fig. 7 shows a 26.7% peak
performance improvement. In cases where the system is oper-
ating below the maximum operating temperature, significant
overall performance improvements are possible. In Fig. 9, with
a design rated to a maximum on-die temperature of 125 °C,
an ambient temperature of 60 °C allows 12.5% overall perfor-
mance improvement before considering the workload.

B. Results (With NBTI Model)

In Fig. 9, the peak performance improvement is plotted versus
the workload activity factor. The workload profile for this plot
is constructed with oscillations between 100%—0% utilization
at a period of 5 min with a variable duty cycle that equals the
activity factor. For extremely inactive systems, the voltage may
be boosted dramatically above the nominal voltage, delivering
a maximum of 34% peak performance improvement during pe-
riods of peak CPU demand. The sharp roll off in performance
gains as activity factor is increased is related to the higher tem-
peratures that are reached as the chip spends longer periods of
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Fig. 10. Peak demand versus PPI (with NBTI).

time above nominal supply voltage. As the activity factor of the
workload approaches 1.0, the performance gains are reduced to
12.5%. At this point, the benefits of DRM are derived not from
periods of low voltage stress in the workload, but from a lower
operating temperature than specified in the worst case reliability
corner.

The simulated chip is designed to operate at nominal voltage
(1.2 V) and a maximum on-die temperature of 125 °C for
10 years. In this simulation, with an ambient temperature of
60 °C, a 12.5% performance improvement is possible even
with an extremely pessimistic workload. This plot demon-
strates 15%—20% peak performance improvement for workload
profiles below a 100% maximum performance. Collected
usage profiles from actual desktop machines indicate workload
activity factors between 0.10-0.15 are typical for user-driven
systems for which peak performance improvement is approx-
imately 25%. The overall performance improvement when
considering NBTI is also in the range of 0.0%-2.6% depending
upon the workload, and gains up to 7.5% were observed when
operating significantly below the maximum on-die operating
temperature.

Providing boosted supply voltages above nominal voltage
may require a greater number of pads devoted to the power and
ground network to handle the additional current associated with
a higher clock frequency/voltage pairing. While the absolute
cost in terms of area or packaging is difficult to quantify in a
general sense, it is helpful to consider the effects on peak power
consumption and lifetime energy consumption for systems
with DRM implementations. Energy consumption over the
lifetime was found to track the performance gains closely, and
is relatively unaffected by a change in the maximum allowable
voltage. Approximately 20.1% additional energy consumption
is required to obtain peak performance gains of 20.68% over
the lifetime of the chip under the workload of Fig. 5. Peak
power increases were found to be somewhat larger but naturally
tend to be short in duration due to the feedback from the PID
controller.

In Fig. 10, the number of cycles with peak demand requested
by the workload is linked to the attainable PPI on the left axis.
Similar to the workload activity plot in Fig. 9, there is a strong
dependence on peak demand and the PPI, however, this data is
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collected from the workload traces from actual desktop profiles
rather than the synthetic benchmark used to generate Fig. 9. The
traces plotted here are 250 000 cycles in length, so data points on
the left are near 0% workload activity and the right is near 100%
workload activity. The maximum assigned voltage at each point
is roughly constant at 1.8 V, yet this value is far above the typ-
ical value seen in the DVS trace. The high assignment of 1.8 V is
largely an artifact of the PID controller error function beginning
the trace uninitialized leading to an exaggerated voltage assign-
ment during the first period of peak demand.

An exponential curve is fitted to the simulated data in Fig. 10,
showing a rough exponential trend between 10%—-30% PPI de-
pending upon the number of samples of peak demand witnessed
in the simulated workloads. With proper characterization, the
PPI attainable for a given system may be predicted with decent
accuracy a priori, allowing some potential high-level optimiza-
tions in a multiprocessing environment This is an idea that is
currently being explored by our current work and future plans
involving multiprocessing systems and DRM.

VI. CONCLUSION AND FUTURE WORK

A framework for implementing dynamic reliability man-
agement is presented, including a rigorous model for failure
rate prediction under four common failure mechanisms and a
PID-based control system that balances increased throughput
in peak-demand periods with the remaining reliability lifetime.
Workload and processor utilization information collected over
months for typical users is used to quantify achievable gains
in peak processor performance. On-chip real-time reliability
monitoring allows supply voltages to be boosted beyond nom-
inal values set during worst case profiling and qualification,
enabling maximum responsiveness during periods of critical
computational demand. Despite minimal overall performance
gains typically in the range of 0%-2.6%, we observe typ-
ical peak performance gains of 20%—35% over a variety of
real-world workloads and lifetime usage profiles, without ex-
ceeding the specified lifetime budget. Considering the impact of
NBTI reduces the achievable gains by 8%—10% in simulation,
yet still allows a peak performance gain of 15%—-25% over the
typical range of workload activity of 0.05-0.20. The design of
low-overhead on-chip sensors (temperature, tunneling current,
etc.) is a primary focus in our future work in order to enable
silicon implementations and validation of the modeling-based
work.
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