
272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 2, FEBRUARY 2008

A Novel Approach to Perform Gate-Level Yield
Analysis and Optimization Considering Correlated

Variations in Power and Performance
Ashish Srivastava, Kaviraj Chopra, Student Member, IEEE, Saumil Shah, Student Member, IEEE,

Dennis Sylvester, Senior Member, IEEE, and David Blaauw, Member, IEEE

Abstract—Increasing levels of process variation in current tech-
nologies have a major impact on power and performance and
result in parametric yield loss. In this paper, we develop an
efficient gate-level approach to accurately estimate and optimize
the parametric yield, defined by leakage power and delay limits, by
finding their joint probability distribution function. We consider
inter-die variations, as well as intra-die variations, with correlated
and random components. The correlation between power and
performance arises due to their dependence on common process
parameters and is shown to have a significant impact on the
yield, particularly in high-frequency bins. We then propose a new
heuristic approach to incrementally compute the gradient of yield
with respect to gate sizing and gate-length biasing in the circuit
with high efficiency and accuracy. We show how this gradient
information can be effectively used by a nonlinear optimizer to
perform yield optimization. The proposed yield-analysis approach
is compared with Monte Carlo simulations and shows high accu-
racy, with the yield estimates achieving an average error of 2%.
The proposed optimization approach is implemented and tested,
and we demonstrate an average yield increase of 40% using gate
sizing (as compared to a deterministically optimized circuit). Even
higher improvements are demonstrated when both gate sizing and
gate-length-biasing techniques are used.

Index Terms—Correlation, leakage, variability, yield
optimization.

I. INTRODUCTION AND PRIOR WORK

CONTINUED process scaling has resulted in a large in-
crease in process variability that leads to large fluctua-

tions in process parameters from their nominal values. These
variations have grown, due, in part, to aggressive lithographic
techniques that are used to pattern dimensions smaller than
the wavelength of light. In addition, smaller device dimensions
and fewer doping atoms increase the influence of phenomena,
such as line-edge roughness and random-dopant effects. These
variation sources translate into wide spreads in performance
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metrics of current designs. In particular, leakage current, which
is extremely sensitive to a number of key process parameters
[1], has shown huge fluctuations, with [2] showing a 20×
variation in leakage power for a 30% variation in performance
across 1000 samples of a design manufactured in a 180-nm
technology. In addition, as the contribution of leakage power
has grown, the fluctuation in power dissipation is now domi-
nated by leakage power. This results in a negative correlation
between the power dissipation and the delay of a design. Thus,
high-performance samples of a design are also expected to
have higher power dissipation and vice versa. This leads to a
two-sided constraint on the feasible region of parametric yield
defined by delay and power limits [26] and causes significant
yield loss under process variation.

This yield loss will worsen in future technologies due to
increasing process variation and the continued significance
of leakage power. Another growing design concern is that
increased variation results in both a larger spread of leakage
power and higher average leakage power. Most traditional
optimization approaches do not consider process variations and
are unaware of their impact on yield. Reference [3] was the
first to consider the impact of variability on circuit optimiza-
tion. The authors proposed a heuristic approach to prevent the
build-up of a large number of paths near the critical delay of
the circuit, which reduces the susceptibility of the design to
process variations. However, the approach was deterministic
in nature and did not use any statistical information during
optimization.

Recently, several approaches have been proposed to perform
statistical timing or power optimization [4]–[6], [28]–[30], [36].
However, some of these approaches (such as [28]) consider only
timing yield optimization, which results in yield loss due to the
power constraint. In addition, all current approaches neglect the
correlation of power and performance. Furthermore, most of
these approaches suffer from large computational complexity
and runtimes [4], [6], [29] or are dependent on significantly
simplified delay and power models [5], [30], [36]. Thus, there is
a critical need to develop approaches that perform accurate and
efficient parametric yield optimization, where yield is defined
using both power and timing limits. To support these optimiza-
tion tools, there is an underlying requirement for accurate and
computationally efficient yield-estimation approaches.

Previous work in yield estimation has been limited to pre-
dicting either timing [7]–[12] or (leakage) power yield [13],
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TABLE I
ESTIMATED YIELD FOR DIFFERENT VALUES OF CORRELATION

COEFFICIENTS. POWER CONSTRAINT IS SET AT 1.5× NOMINAL POWER.
µ(D) AND σ(D) REPRESENT THE MEAN AND STANDARD

DEVIATION OF DELAY (D), RESPECTIVELY

[27]. Recently, Rao et al. [14] presented a chip-level approach
to estimate the yield in separate frequency bins given a power
constraint. This high-level approach is based on global circuit
parameters, such as total device width on a chip. Since it does
not use circuit-specific information from a gate-level netlist, it
is difficult to use this approach for optimization of gate-level
parameters, such as sizes and threshold voltages of individual
gates. Another important requirement for an accurate yield-
estimation approach is to consider all classes of variations,
which impact delay [15] and power [13] differently. Process
variations are typically classified into inter-die and intra-die
components. Intra-die variations are further classified as hav-
ing correlated and random components. Traditionally, inter-die
variations have been the dominant source of variations, but with
process scaling, the random and correlated components of intra-
die variations can now exceed inter-die variations [16]. The
relative magnitude of these components of variation also de-
pends on the process parameter being considered. For example,
gate-length variations are generally considered to have roughly
comparable random and correlated components, whereas gate-
length-independent threshold voltage is commonly assumed to
vary randomly due to random dopant fluctuations [17].

In this paper, we propose a novel approach to compute the
parametric yield of a circuit with high efficiency and accuracy,
given leakage power and delay limits. This is the first such gate-
level approach in estimating parametric yield to the best of our
knowledge. Central to the approach is maintaining the corre-
lation between leakage power and delay by expressing both
metrics in a canonical form with the same underlying process
variations. To demonstrate the importance of this power/delay
correlation, Table I shows yield for three different correlation-
coefficient values. The yields are calculated for different points
on the delay distribution (listed in Column 1) and at a fixed
power constraint of 1.5× the nominal power. The data in Table I
clearly shows that the correlation of power and delay has a
strong impact on parametric yield, particularly for mid- to high-
performance speed bins.

The yield-analysis engine is then used to build an opti-
mization approach. The yield optimization is formulated as an
unconstrained optimization problem where the objective is to
maximize the parametric yield of a design. The optimization
is performed using a gradient-based nonlinear optimizer. A
gradient-based optimization is not guaranteed to find a global
optimum and will eventually converge to one of the local
minima. However, the choice of the nonlinear-optimization
technique is based on the nonlinear relationships that exist

between device lengths and widths and their associated delays,
particularly with strong short-channel effects in the nanometer
region, and leakage power. Due to their timing accuracy, accu-
rate nonlinear-optimization techniques [39]–[41] have enjoyed
significant popularity in deterministic gate sizing over linear-
[42] and geometric-programming-based [43] techniques.

Moreover, in the statistical case, it is much harder to find
efficient formulations that can exploit the structure offered
by simpler delay relationships. The linear relationship is a
special case and allows an efficient formulation, which was
investigated in [36]. However, this formulation currently suffers
from several drawbacks. Most importantly, the node-based for-
mulation in [36] is based on the assumption that all variations
are perfectly correlated, and thus, it cannot exploit the statistical
averaging of delay variations along a path, which is crucial for
true “statistical” optimization of a circuit. In addition, extending
the approach to handle more complicated delay models does
not seem feasible. Reference [44] provides a good overview of
robust formulations of various categories of convex problems
and shows that efficient robust formulations exist only in few
special cases.

On the other hand, a brute-force gradient-descent approach
based on iterative yield analysis leads to large computational
overheads. The novelty of our proposed optimization approach
lies in an efficient heuristic technique to perform yield gra-
dient computation. This gradient computation technique is
then integrated with LANCELOT [31], a large-scale nonlin-
ear optimizer, to improve the parametric yield of the design
and is found to provide an 8× improvement in runtime with
an average error of 0.1% when compared to a brute-force
approach.

The remainder of this paper is organized as follows.
Section II reviews the principal-component-based approach to
model process variations. Section III presents the core statistical
power- and timing-analysis approaches. Section IV develops
an approach to estimate the yield, given power and delay con-
straints. Section V presents the incremental timing- and power-
analysis techniques that are used to compute the yield gradient.
Section VI provides details regarding the implementation of
our yield-optimization approach and presents results including
a comparison of our approach to deterministic optimization. We
provide our conclusions in Section VII.

II. MODELING PROCESS VARIATION

This section details the variability-modeling infrastructure
used in this paper. Much of this framework is similar in spirit to
[7] for statistical timing analysis—we also use the same models
to consider leakage variability such that the correlation between
power and delay is preserved for yield estimation.

In this paper, we consider process variations in gate-
length and gate-length-independent threshold voltage (Vth0),
although the approach can be easily extended to consider other
sources of variations. The process parameters are expressed
as a sum of correlated and random components, and the sum
of variances of both these components provides the overall
variation in the process parameter. The correlated variations are
handled by partitioning the die area using a grid, and a single
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random variable (RV) is used to represent the variation in each
square of the grid. To simplify the problem, this set of correlated
RVs is replaced by another set of mutually independent RVs
with zero mean and unit variance by performing principal-
component analysis (PCA) of the set of correlated RVs. Note
that, generally, the correlation structure of process parameters
is defined using a distance-dependent function. Using such a
function to define the correlation matrix may result in correla-
tion matrices that are not positive-definite. Simple techniques,
such as discarding the negative eigenvalues of such a correlation
matrix, may be used to address such issues [34].

We express the delay and leakage power of an individual
gate, as shown in the following:

Delay = dnom +
p∑

i=1

αp(∆Pp)

Leakage = exp

(
Vnom +

p∑
i=1

βp(∆Pp)

)
(1)

where dnom and exp(Vnom) are the nominal values of delay
and leakage power, respectively, and the α’s and β’s represent
the sensitivities of delay and the log of leakage to the process
parameters under consideration. The RV ∆Pp represents the
change in the process parameters from their nominal value.
The values of dnom and the sensitivities αp’s are characterized
for each timing arc associated with the gate and stored as a
2-D table indexed by the input transition time and the output
load capacitance. Similarly, Vnom and βp’s are characterized
for each input state of the gate. Since variations in dynamic
power are typically much smaller than those observed in static
power, we focused on statistical leakage-power analysis for
yield-estimation purposes. We will later discuss the technique
used to consider the impact of dynamic power dissipation while
performing circuit optimization.

After the overall circuit is partitioned using a grid, the delay
of individual gates is expressed as a function of the RVs defined
in the grid. Using the principal-component approach, the delay
in (1) is then expressed as

Delay = dnom +
p∑

i=1


αp

n∑
j=1

γjizj


 + ηdR (2a)

where zj’s are the principal components of the correlated RVs
∆Pp’s in (1), and the γ’s can be obtained from PCA. R ∼
N(0, 1) in the above equation represents the random compo-
nent of variations of all the process parameters lumped into a
single term that contributes a total variance of η2

d to the overall
variance of delay. Similarly, the leakage power for an individual
gate can be expressed as

Leakage = exp


Vnom +

p∑
i=1


βp

n∑
j=1

γjizj


 + ηlR


 .

(2b)

The next section shows that these representations of delay
and power allow for significant simplification in the joint timing

and power analysis, which otherwise becomes computationally
inefficient if the spatial correlation were maintained without
such a unified approach.

III. STATISTICAL ANALYSIS

In this section, we first provide an overview of the statistical
timing analysis in [7], which has been extended to consider
both correlated and random components of variations. We
then provide details of the approach for performing statistical
leakage-power analysis. During timing analysis, the arrival time
(AT) at each node is maintained in the same canonical form
as the delay of the individual gates, which enables an efficient
approach for the traversal of the timing graph. Similarly, during
power analysis, the sum of leakage power is maintained in a
canonical form as the leakage of different gates is summed.

A. Timing Analysis

The delay of each gate (for example, a) can be expressed as
follows using the expression developed in the previous section:

Da = ao +
n∑

i=1

aizi + an+1R. (3)

This serves as the canonical expression for delay. The mean
delay is simply the nominal delay (a0). Since the principal
components (zi’s) are uncorrelated N(0, 1) RVs, the variance
of the delay can be expressed as

Var(Da) =
n∑

i=1

(
a2

i

)
+ a2

n+1 (4)

and the covariance of the delay with one of the principal
components can be obtained as

Cov(Da, zi) =E(Dazi) − E(Da)E(zi)

= a2
i ∀i ∈ {1, 2, . . . , n}. (5)

In [9], it is shown that delay distributions arising due to cor-
related reconvergent fanouts can be tightly upper bounded by
assuming them to be independent. Since the random compo-
nents are uncorrelated and do not contribute to the covariance
of the delay at the two nodes at the inputs of a gate (e.g., “a”
and “b”), the covariance can be obtained as

Cov(Da,Db) =
n∑

i=1

aibi. (6)

In deterministic timing analysis, the delay of the circuit is
found by applying two functions to the delay of individual
gates: sum and max. Similar functions for the canonical delay
expressions (3) are defined as

Sum(Da,Db) = (ao+bo)+
n∑

i=1

(ai+bi)zi+
√

a2
n+1+b2

n+1R.

(7)
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The max function of normally distributed RVs is not a strict
Gaussian. References [7] and [19] have shown that the max-
imum of two Gaussian RVs can be closely approximated by
another Gaussian. If

c = max(a, b) (8)

where a and b are Gaussian RVs, then the parameters of
c, which is assumed to be Gaussian, can be obtained using
expressions developed in [20]. This approach provides the mean
and variance of c in terms of the mean and variance of a and b
and their correlation coefficient. Reference [20] also develops
expressions to evaluate the correlation of c with any other RV
in terms of the correlation of the RV with a and b. In the spirit
of [7] and [8], we assume that c can again be expressed in the
same canonical form as a and b. To find the coefficients in the
expression for c in canonical form, the mean, variances, and
the correlation of c with the principal components are matched,
giving

c0 =E (max(a, b))

ci = Cov(c, zi) = Cov (max(a, b), zi) ∀i ∈ {1, . . . , n}

cn+1 =

(
Var (max(a, b)) −

n∑
i=1

c2
i

)1/2

. (9)

By modeling the random component, we can preserve the mean,
variance, and correlations and avoid the need to scale the coeffi-
cients of the principal components to match the variance, which
loses their correlation [7]. This technique was also used in [8] to
consider random variations in timing analysis. To compute the
max of more than two variables, the above technique is applied
recursively.

Using the timing-analysis approach previously outlined, we
can develop an expression for the delay of a circuit in terms
of the RVs associated with process-parameter variations. In the
next section, we develop an approach for gate-level statistical
leakage-power analysis. The key in this step is to preserve the
correlation in delay and power, which is achieved by using
a similar principal-component-based approach with the same
underlying RVs.

B. Power Analysis

We express the leakage power of each gate as a lognormal
(exponential of a Gaussian) RV based on the power model dis-
cussed in Section II. The leakage power of the total circuit can
then be expressed as a sum of correlated lognormal variables.
This sum can be accurately approximated as another lognormal
RV [22]. Reference [21] shows that the approximation per-
formed using an extension of Wilkinson’s method [22], based
on matching the first two moments, provides good accuracy.
The leakage power of an individual gate a is expressed as

P a
leak = exp

(
a0 +

n∑
i=1

aizi + an+1R

)
(10)

where the zi’s are principal components of the RVs, and the ai’s
are the coefficients obtained using (2b). The mean and variance
of the RV in (10) can then be computed as

E (P a
leak) = exp

(
a0 +

1
2

n+1∑
i=1

a2
i

)
(11)

Var(P a
leak) = exp

(
2a0 +

n+1∑
i=1

a2
i

)
−exp

(
2a0+

1
2

n+1∑
i=1

a2
i

)
.

(12)

The correlation of the leakage of gate a with the lognormal RV
associated with zj is found by evaluating

E (P a
leake

zj ) = exp


a0 +

1
2

n+1∑
i=1,i �=j

a2
i + (aj + 1)2




∀j ∈ {1, 2, . . . , n}. (13)

Similarly, the covariance of the leakage of two gates (a and b)
can be obtained by using

E
(
P a

leakP
b
leak

)
= exp

(
(a0 + b0) +

1
2(

n∑
i=1

(ai + bi)2 + a2
n+1 + b2

n+1

) )
. (14)

We assume that the sum of leakage power can be expressed in
the same canonical form as (10). If the RVs associated with all
the gates in the circuit are summed in a single step, then the
overall complexity of the approach is O(n2) [37] due to the
size of the correlation matrix. Since the sum of two lognormal
RVs is assumed to be a lognormal variable in the same form,
we can use a recursive technique to estimate the sum of more
than two lognormal RVs.

In each recursive step, we sum two RVs of the form in
(10) to obtain another RV in the same canonical form. To find
the coefficients in the expression for the sum of the RVs, we
match the first two moments, as in Wilkinson’s method, and
the correlations with the lognormal RVs associated with each
of the Gaussian principal components. We outline the steps in
one of the recursive steps where we sum P b

leak and P c
leak to

obtain P a
leak

P a
leak = exp

(
a0 +

n∑
i=1

aizi + an+1

)

= exp

(
b0 +

n∑
i=1

bizi + bn+1

)

+ exp

(
c0 +

n∑
i=1

cizi + cn+1

)

=P b
leak + P c

leak. (15)
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The coefficients associated with the principal components can
be found using (11)–(14) and expressing the coefficients asso-
ciated with the principal components as

ai = log
(

E (P a
leake

zi)
E (P a

leak) E(ezi)

)

= log

(
E

(
P b

leake
zi

)
+ E (P c

leake
zi)(

E
(
P b

leak

)
+ E (P c

leak)
)
E(ezi)

)
. (16)

Using the expressions developed in [13], the remaining two
coefficients in the expression for P a

leak can be expressed as (17)
and (18), shown at the bottom of this page. Having obtained
the sum of two lognormals in the original canonical form, the
process can be recursively repeated to compute the expression
for the total leakage power of the circuit.

The timing- and power-analysis techniques outlined in this
section can be used to efficiently estimate the individual prob-
ability distribution functions (pdfs) of delay and power. The
correlation in delay and leakage power arising from the cor-
related components of variation can be easily estimated, since
the correlated variations are expressed in terms of the principal
components used to develop the expressions for both delay and
power.

As will be shown in Section VI, the dependence of the
variance of leakage power on the random component is very
weak. This arises due to the fact that the random component
associated with each gate is independent, and hence, the ratio
of standard deviation to mean for the sum of these indepen-
dent RVs is inversely proportional to the square root of the
number of RVs summed [18]. This ratio does not reduce for
strongly correlated RVs—therefore, if a large number of RVs
are summed with both correlated and random components,
then the overall variance is dominated by the variance of the
correlated component. Hence, the correlation due to the random
component, which is difficult to compute efficiently, is also
insignificant and can be safely neglected.

IV. YIELD ESTIMATION

The parametric yield of a circuit, given the delay and power
constraints, can be expressed as

Y = P (D ≤ D0, P ≤ P0) (19)

which is the probability of the circuit delay and power being
less than D0 and P0, respectively. Since delay and power are
correlated, the yield cannot be simply computed by multiplying

the probabilities of the two events separately. To express the
yield as the probability of a bivariate Gaussian RV, we take the
logarithm of the leakage-power constraint. Note that the joint
distribution of the delay and the log of leakage power has a
multinormal distribution, which follows from Theorem 1.
Theorem 1 [32]: Let the p-dimensional random vector X

be distributed according to a multinormal distribution with
mean vector ∆ and covariance matrix Σ of rank p. If A is
any m × p matrix of real numbers with rank m ≤ p, then the
m-component vector Y = AX is a multinormal random vector
with mean vector A∆ and covariance matrix AΣAT.

The correlation coefficient of the two Gaussian RVs in the
yield equation can now be obtained using (6). We express the
yield in terms of two standard N(0, 1) RVs N0 and N1 as

Y =P

(
N0≤

D0 − µD

σD
, N1≤

log (P0) − µlog(P )

σlog(P )

)
. (20)

Since correlation does not change under an affine transforma-
tion with positive multiplicative coefficients, the correlation
between N0 and N1 remains the same as the correlation be-
tween delay and the log of leakage. One approach to evaluate
this expression is to perform numerical integration of the joint
pdf (jpdf) over the feasible region, but this makes the approach
computationally inefficient. A lookup-table-based approach,
although efficient, involves substantial inaccuracy due to the
required interpolation, as noted in [23]. Hence, we adopt an
analytical approach to estimate the yield, which makes the
approach efficient and practical within a yield-optimization
framework.

The feasible region defined using two correlated RVs (20)
is transformed to a set of two uncorrelated RVs using the
following transformation:

R0 = N0; R1 =

(
N1 − ρN0

(1 − ρ2)
1
2

)
. (21)

This transformation maps the feasible region from a rectangle
[Fig. 1(a)] to a triangle [Fig. 1(b)] when ρ < 0, which is the
case of interest. Note that a set of uncorrelated RVs can also be
obtained using PCA. However, PCA also attempts to capture
the maximum variance of the RVs in the first component,
which is not needed for our purposes. Therefore, we simply
subtract the correlated component of N0 from N1 to obtain two
uncorrelated RVs (R0 and R1). Theorem 1 implies that R0 and
R1 (N0 and N1) have a joint bivariate normal distribution. Inde-
pendence of R0 and R1 follows from the fact that uncorrelated
components of a multinormal distribution are independent.

a0 =
1
2

log

( (
E

(
P b

leak

)
+ E (P c

leak)
)4(

E
(
P b

leak

)
+ E (P c

leak)
)2 + Var

(
P b

leak

)
+ Var (P c

leak) + 2Cov
(
P b

leakP
c
leak

)
)

(17)

an+1 =

[
log

(
1 +

Var
(
P b

leak

)
+ Var (P c

leak) + 2Cov
(
P b

leakP
c
leak

)
(
E

(
P b

leak

)
+ E (P c

leak)
)2

)
−

n∑
i=1

a2
i

]0.5

(18)



SRIVASTAVA et al.: NOVEL APPROACH TO PERFORM GATE-LEVEL YIELD ANALYSIS AND OPTIMIZATION 277

Fig. 1. Transformation of the feasible region from (a) to (b) using (21) for
negative values of correlation.

Note that both the RVs of the bivariate distribution now
have zero mean and unit variance. In addition, the pdf contours
are circles rather than ellipses, simplifying the computation
of the integral (which becomes circularly symmetric). The
desired probability can now be obtained by using approximate
expressions developed in [23] for evaluating probabilities of
uncorrelated standard bivariate Gaussian RVs (unit variances
and zero means) in regions of the form shown in Fig. 1(c),
which can be expressed as

1
2π

a∫
0

mx∫
0

exp
(
−x2 + y2

2

)
dydx (22)

where a represents the base of the triangle, and m represents
the slope of the inclined line forming the triangle. Note that a
is allowed to be infinite in the above expression.

To evaluate the probability of the region shown in Fig. 1(b),
we partition the figure as shown. The desired probability can
then be expressed as a sum of the probabilities in Regions
P1–P6, which can be evaluated as follows.

Region P1: Already in the form required in [23].
Region P2: Since the integral of the region is circularly

symmetric, if the axes are rotated such that the
dotted line, as shown in Fig. 1(b), lies along the
x-axis then Region 2 is again in the same form as
Fig. 1(c).

Region P4: The probability in this region is

P (R0 ≤ 0, 0 ≤ R1 ≤ X) (23)

where X is the point where the vertical line
cuts the R1 axis. Since R0 and R1 are statistically
independent, this probability can be simply
expressed as

P (R0 ≤ 0)P (0 ≤ R1 ≤ X) = 0.5Φ(X) (24)

where Φ is the normal integral from zero to x.
Regions P3, P5, and P6: The probability for this region can

be expressed as

P (R0 ≤ 0, R1 ≤ 0) + P (P3 + P6) − P (P6 + P7). (25)

The first term can again be evaluated using the independence
of R0 and R1. The second term in (25) corresponds to a region
that has the same form as Region P4 (after a rotation about the
origin), and the region for the third term has the same form
as Region P1 (with an infinite base). Thus, the desired yield
expressed in (19) can be efficiently estimated using closed-form
expressions.

In terms of computational complexity, the proposed approach
differs from [7] in the computation of an extra term associated
with the random component. Thus, the overall complexity of
the timing analysis remains O(nNg), where Ng is the number
of terms in the delay expression that corresponds to the number
of partitions into which the circuit is divided and n is the
number of gates in the circuit. The power analysis is similar
and requires an additional O(nNg) steps. The correlation com-
putation requires an additional O(Ng) steps, and the yield esti-
mation runs in constant time. The computation of the principal
components requires O(pN3

g ) steps, where p is the number of
correlated-process parameters considered in the analysis. The
cubic dependence results from the eigenvector computation
required during PCA. Since the principal components need to
be calculated only once for each design being optimized, it does
not impact the overall complexity, and hence, we do not include
it in the overall complexity, which becomes O(nNg). The cost
of PCA is amortized over the number of calls to the yield
analysis engine during the optimization. However, if the stand-
alone analysis engine is used for a new design partitioning each
time, then the PCA overhead should be considered in the overall
complexity.

Based on this yield-analysis engine, a brute-force approach
to perform yield optimization using gate sizing and gate-
length biasing can be developed. This involves computing
the gradient of yield to the size of each gate, which can
be estimated by perturbing the gate and performing yield
analysis and setting the gate back to its original dimensions.
After computing the gradient, we use a large-scale nonlin-
ear optimizer to improve the yield of the circuit. We now
consider the computational complexity of a single iteration
of this approach. Each gradient computation requires n + 1
yield-analysis runs and, thus, has an overall complexity of
O(n2Ng). Since the size of the partitions is fixed, the num-
ber of partitions Ng can also be expected to increase with
the size of the design. Thus, the overall computational re-
quirements soon become untenable for large designs. In ad-
dition, note that the brute-force approach spends most of the
time recalculating the same information for most of the cir-
cuit, motivating the need for an efficient gradient-computation
approach.

V. YIELD OPTIMIZATION AND GRADIENT COMPUTATION

Our yield-optimization problem is formulated as an uncon-
strained optimization problem where the objective function is
the circuit yield, as defined in (19). The optimization is per-
formed using a gradient-based nonlinear-optimization engine.
However, a direct brute-force computation of yield gradient
using a finite-difference approximation is computationally ex-
pensive and inefficient.
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Fig. 2. Timing graph showing an LTO for the nodes and cutsets for nodes
eight and nine.

In this section, we discuss our new gradient-computation
approach that calculates the updated timing and delay pdfs
based on a change in gate size or gate length. Both the timing-
and power-perturbation analysis techniques update the coeffi-
cients of the delay and leakage pdf expression based on the
change in gate size/length. These updated delay and leakage-
power pdfs are then used to compute the yield of the perturbed
design. The change in yield is used to estimate the gradient of
yield to the gate size/length for each gate in the design.

A. Timing-Perturbation Computation

We first explain our timing-perturbation-computation ap-
proach based on cutsets, using the following graph represen-
tation for our circuits.
Definition 1: A timing graph is a directed acyclic graph

having exactly one source and one sink: G = {N,E, ns, nf},
where N = {n1, n2, . . . , nk} is a set of nodes; E =
{e1, e2, . . . , el} is a set of edges; ns is the source node; nf is the
sink node; each edge e is an ordered pair of nodes e = (ni, nj);
and each node is associated with a delay for each fanin edge,
which depends on the characteristics of the fanout nodes.

The nodes in the timing graph correspond to gates, and the
edges correspond to nets in a circuit. A probabilistic timing
graph is defined as a timing graph where each node is associated
with an RV for the delay for each fanin edge. Fig. 2 shows an
example timing graph with ten nodes, eight of which represent
actual gates and nodes, one and ten, which represent the source
and sink nodes, respectively. The latest AT and required-AT
(RAT) pdfs for each node in the timing graph are now defined
as follows.
Definition 2: The latest AT at an edge e in the probabilistic

timing graph is an RV whose cumulative distribution function
(CDF) Ae(t) gives the probability that a deterministic sample
of this timing graph has an AT of less than t.
Definition 3: The earliest RAT at an edge e in the probabilis-

tic timing graph is an RV whose CDF Re(t) gives the proba-
bility that the deterministic sample meets the timing constraint
Tcrit if the deterministic AT at the node is less than t.

Note that the sum of the AT and RAT at a node represents
the partial pdf of delay, since it does not take into account the
influence of the edges that are not present in either the fanin

or the fanout cone of the node on the pdf of circuit delay. To
express the dependence of circuit delay on the delay of one of
the nodes, let us define the following terms.
Definition 4: A linear topological ordering (LTO) of the

nodes in a timing graph is a total order based on the relationship
that the order of any node x that lies in the fanout cone of a
node n is strictly larger than the order of node n and that no
two nodes in a timing graph have the same order.

An LTO of a timing graph can be easily determined by
performing a topological traversal of the timing graph. Al-
though a given timing graph can have many LTOs, finding the
optimal LTO is not the focus of this paper. Fig. 2 illustrates a
timing graph with nodes labeled according to an LTO of the
timing graph. Note that swapping nodes eight and nine will still
maintain a valid LTO of the nodes.
Definition 5: A cutset of a timing graph with a given

LTO of a node n is defined to be the set of edges (ni, nj)
of the timing graph that satisfy LTO(ni) ≤ LTO(n) and
LTO(nj) > LTO(n).
Definition 6: A node x of the timing graph belongs to the

cutset source of node n if there exists an edge (x, ∗) which
belongs to the cutset of node n.
Definition 7: The fanin set of a node n of a timing graph is

the set of immediate predecessor nodes of node n.
Definition 8: The AT set, or ATSet, of a node n is the union

of the fanin set of node n and the nodes in the fanout cone of
the fanin set of node n that have order less than or equal to the
order of node n.
Definition 9: The convolution set, or ConvSet, of a node n is

the intersection of the ATSet and cutset source of node n.
Any cutset of the timing graph divides the timing graph into

two disconnected components, and the statistical maximum of
the sum of the AT and RAT of all edges in the cutset gives
the complete pdf of circuit delay. Now, if we perturb the delay
characteristics of a node n (e.g., by gate sizing), we also change
the capacitive loading of the fanin gates, affecting also their
delay characteristics. To compute the new circuit delay, we note
that the RAT of the edges in the cutset does not change, since all
the gates in their fanout cone include gates that have an order
strictly greater than the order of node n and have unchanged
delay characteristics.

However, the AT for all edges that are in the fanout cone of
the fanin set of node n changes. We are only interested in AT
changes for edges that are driven by nodes that have an order
less than the order of gate n, since we need to compute the AT
for the edges in the cutset only. This is exactly the set of nodes
defined by the ATSet of node n. If the AT of an edge in the
cutset changes, we need to recompute the convolution of the
AT and RAT at that edge. These edges are driven by the nodes
in the intersection of the ATSet and the cutset, which is defined
as the ConvSet of node n.

Let us revisit the example timing graph in Fig. 2 and consider
node eight. The cutset for this node is the set of edges (6, 9),
(8, 10), and (5, 10), as shown by the dashed line. The ATSet
for the node can be identified as the set of nodes six, seven, and
eight, as shown in Fig. 3. The intersection of the cutset source
and ATSet defines the ConvSet and is the set of nodes six and
eight. The ConvSet identifies that the AT and RAT have not
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Fig. 3. Timing graph showing the ATSet (nodes within the shaded ellipse) and
cutset-source set (nodes within the dashed shape) for node eight.

Fig. 4. Pseudocode for the CutSetSSTA routine.

changed on the edge (5, 10), and we do not need to recompute
the convolution of the AT and RAT for this edge. However, if
we consider node nine, the cutset is defined by the edges from
nodes five, eight, and nine to node ten, as shown as the dotted
line in Fig. 3. The pseudocode of the “CutSetSSTA” routine
to calculate the delay pdf of the perturbed circuit is shown in
Fig. 4, where we refer to the edge by the name of the driving
node. The pseudocode involves the computation of the AT for
all nodes in the ATSet, convolution of the AT and RAT for
all nodes in the ConvSet, and the statistical maximum of the
convolution for all edges in the cutset.

All the computations in “CutSetSSTA” are performed using
the same canonical expression for the delay pdf. Thus, the final
delay pdf of the perturbed circuit is also expressed in the same
form. Although the approach, as described, seems exact, it is
heuristic. This results from the fact that the computation of
the max function of delay pdfs is not exact, and forward and
backward traversals of the graph result in timing delays that are
not identical. However, this error is generally very small, as will
be shown later in Section VI. The error depends on the relative
difference in the mean, the variance, and the correlation of the
RVs [45].

B. Power-Perturbation Computation

The statistical power computation is performed by summing
the power dissipation of each gate in a circuit to compute the
complete pdf of leakage power. To perform power analysis
of a circuit with perturbations in the size of a gate, we first

perform statistical power analysis of the unperturbed circuit, as
described in Section III-B. Now, the leakage power after the
size of gate i has been perturbed is expressed as

P pert
circ = P unpert

circ − P unpert
gate,i + P pert

gate,i

= P unpert
circ\i + P pert

gate,i (26)

where Ppert and Punpert refer to the perturbed and unper-
turbed power, respectively, and the subscript indicates whether
the power refers to the circuit or to the gate. Since the leakage
power is expressed as a lognormal (exponential of a Gaussian)
RV, we can approximate their sum using another lognormal. In
general, we discussed in Section III-B that when we sum two
lognormal RVs in canonical form, then the coefficients of the
resulting expression can be obtained by matching the mean,
variance, and the correlation coefficient with the exponential
of the principal components (zi’s) leading to a set of n + 2
equations in n + 2 variables that can be analytically solved.
To compute the expression in (26), we need to use (16)–(18)
twice to calculate the final perturbed leakage. However, when
one of the lognormals is subtracted, the signs associated with
its expected value and covariance terms in the expressions are
reversed.

C. Yield Gradient

To this point, we have developed efficient approaches to per-
form statistical timing and power-perturbation computations.
Now, we will use these techniques to perform the computation
of the gradient of yield in an efficient manner.

The computation of yield gradient involves the computation
of the perturbation in yield for small changes in the size of gates
in the design. The pseudocode for the computation of the yield
gradient (FastYieldGradient) is shown in Fig. 5.

After each perturbation, the nonlinear optimizer calls the
yield-gradient-computation routine “FastYieldGradient.” The
first step is to initialize the circuit so that all nodes are assigned
the correct load capacitance based on the loading capacitance of
the gates in its immediate fanout and the correct leakage power.
Based on the load capacitance of the node, each input of a node
is assigned to a delay pdf, which represents the delay of the tim-
ing arc from that particular input to the output of the gate. After
the initialization step, the next step involves the propagation of
the AT from the source node to the sink node in the timing graph
using the timing-analysis approach described in Section III-A.
This is represented as “ForwardSSTA” in the pseudocode. The
next step is to perform statistical power analysis and generate
the leakage-power pdf using the power-analysis steps from
Section III-B. This is represented as “StatPowerAnalysis” in
the pseudocode in Fig. 5. The “Yield” subroutine is then used to
compute the yield based on the timing and leakage-power pdfs,
given a leakage-power constraint P and a delay constraint D,
as outlined in Section IV.

To perform the yield-gradient computation, we first prop-
agate the RAT from the sink node to the source node using
“ReverseSSTA.” Details regarding the propagation of RATs
from the sink nodes to the source nodes in a topological fashion
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Fig. 5. Pseudocode for the yield-gradient-computation routine.

can be found in [7] and [9]. Then, we go through each node
in the circuit iteratively and perturb the size or gate length of
each gate by a small amount. Note that this step is repeated
for each node in the timing graph. The load capacitance of
the nodes in the fanin set of the node and the delay pdf
assigned to each timing arc of this node and the nodes in
the fanin set are updated. Then, using the statistical timing-
and power-perturbation computation techniques discussed in
this section, we compute the delay and leakage-power pdfs of
this perturbed circuit. The yield corresponding to the perturbed
circuit is then calculated, and the change in yield is used to
define the particular component of the yield gradient. Note that
the yield-gradient computation implicitly considers the impact
of gate sizing or length biasing on both timing and power.
The consideration of the correlation between timing and power
in this paper effectively captures the power–performance rela-
tionship and guarantees overall yield of the design rather than
providing separate guarantees for timing and power yields, as in
prior work.

Let us consider the computational complexity of our pro-
posed approach and compare it to the brute-force approach,
where each iteration had a complexity of O(n2Ng). Each itera-
tion in our proposed approach involves a single run of the com-
plete yield-analysis approach, as aforementioned, which has a
complexity of O(nNg). The timing- and power-perturbation
computation is repeated O(n) times. The complexity of the
incremental power analysis is O(Ng), since we require two
sum operations of the lognormal RVs. For the statistical timing-
perturbation computation, most of the max computations in the
cutset can be reused by storing the information as a binary-
search tree. Thus, the timing-perturbation computation has a

complexity of O(Ng log(n)). The overall complexity of the
approach is then O(nNg log(n)), which is a significant im-
provement over the brute-force approach.

VI. RESULTS AND IMPLEMENTATION DETAILS

The proposed approach was implemented in C++, and we
compared our analysis results to Monte Carlo (MC)-based
simulations. The benchmark circuits were synthesized using an
industrial 0.13-µm technology. We considered channel-length
and gate-length-independent threshold-voltage variations for
our experiments with 3 σ/µ of 20%. These variation levels
are consistent with values in the literature [46], [47]; however,
we note that the absolute value of variability is not critical in
validating the proposed techniques. All variation in Vth0 was
assumed to be random, due to random-dopant effects, whereas
half the variation in channel length was considered to be
correlated. The gates in the library were characterized for delay
and leakage power using SPICE simulations for different values
of channel length (for gate-length biasing), which were fit to
expressions of the form in (1) using linear regression. The
circuits were placed using Cadence Silicon Ensemble and parti-
tioned such that each square on the grid had a maximum dimen-
sion of 40 × 40 µm. The correlation coefficient among different
squares on the grid was assumed to be inversely proportional to
the distance between the centers of their grids. MC simulations
were performed by generating correlated and random Gaussian
RVs for the process parameters and performing timing and
power analysis. For yield optimization, we compared our yield
improvements to a deterministic circuit-optimization technique.
All experiments were performed on an Intel 2.8-GHz Xeon
processor with 3 GB of RAM.

A. Yield Analysis

Table II shows results for the ISCAS85 [24] and Micro-
electronics Center of North Carolina (MCNC) [25] benchmark
circuits (i1 and c17 are excluded due to their very small sizes).
The table compares the means and standard deviations of delay
and power obtained using the proposed approach and MC-
based simulations. The table also compares the coefficient of
correlation of delay and the log of leakage power, which is
required for yield estimation, as discussed in Section IV. The
results show that the estimates obtained using the proposed
approach for the values of the mean delay and leakage power
are very accurate with an average error of 1.2% and 1.8%,
respectively. The standard deviations show an average error of
7.6% and 13.7% for power and delay, respectively. A compari-
son of the direct (O(n2)) leakage-analysis approach (described
in Section III-B) and our recursive approximation technique
was presented in [38]. Based on the results, the authors con-
clude that the accuracy of the two approaches is essentially
the same.

We observe that circuits with smaller logic depth show
larger error in delay as compared to circuits with larger logic
depths. This results from the fact that the correlations in the
random component are neglected, which can result in an error in
estimated variance. The contribution of the random component
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TABLE II
COMPARISON OF OUR PROPOSED APPROACH AND MC-BASED SIMULATION RESULT. SD = STANDARD DEVIATION

Fig. 6. Contribution of random variation to the total variation in delay and
power.

is inversely proportional to the depth of the critical path [15] and
can generally be expected to be small for larger circuits. The
coefficient of correlation between the log of leakage power and
delay shows a very good match to MC results with an average
error of 4.2%.

Fig. 6 shows the contribution of the random component to
the variance of delay and leakage power. Circuit-delay variance
shows an average contribution of 8.4% with a maximum of
20.2%. On the other hand, variance in leakage power shows
a much smaller average contribution of 1.8% with a maximum
of 3.6%. This confirms our assumption that the impact of the
random component of variation is negligible when estimating
the correlation in power and performance. In addition, it is
interesting to note that this random contribution reduces with

Fig. 7. JPDF for the bivariate Gaussian distribution for c3540.

increasing circuit size for leakage power; however, there is no
clear trend in the case of circuit delay since it strongly depends
on circuit topology.

Fig. 7 shows a representative jpdf of the log of leakage and
delay, which is a bivariate Gaussian jpdf. The contours of the
jpdf are ellipses with center at the mean of delay and the log of
leakage.

Table III compares the yield estimates achieved using the
proposed approach of Sections II–IV and those obtained using
MC-based simulations for all benchmark circuits at two perfor-
mance bins. For both bins, the leakage power is constrained
to be less than 1.1× the mean leakage value. Two different
performance bins are constructed with delay being less than
1× and between 1 and 1.1× the mean delay. The proposed
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TABLE III
YIELD ESTIMATES FOR DIFFERENT FREQUENCY BINS USING THE

PROPOSED APPROACH AND MC-BASED SIMULATIONS.
Dµ REPRESENTS THE MEAN OF DELAY (D)

Fig. 8. Dependence of the correlation coefficient between delay and log
(leakage) on the correlation structure of process parameters.

approach is seen to provide good estimates of the yield for the
different frequency bins with an average misprediction in yield
of 2%. If the correlation in power and delay is ignored, the
yield in different bins can be both significantly overestimated
(up to 15% in the high-performance bin) and underestimated
(up to 16% in the low-performance bin), as shown in the last
two columns of the table.

Fig. 8 shows the dependence of the correlation coefficient of
delay and the log of leakage on the correlation structure. We
selected two benchmark circuits from each of the ISCAS85 and
MCNC benchmark suites and varied the correlation structure.
The correlation structure was adjusted by changing the number
of partitions while maintaining a fixed correlation coefficient

Fig. 9. Dependence of the correlation coefficient of delay and log (leakage)
on the depth and the number of paths.

TABLE IV
COMPARISON OF YIELD-GRADIENT COMPUTATION USING

FASTYIELDGRADIENT AND BRUTE-FORCE APPROACH.
ALL RUNTIMES ARE IN SECONDS

across partitions. Thus, increasing the number of partitions
results in a reduction in the correlation distance (the distance
at which correlation falls to a given value). Note that the
case of a single partition is equivalent to the case where all
variations are inter-die variations. The results show that the
correlation reduces in absolute value with increasing number
of partitions. However, the various circuits behave differently
when the number of partitions is increased from one value
to another. To understand the dependence of the correlation
coefficient on circuit topology, we created artificial circuits
consisting of varying numbers of parallel inverter chains of
varying depth. Results in Fig. 9 show that, as the depth of the
circuits is increased, the absolute value of correlation reduces
due to the increasing contribution of random variations to
delay variance. As the number of parallel chains increases, the
absolute value of correlation increases since the delay variance
reduces [15].
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TABLE V
COMPARISON OF THE PARAMETRIC YIELD ACHIEVED USING DETERMINISTIC AND STATISTICAL OPTIMIZATION

B. Yield Optimization

Our proposed approach for the computation of the yield
gradient is written as a subroutine that the optimizer uses to
calculate the gradient of the objective function. The yield-
analysis engine serves as the subroutine to calculate the ob-
jective function itself. If we assume that ReverseSSTA and
ForwardSSTA give exact timing distributions at each node,
then the procedure would be also exact. However, as noted
earlier, the Gaussian approximation considered, while comput-
ing the maximum, introduces an inaccuracy while performing
ForwardSSTA and ReverseSSTA. In practice, we find that the
error introduced due to this inaccuracy is small. Table IV
shows the runtime comparison and accuracy results of the
proposed gradient-computation procedure as compared to the
naïve brute-force approach. The average cut-width over all
nodes in the circuit is reported in the second column. Runtime
per gradient-vector computation (i.e., the runtime for gradient
computation per descent step of the optimization) using the
brute-force approach and the proposed procedure are given in
Columns 3 and 4, respectively. The speed up of the proposed
method over the brute-force approach is given in Column 5
and ranges between 3× to 20× and is found to be larger for
bigger circuits. The maximum error over all gates, found using
gradient computation normalized with respect to the brute-force
method, is given in Column 6 and is found to be small in
most cases with an average of 2.4%. As aforementioned, the
error results from the fact that the computation of the max
function of delay pdfs is not exact; forward and backward
traversals of the timing graph result in timing delays that are
not identical. The error averaged over all gates in the circuit is
given in the last columns of Table V and is extremely small.

The gates in our standard-cell library are characterized for a
set of sizes and lengths that range from minimum to maximum
sizes and the delay and leakage power for intermediate gate
sizes is obtained using linear interpolation. All designs are then
deterministically optimized for power under delay constraints
using LANCELOT. We use our statistical yield-maximization
approach to improve the yield of this already traditionally opti-
mized design for a set of various power and timing constraints.
Our results indicate that performing statistical optimization can
significantly improve the timing yield of the design. We com-
pare our results based on the ISCAS85 and MCNC benchmarks
synthesized in a 0.13-µm technology.

The yield-optimization results are given in Table V. The first
subsection, including Columns 2, 3, 4, and 5, report the initial
timing and power statistics of the benchmark circuits. The next
three columns report the parametric yield achieved using a de-
terministic (with gate sizing and gate-length biasing), statistical
with no gate-length biasing, and statistical optimization with
gate-length biasing. The deterministic optimization was per-
formed using nominal delay and power models and minimizing
the power dissipation while sweeping the delay constraint.
The yield of the final optimized design is then analyzed, and
the delay constraint that provides the maximum parametric
yield is assumed to represent deterministic optimization. As a
deterministic optimizer is unaware of the variation in power
and timing and their correlation, it results in small yields.
Statistical optimization using gate sizing provides significant
improvement with an average yield increase of approximately
40%. With gate-length biasing, an additional yield increase
of approximately 30% on average is obtained. By varying
gate length within just a 10-nm range around the nominal
length (125–135 nm), yield improvements are significant. As
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discussed in [35], leakage has a strong dependence on gate
length. We find that across the entire 10-nm range of our
allowed lengths, the leakage varies by 2× while the delay
spread is only 10%. The large yield improvements due to length
biasing can be attributed to the fact that, in addition to reducing
the nominal leakage, increasing gate length greatly suppresses
leakage variability [35]. This in turn reduces the susceptibility
of the design to process variations. The last three columns list
the delay and power statistics of the final optimized design
using statistical optimization with gate-length biasing.

VII. CONCLUSION

To the best of our knowledge, we have presented the first
approach to gate-level parametric yield analysis and optimiza-
tion considering correlation between power and performance
resulting from assorted components of process variability. The
analysis approach is shown to be computationally efficient and
forms the core of our yield-optimization technique, which relies
on efficient yield-gradient computation.

The yield-gradient-computation technique exhibits reason-
able computational complexity and is shown to provide an 8×
improvement in runtime on average as compared to a brute-
force gradient-computation approach. The proposed analysis
approach matches well with MC-based simulations with an
average error of 4.2% in estimating power and delay correla-
tion. Yield estimated using this approach is within 2% of MC
results on average, and we demonstrated that neglecting the cor-
relation in power and performance leads to gross mispredictions
in yield. The parametric yield-optimization approach provides
significant improvements in yield, and we show that the use of
gate-length biasing is a strong lever in improving yield due to
both its favorable leakage/delay tradeoff and its positive impact
on process-induced leakage spread.

One possible avenue for future work involves extending the
approach to handle fast path constraints. This would require
the analysis of a trivariate normal distribution in contrast to the
bivariate normal distribution addressed in this paper.
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