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ABSTRACT 
Process variation is a major concern in the semiconductor 
industry today. Probabilistic statistical static timing analysis 
(SSTA), where random variables are used to represent arrival 
times, has been proposed as a method to address this challenge.  
However, there are a number of modeling and accuracy 
difficulties associated with probabilistic SSTA analysis and 
optimization methods, such as how to address the skew of arrival 
times efficiently and combined modeling of drivers and 
interconnect.  In this paper we describe a method to improve the 
practicality of statistical static timing analysis (SSTA) by 
focusing on improving the efficiency of Monte Carlo based 
statistical timing analysis. We introduce a Criticality Aware Latin 
Hypercube Sampling (CALHS) approach to stratify the process 
variation space based on critical paths in the circuit and then 
intelligently sample. The result is that many fewer samples (up to 
6.9X on the benchmark circuits studied) are needed to arrive at 
comparable accuracy in timing estimation compared to a random 
sampling approach.  Also, in comparing a Monte Carlo-based 
SSTA to traditional SSTA approaches, we find over 50% less 
error in higher percentile delays for the largest circuits 
considered, using CALHS, even with a moderate number of 
samples.  

1. INTRODUCTION 
 
Process parameter variations have taken on increasing importance 
in nanometer-scale CMOS. Rather than using simple corner 
models that capture worst-case behavior at the device level (and 
lead to large guardbands), CAD tools today are moving towards a 
more probabilistic view of circuit timing behavior. 
In replacing corner models, there are two primary approaches to 
incorporating process parameter uncertainty in timing analysis. 
The first is to perform statistical static timing analysis (SSTA) by 
modeling gate delay as a function of process parameters and 
propagating these distribution functions. We refer to these 
approaches such as those in [5,11] as traditional SSTA. In 
traditional SSTA it has proven challenging to model skewness of 
the arrival time which results from non-linearity of the gate delays 
and the maximum function without loss in performance. Also, a 
number of modeling issues are still in early stages of 
development, such as combined analysis of large interconnect 
structures driven by non-linear drivers andcoupling events and 
modeling of transparent latches. While strong steps have been 
made to address these issues [5,11,14], it is expected that a mature 
tradition SSTA tool, capable of performing timing sign-off, may 
not be widely available for a number of years.  

The second approach is to run STA in a Monte Carlo fashion. The 
importance of Monte Carlo in general has been discussed in [12]. 
Here, the author proposes that as practical problems involve 
several dimensions Monte Carlo can form a suitable approach. 
Such an approach to SSTA would involve selecting samples of 
the process variation space to obtain statistical distributions of 
circuit timing behavior (this can be referred to as Monte Carlo-
based SSTA). Given an accurate underlying process variation 
model, such techniques are inherently accurate as they do not 
involve any approximations. The runtime in this approach directly 
depends on the number of samples employed and has been cited 
as the major drawback of this approach. The difficulty is that a 
fully random choice of samples can lead to either a loss of 
efficiency (too many samples) or accuracy (few non-
representative samples). Therefore in Monte Carlo-based SSTA 
there is a need for variance reduction techniques.  
In the past, several variance reduction techniques for parametric 
yield estimation have been analyzed [1][3][4]. In [1], a Latin 
Hypercube Sampling Monte Carlo for parametric yield estimation 
is proposed. However, few results are presented and it is not clear 
how well the approach will apply to timing analysis. The work in 
[3] proposes mixture importance sampling for statistical SRAM 
design and analysis. The paper shows the potential of 
significantly improving the efficiency of circuit analysis using 
variance reduction techniques.  The approach in [4] is to use the 
control variates technique in conjunction with importance 
sampling, for timing yield estimation. However, while several 
interesting approaches are reviewed, no results are presented.  
In this paper, we introduce Criticality Aware Latin Hypercube 
Sampling (CALHS) for use in Monte Carlo-based SSTA. This 
contribution is important in the following respects. First, there has 
been very little work focusing on accurate and efficient timing 
analysis using Monte Carlo as an alternative to traditional SSTA. 
Our work is the first to directly study variance reduction aimed at 
improving the efficiency of Monte Carlo-based SSTA. Second, 
unlike most previous research on Monte-Carlo based SSTA, our 
work considers intra-die variation with spatial correlation, based 
on the model detailed in [5].   
This work describes two approaches. First, we use Latin 
Hypercube Sampling (LHS), which is a known technique in 
sampling theory, to select samples in the process variation space. 
STA is performed on these samples, and the distribution of circuit 
arrival time is obtained. In the second approach, we use timing 
criticality information to partition the process space into strata. 
We then use LHS to determine an appropriate set of samples in 
these strata. As before, we then perform STA on these samples 
and obtain distributions of circuit timing behavior. We compare 
these results with a random sampling approach for selecting 



samples in the process variation space. Only gate length variation 
is considered in our approach, since it is the most dominant 
process variation parameter. However, the approach can be easily 
extended to include additional process variation parameters.  
Our experiments show that the CALHS and simple LHS exhibit 
large speedups relative to a random sampling approach. CALHS 
is up to 6.9X faster on ISCAS85 benchmark circuits while LHS 
alone is 2 to 3X faster than random sampling. Also, with a 
moderate number of samples, over 50% less error is obtained in 
high percentile delays compared to traditional SSTA.  
This paper is organized as follows. Section 2 surveys several 
important variance reduction techniques in the literature. Section 
3 presents our work on variance reduction for Monte Carlo based 
SSTA. We go on to present results in Section 4 and conclude with 
Section 5.  

2. Latin Hypercube Sampling 
 
There has been substantial work on mathematical techniques for 
Monte Carlo variance reduction [6]. Most variance reduction 
approaches use additional information about the problem at hand 
to reduce variance. Here, we first look at a few approaches as 
applied to the yield estimation problem and go on to justify the 
use of LHS and stratified sampling as the basis for our approach 
in the timing analysis context.  
Importance sampling and control variates are techniques that 
have been studied for application to integrated circuit yield 
estimation. The yield estimation problem aims at estimating the 
integral of a binary function over the process variation space. In 
the control variates technique, as applied to the problem of 
estimating the integral of a function f(X), the idea is to come up 
with a correlated function h(X) whose integral is computed with 
much less effort. The difference of these functions f(X) - h(X) has 
lower variance than f(X) and requires fewer samples. In 
importance sampling, the sampling probability distribution 
function is chosen to sample more in regions where f(X) exhibits 
higher variation. We refer the reader to [6] for further details on 
this technique. Another approach in yield estimation is to use the 
control variates technique in conjunction with importance 
sampling, as outlined in [4].  
Turning now to the problem of Monte Carlo-based SSTA, it is not 
immediately clear that the control variates technique or 
importance sampling approach of [4] can be effectively applied, 
as no results are provided. In general, the problem with the 
control variates approach is that it relies on the use of a correlated 
function h(X). Such a general function is often difficult to find, 
especially one that considers multiple sources of variation, 
incorporates various circuit elements like latches, and considers 
multi-cycle paths. More work is required to establish the 
effectiveness of these approaches for use in the modern integrated 
circuit design process. The use of importance sampling [4] in 
yield estimation is justified since it can be argued that there are 
significantly large regions in process variation space where the 
circuit is either known to meet the target delay TC, or at least 
behave similarly to a model with respect to meeting the target 
delay. This is not directly applicable to timing analysis however. 
To summarize, the above methods require further study regarding 
their applicability in timing analysis.   

LHS, on the other hand, does not require any knowledge of the 
system under consideration, and is therefore general and scalable. 
LHS attempts to ensure that the samples chosen are spread more 
or less uniformly in the sample space, across input variables. In 
other words, its main feature is that it simultaneously stratifies on 
all input dimensions [9]. The importance of this cannot be 
overemphasized in a sample space of high dimensionality such as 
the process variation space. In such a scenario, if a small number 
of samples are randomly picked, it may severely bias the 
estimator, and this effect worsens with more dimensions. In a 
simple version, LHS generates N samples from a sample space of 
k variables X = [X1, X2… Xk] in the following way. The range of 
each variable is partitioned into N non-overlapping intervals of 
equal probability size 1/N.  One value is chosen at random from 
each of these N intervals for every variable. The N values thus 
obtained for X1 are randomly paired with the N values obtained 
for X2. This gives us N pairs. These are combined randomly with 
the N values of X3 to form N triplets. And so on until N k-tuples 
are obtained. Fig 1 below illustrates LHS for the 3-variable case.  

 

 

Probability P(x) 

Bins

Random variable x

(a)  

 

Randomly  

combine to form 

triplets 

(b) 
Figure 1. LHS sampling with N=8, k=3. (a) Sampling of a 
variable in equal probability bins. (b) Forming triplets by 

randomly combining individual samples.  

 
LHS ensures variance reduction in very general cases and can be 
combined effectively with other techniques for variance 
reduction. The author of [8] finds that as long as N, the number of 
simulations, is large compared to the number of variables k, LHS 
gives an estimator with lower variance than simple random 
sampling (referred to as RS for the remainder of the paper) for 
any function h(X) having a finite second moment. Reference [7] 
cites uses of LHS with importance sampling and control variates. 
The author also shows that LHS with control variates has smaller 
variance than i.i.d. sampling (equivalent to RS) with the same 
control variates.  



A stratified sampling approach involves partitioning the sample 
space into mutually exclusive strata, and sampling within 
individual strata. Fig 2 below illustrates a particular stratification 
of a 3 variable space into 16 strata. 
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Fig 2. Illustration of stratified sampling in 3-D space. 
Combinations of 4 regions each in x and y define the strata in this 
case. A particular stratum and its projections on the 3 components 
is marked.  
 
In the context of timing analysis, we incorporate the spatial 
correlation model proposed in [5], where principal component 
analysis is used to transform the spatially correlated random 
variables into orthogonal random variables. We perform our 
sampling on the space of these orthogonal random variables. 
Another approach would be to directly generate correlated 
random variables. In [10], the author proposes methods to 
generate correlated random variables. However, we do not follow 
that approach in this work for reasons of simplicity and 
extensibility to other models for manufacturing processes. Thus, 
our only assumption is that process variation can be represented 
as a linear combination of orthogonal random variables.  

3. Criticality Aware LHS (CALHS) for 
Timing Analysis  
 
In this section, we propose Criticality-Aware Latin Hypercube 
Sampling (CALHS) for Monte Carlo-based SSTA.  

Variable 1 (critical) 

       

Variable 2 
(non-critical) 

Statistical STA is defined in [5] as the problem of finding the 
probability distribution of the max of the path delay distributions 
for all paths from source node to sink node in the timing graph of 
the circuit. We concentrate on finding the mean and standard 
deviation of this distribution, i.e., mean arrival time and standard 
deviation in arrival time (henceforth μAT  and σAT, respectively). 
In Monte Carlo-based SSTA, this is achieved through sampling in 
the process variation space and finding the average and standard 
deviation of the worst-case arrival times obtained (μAT and σAT) 
across the multiple instantiations of the circuit. Another parameter 
is the 99th percentile point in worst-case arrival time, which we 
refer to as T0.99. 
As mentioned, our process variation model is based on [5]. We 
partition the die into n x n grids. Perfect correlation is assumed for 
devices within the grid. A single variable represents the variation 
in each grid, leading to t = n2

 correlated variables.  
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 is the uncorrelated random component. Note that in our case, 
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principal components.   
The gate delay, with a Taylor series expansion of first order, is 
thus a linear combination of principal components of all 
parameters and the uncorrelated random component [5].   
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We have considered only gate length variation as a source of 
process variation in this work, as discussed before.  
In our first approach, we use LHS to sample the process variation 
space, without using any criticality information. As is clear above, 
we have t i.i.d. principal components with a normal distribution 
(zero mean and unit variance), a separate inter-die component and 

uncorrelated random variables. We only consider the 

principal components and inter-die component (henceforth 
together referred to as components) for LHS and CALHS – for 
the uncorrelated random components, we perform random 

gateN



sampling. We first divide the space (-∞, ∞) of each component 
into 20 bins of equal probability. The choice of 20 is a tradeoff 

between accuracy (increases with more bins) and number of 
samples. 
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Fig 3.  A visual example of Criticality Aware Latin Hypercube Sampling. r.v.1 and r.v.2 are the two critical components in this example.  
 
Now, we perform LHS with N=20, k=t+1 (N=8, k=3 is illustrated 
in Fig 1). This is repeated k/20 times to generate k samples. 
 We now extend this approach to include timing criticality 
information. We find the top p components that contribute most 
significantly to the potential critical paths. For this, we first 
perform static timing analysis on the nominal circuit to identify 
critical paths within a slack s. Henceforth we will refer to this as 
the ‘criticality slack parameter’. Now, each grid is assigned a 
weight equal to the number of gates falling in any of the potential 
critical paths. Let wg,i be the weight of the ith grid. The weight of 
the jth principal component is given by  
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where corr(i,j) is the coefficient of the jth principal component in 
the ith grid variation, and iσ is the standard deviation of .  The 

weight of the inter-die component is given by a similar 
expression.  

i
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The top p components (critical components) with highest weights 
are found in this manner. Now, the idea is to partition the sample 
space of t+1 components into strata biased towards the critical 
components, and perform LHS sampling in each such stratum. We 
will refer to the components in decreasing order of the weight 
given by (3), i.e., r.v.1 has the highest weight and r.v.t has the 
least. Let r.v.k , such that k ≤p, be partitioned into rk regions of 
equal probability (similar to the idea of bins mentioned above). 
Let kjk RR ∈,  denote the jth region of k, Rk denotes the space of 

the component k. The strata are then defined by:  
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We thus have ∏ strata. Fig 2 illustrates stratification for 3 
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1 = x, r.v.2 = y, r.v.3 = z; x and y are the critical 
components (p = 2), and are divided into 4 regions each, total 16 
strata.  
Within each stratum, we perform LHS. Consider the highlighted 
stratum and its projections on the three components in Fig 2. The 
stratum is defined by the second region of r.v.1 and the third 
region of r.v.2. The LHS approach for this particular stratum is 
illustrated in Fig 3. For r.v.1 and r.v.2, we have 2 bins each within 
the highlighted region, this gives sufficient granularity; for r.v.3, 
we have 8 bins. This means that we will require 4 samples in each 
bin of r.v.1 and r.v.2 and just 1 in each bin of r.v.3 to form 8 
samples (triplets).  
In the timing analysis context, we use 20 bins instead of 8 in the 
above example. If a critical random variable has 4 regions in the 
stratification, each region has 5 bins.  

4. Experiments and Results 
 
In this section, we present simulation results demonstrating that 
CALHS leads to a significant speedup in Monte Carlo-based 
SSTA.  
Our simulations are based on a 130nm industrial technology 
library. The inter-die and intra-die spatial and correlated 
components of variation are set for an overall standard deviation 



of 10%. The grid sizes in the spatial correlation model for 
individual circuits are based on their sizes and vary from smallest 
2 by 2 to largest 10 by 10. We perform statistical timing analysis 
using the three approaches (Random Sampling or RS, LHS, 
CALHS) on various ISCAS benchmark circuits. It is important to 
first define a performance metric to compare the approaches.  
We have previously defined μAT  and σAT in Section 3. Consider a 
Monte Carlo-based SSTA approach. Let the count of Monte Carlo 
runs be x. For many different trials of x runs each, μAT  and σAT 
yield two distributions (note that for extremely large x these 
distributions should approach delta functions). Let 

and ))(( ATx μμ ))(( ATx μσ  be the mean and 

standard deviation of the resulting μAT distribution. We define 
error in μAT as a function of x:  

))((/))((3))(( ATATAT xxx μμμσμε =   (5) 

Similarly the error for σAT  is  

))((/))((3))(( ATATAT xxx σμσσσε =   (6) 

These definitions of error capture the fact that as x  ∞ then   
ε(x)(μAT)  0 and ε(x)(σAT)  0 and hence results have 
converged. Although technically indirect since the error is not 
directly compared to a golden timing reference (Monte Carlo STA 
with very large x), this is an acceptable metric since it is clear that 
a tight distribution of μAT and σAT will naturally be centered 
around the correct values, ensuring good overall accuracy. In fact, 
this is observed to be the case for the μAT and σAT from our 
experiments. For T0.99, we use a similar error metric. However, 
the error mean is not zero for low x, hence we directly refer to a 
golden timing reference in this case.  
For any given method, the minimum x such that both 

))(( ATx με < 3% and ))(( ATx σε < 3% gives an idea of how 
small a sample set can yield good results for the approach being 
investigated. This metric, referred to as the optimal count in 
Tables I and II, is proportional to the runtime and hence evaluates 
the efficiency of different methods for Monte Carlo-based SSTA.  
Table I compares optimal count for the different methods applied 
to the benchmark set. CALHS here is for the case of a ‘criticality 
slack parameter’ of 10ps. The fourth and fifth columns show the 
speedup of LHS and CALHS over RS. It can be seen that CALHS 
is consistently faster by a factor of 3.6 to 7X.  LHS alone shows a 
more modest improvement of 1.2 to 2.4X over random sampling.  
Table II compares the optimal count required for good accuracy 
using different values of the criticality slack parameter. This 
shows that the scheme is stable w.r.t. to the criticality slack 
parameter.  
Figures 3 and 4 illustrate the typical behavior of the error metrics 

))(( ATx με and ))(( ATx σε  described above, shown for one 
of the largest circuits studied. LHS and CALHS both perform 
well for ))(( ATx με , while CALHS shows significant 

improvement over simple LHS for ))(( ATx σε . In both these 
cases, there is a high improvement over RS. The limiting factor 
 

Table I. Comparison of optimal counts for various sampling 
approaches for Monte Carlo-based SSTA. 

Circuit 
RS 

Count 
LHS 
count 

CALHS 
Count 

LHS 
speedup 

(X) 

CALHS 
speedup 

(X) 

C432 4720 2480 1200 1.9 3.9 

C499 6100 2880 880 2.1 6.9 

C880 4640 2320 1040 2.0 4.5 

C1908 4320 3600 880 1.2 4.9 

C2670 4800 2400 1280 2.0 3.8 

C3540 6000 3600 1280 1.7 4.7 

C5315 4000 3600 1120 1.1 3.6 

C6288 4560 2160 960 2.1 4.8 

C7552 5120 2160 960 2.4 5.3 

 
Table II Comparison of optimal counts for CALHS using 

different values of the criticality slack parameter. 
 

Circuit 
CALHS 
Slck-10ps 

CALHS 
Slck-20ps 

CALHS 
Slck-30ps 

C432 1200 1200 1200 

C499 880 880 880 

C880 1040 1040 1040 

C1908 720 880 880 

C2670 960 1120 1280 

C3540 960 1280 1280 

C5315 1120 1120 1120 

C6288 960 960 960 

C7552 800 880 960 

 
that dictates the minimal amount of acceptable samples (optimal 
count) is therefore ))(( ATx σε , which explains why CALHS 
shows much better performance in Table I compared to LHS.  
Figure 6 below compares the probability distribution of Worst 
case arrival times for traditional SSTA, CALHS and compares 
with the golden. The golden here is Monte Carlo run of 65k. The 
circuit under consideration is ISCAS circuit C6288. It is clear that 
CALHS captures the distribution more accurately when compared 
to Traditional SSTA. Figure 7 compares the accuracy of CALHS 
and Traditional SSTA for the 99th percentile arrival time T0.99. In 
this case, the mean error is always lower for CALHS and becomes 
50% of SSTA error at 160 samples.  

5. Conclusions  
This paper introduced the concept of CALHS with application to 
timing analysis of integrated circuits.  In particular, with growing 
process variation and the resulting demise of a corner-based  
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Fig 4. Mean + 3*sigma error in mean arrival time vs number of 
samples for ISCAS benchmark circuit C6288.  
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Fig 5. Mean + 3*sigma error in standard deviation of arrival time 
vs number of samples for ISCAS benchmark circuit C6288.  
timing analysis flow, there has been significant interest in 
statistical static timing analysis, which can result in reduced 
margins and costs.  While most research in this area has centered 
on so-called traditional SSTA approaches that propagate delay 
distributions through a timing graph, an alternative approach that 
is based on Monte Carlo static timing analysis runs also deserves 
investigation.  To make this a viable candidate to replace 
deterministic STA, intelligent sampling techniques must be 
applied concurrently to bring down the number of STA runs 
required to achieve good accuracy.   
The CALHS approach in this paper using timing criticality to 
stratify the process space, and performs LHS within such strata. 
The result is that many fewer MC runs are needed to generate 
comparable accuracy in the resulting timing distributions – this 
leads directly to a much more efficient implementation of MC-
based SSTA.  Specifically, the criticality awareness provides up 
to an additional 4.1X reduction (2.7X on average) over LHS in 
the number of samples needed to achieve 3% error in the timing 
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Figure 6. Probability distribution of worst case arrival time for 
traditional SSTA and CALHS for C6288. These are compared to 
the golden Monte Carlo count of 65k.  Means are highlighted for 
CALHS and traditional SSTA. 
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Figure 7. Comparison of error bound for CALHS with traditional 
SSTA for the 99th percentile arrival time T0.99. The circuit 
considered here is SOVA2.  
distribution of the circuit.  Overall, CALHS achieves upto 6.9X 
reduction in number of samples compared to random sampling. 
Furthermore, we find that MC-based SSTA with CALHS 
computes the 99th percentile circuit delay with over 50% less error 
than a traditional SSTA approach for large circuits even at 
moderate number of samples.  These points to both the viability 
of MC-based SSTA and the need for variation space sampling 
techniques to further improve this approach.  In addition, we note 
that an efficient Monte Carlo-based SSTA approach can be very 
valuable in statistical optimization techniques such as described in 
[13].  In this setting, traditional SSTA has not yet been shown to 
be scalable [14, 15] as gradient computation is expensive.  



Finally, MC-based SSTA is trivially parallelizable, making it an 
even more interesting approach in practice. 
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