
Top-k Aggressors Sets in Delay Noise Analysis
Ravikishore Gandikota, Kaviraj Chopra, David Blaauw, Dennis Sylvester, Murat Becer*   

University of Michigan, Ann Arbor, MI. email: {gravkis, kaviraj, blaauw, dennis}@eecs.umich.edu
*CLK Design Automation, Littleton, MA. email: murat@clkda.com 

ABSTRACT
We present, in this paper, novel algorithms to compute the set of
“top-k” aggressors in a design. We show that the computation of the
set of top-k aggressors is non-trivial, since we must consider all per-
mutations of aggressors that are coupled to a critical path. Also, dif-
ferent sets of aggressors contribute different amounts of noise to
each critical path and a brute-force enumeration to obtain the set of
top-k aggressors has impractical runtime. Our proposed approach
uses two key techniques to reduce the runtime complexity: Firstly,
we model the delay noise propagated from a victim net to its fanout
net by a so-called pseudo aggressor, which simplifies our problem
formulation significantly. Secondly, we define a dominance prop-
erty for aggressor sets, which imposes a partial ordering on the
aggressor sets and allows us to efficiently prune the enumeration
space. We then demonstrate the effectiveness of our proposed algo-
rithm on benchmark circuits. 

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms
Algorithms, Design

Keywords
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1  INTRODUCTION
Coupling noise has become an important concern in nano-meter
designs. Delay noise which models the impact of noise on circuit
delay is of particular concern for high-performance designs. To
address this issue, static noise analysis was first introduced in
[1],[2] and has been the focus of significant research effort. Since
delay noise requires both the aggressor and the victim nets to switch
at the almost the same time, timing windows were defined to indi-
cate the time range in a clock period within which an aggressor/vic-
tim net can transition. It was observed early on that the computation
of delay noise and timing windows poses a chicken-and-egg prob-
lem. Delay noise cannot be computed before timing windows are
defined and, vice versa, accurate timing windows cannot be com-
puted without information about the delay noise. 

An iterative method was suggested in [3],[5] for computing the
delay noise in a design. The iterations start by either assuming that
all aggressor-victim timing windows have an overlap or none of
them have any overlap. The circuit delay is then computed by itera-
tively updating the delay noise and timing windows. It was shown

in [3] that this iterative method is guaranteed to converge. It was
observed in [4] that the problem formulated above has solutions
which are fixpoints on a complete lattice. Also, a number of meth-
ods to identify and eliminate false aggressors, which cannot impact
the delay of a victim due to logical and timing correlations in the
circuit, have been proposed in [10],[11].

Despite the pruning of false aggressors, the total number of
aggressors that contribute to delay noise in a circuit can be
extremely high. For a victim net, the so-called primary aggressors
couple noise directly on to the victim transition. Furthermore, indi-
rect aggressors are coupled to primary aggressors and can impact
the timing window of a primary aggressor. This increase in the tim-
ing window of a primary aggressor may cause an overlap with the
victim timing window, resulting in an increased delay noise. In Fig-
ure 1, for instance, noise from aggressor a2 can increase the timing
window of a1 such that it now overlaps with that of victim v1.
Therefore, a2 is an indirect or secondary aggressor of victim v1.
Similarly, a3 is a tertiary aggressor of victim v1. Note that in this
example, the noise analysis algorithm would require 3 iterations for
convergence. The fact that industrial noise analysis tools report the
need for 3-4 iterations for convergence, shows that noise from indi-
rect aggressors contribute to delay noise in industrial designs. 

Since we must consider primary aggressors coupled to each node
along a circuit path and also those coupled to the fanin cone of the
primary aggressors, it is clear that the number of aggressors that can
potentially contribute to the circuit delay is huge. However in prac-
tice, designers often limit the number of aggressors which can
switch simultaneously due to one of the following reasons: 

• Delay noise that involves hundreds of precisely timed noise
events is considered unlikely and consequently ignored.

• A noise event involving hundreds of aggressors is less prob-
able than that involving a few aggressors. With limited
resources for fixing delay noise, the latter event must be
given a higher priority.

 A very common approach to limit the total number of aggressors
considered in delay noise is by restricting the set of primary aggres-
sors for each victim to a few (say 10) by choosing those aggressors
which exhibit the maximum amount of coupling with the victim.
However, this approach to reduce the number of aggressors may
lead to unpredictable results. Firstly, the total number of aggressors
contributing to delay noise will vary from one path to another. Also,
there is no consistent manner of restricting the total number of indi-
rect aggressors that contribute delay noise due to noise iterations. 

In this paper, we present a new algorithm for computing the set
of “top-k” critical aggressors. This information will provide a feed-
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Figure 1. Indirect aggressors a2, a3 affect the timing window of 
primary aggressor a1 in the delay noise analysis of victim v1. 
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back to the designer regarding the set of aggressors that contribute
most strongly to the circuit delay. The concept of the set of top-k
aggressors is analogous to the top-k critical paths commonly
reported in traditional static timing analysis, but comes in two fla-
vors, (1) the top-k aggressors elimination set, and (2) the top-k
aggressors addition set. We introduce both of them below: 

Top-k aggressors elimination set: Given traditional noise analy-
sis, a top-k aggressors elimination set is a set of k aggressor-victim
couplings which, when not considered in noise analysis, would
reduce the delay noise of the design by a maximum amount. This
information is vital to a designer in situations where only a limited
number of aggressor-victim couplings can be fixed. For instance, if
a designer can eliminate only 10 coupling situations (e.g., through
shielding or spacing), then the top-10 aggressor elimination set
exactly points to the set of 10 aggressor-victim couplings which
must be fixed to obtain the maximum reduction in delay noise.
Hence, the top-k aggressors elimination set ensures that the maxi-
mum delay noise improvement is achieved for the performed effort.
It is true that fixing a particular aggressor-victim coupling may per-
turb the overall physical implementation and may result in other
new couplings. Nevertheless, the availability of the top-k aggressors
elimination set is key in each cycle of delay noise mitigation.

Top-k aggressors addition set: Given a timing analysis without
delay noise, the top-k aggressors addition set is the set of k aggres-
sor-victim couplings whose delay noise, when added to the noise-
less timing analysis, will result in the maximum circuit delay. The
top-k aggressors addition set is useful if the designer wants to
restrict the noise analysis to no more than k aggressor-victim cou-
plings switching together. Alternatively, it can also be used to iden-
tify sets of aggressors which must be given a higher priority while
fixing aggressors for delay noise mitigation.

In this paper, we show that the computation of the top-k aggres-
sors addition and elimination sets are dual problems. The analysis is
complicated by the fact that both primary and indirect aggressors
must be considered for inclusion in the top-k aggressor sets. For
correctness, in addition to the critical path, the analysis must also
include near-critical paths. Furthermore, we must model the propa-
gation of delay noise efficiently. The proposed algorithm uses two
novel concepts to provide a tractable solution: Firstly, we model the
propagated delay noise with a pseudo aggressor and secondly, we
prune the enumeration space by using a dominance relationship
which imposes a partial order on the aggressor sets. The proposed
algorithm is able to achieve practical runtimes for large values of k
on all tested benchmark circuits. In comparison, brute-force enu-
meration could not generate sets with k greater than 3, even for the
smallest benchmark circuit. The remainder of this paper is orga-
nized as follows. We describe the problem in detail in Section 2 and
then describe the proposed algorithm for top-k enumeration in Sec-
tion 3. We present the results in Section 4 and finally conclude the
paper in Section 5.

2  PROBLEM DESCRIPTION 
The goal of this work is to identify, for a given k, the set of k aggres-

sors (top-k aggressor set) which must be fixed for optimally mini-
mizing the noise violations in a design. Such a technique can
(potentially) be employed in the inner loop of design optimization
and therefore runtime efficiency is key. Conventionally, linear
Thevenin driver models were used to perform static noise analysis
efficiently. Recently, non-linear current source based driver model
have been proposed [9] to achieve the accuracy demanded by sign-
off timing analysis. However, a single victim-aggressor alignment
in such a framework requires a non-linear solver and it is clearly
difficult to achieve an efficient runtime. Therefore, we make engi-
neering decision to use the linear noise framework in our analysis.
Note that linear noise analysis is still used in the industry [12] in
applications (such as ours) where accuracy can be traded for runt-
ime efficiency. For the sake of completeness, we will now briefly
review the framework of linear noise analysis. 

 In static timing analysis (STA), timing windows are computed
by propagating the fastest and the slowest switching signals for each
net from the inputs to the outputs. Early arrival time (EAT) of a net
is defined as the earliest time at which a switching transition reaches
50% of supply voltage (referred to as t50). Similarly, latest arrival
time (LAT) is the latest possible t50 and forms the other extreme of a
timing window. A noise envelope, which bounds the noise coupled
from an aggressor to the victim net, is obtained by sweeping the
aggressor input transition within its timing window and observing
the peak noise coupled to the victim net. In this work, we compute
the ‘trapezoidal’ noise envelope by combining the noise pulse cou-
pled from an aggressor switching at its EAT and its LAT and subse-
quently connecting their noise peaks (as shown in Figure 2).

The worst-case delay noise due to an aggressor is obtained by
superimposing the corresponding noise envelope with the latest vic-
tim transition waveform (i.e. t50 = LAT) and observing the increase
in t50. If multiple aggressors are coupled to the victim, we construct
noise envelopes for each aggressor individually and add them
together to create a combined noise envelope (as shown in Figure
3). The worst-case delay noise due to all aggressors is similarly
obtained by superimposing the combined noise envelope. The
worst-case aggressor alignment problem has been extensively stud-
ied in literature ([5],[6],[7]). However, the problem of computing
the set of top-k aggressors has not been addressed, to our knowl-
edge. A brute-force manner of generating the top-k aggressors elim-
ination set is by simply running the noise analysis multiple times
and eliminating k aggressors in each run. In this case, a total of rCk
noise analysis runs are required, where r refers to the total number
of aggressors in the circuit, which is prohibitively expensive.

The computation of top-k aggressors set is non-trivial and com-
plicated due to several factors and two of which are discussed
below. First, note that with increasing cardinality, the top-k aggres-
sors sets could be non-monotonic. For instance, if the top-3 aggres-
sors set in an arbitrary design contains aggressors {a1, a5, a9}, then
the aggressor set with the next higher cardinality (i.e. top-4) may
not contain any these aggressors. Although counter-intuitive, this

Figure 2. Aggressor timing window and resulting noise envelope
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Figure 3. Worst-case delay noise due to two aggressors 
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property arise due to the fact that the alignment of aggressors affect
the delay noise (as shown in Figure 4). Although aggressors a2 and
a3 have larger noise pulses than a1, their timing windows restrict
their alignment to the left and they do not produce any delay noise if
they switch individually (t50 doesn’t change). Hence, the top-1
aggressor set is {a1}, although its noise pulse is smaller than both
a2 and a3. However, when we consider the top-2 aggressors set, the
delay noise due to the combined switching of {a2,a3} is greater
than that of {a1,a2} and {a1,a3}. Therefore, the top-2 aggressors
set is {a2,a3}. This example shows that adding an aggressor to the
top-k aggressors set may not necessarily produce the top-k+1 set. 

Secondly, the worst-case aggressor-victim alignment at a victim
net is affected by the delay noise propagated from the fanin cone of
the victim driver. Hence, the top-k aggressors set at any victim v
must consider aggressors coupled to the transitive fanin cone of vic-
tim v. Similarly, the impact of aggressors coupled to the transitive
fanin cone of the primary aggressors must also be considered as
they can change the timing window of the primary aggressors.
Therefore, the primary aggressors must be considered both by
themselves as well as acting in concert with tertiary aggressors that
increase their timing window. A primary aggressor acting by itself
is referred to as a first order aggressor. Primary aggressors are
assigned an order p = t+1, where t is the number of aggressors cou-
pled to the transitive fanin cone of the primary aggressor.

3  PROPOSED APPROACH
We will focus on the algorithm to compute the top-k aggressors
addition set, since it is conceptually simpler to understand. In Sec-
tion 3.4, we show how the proposed algorithm can be modified to
instead compute the top-k aggressors elimination set. We use
implicit enumeration to iteratively compute the desired top-k
aggressors set in a bottom-up manner. During the ith iteration (i < k),
a super-set of all aggressor sets of cardinality i - defined as listi is
constructed. Elements of listi can potentially be a subset of the
desired top-k aggressors set and the listi is generated for all values
of i from 1 through k. Finally, the set of aggressors in listk which has
the maximum delay noise is reported as the top-k aggressors set.

The enumeration of listi in the ith iteration is based on two key
concepts: First, we use “pseudo aggressors” to model the shift
observed in a victim transition due to noise coupled to the transitive
fanin cone of the victim driver. This allows us to model all aggres-
sors coupled to the fanin cone of a victim by using ‘pseudo’ noise
envelopes that are similar to the noise envelopes of primary aggres-
sors. Hence, if listi is computed at the input of a victim driver, then
the listi can be propagated to the victim net by using these pseudo
aggressors. This leads to an efficient problem partition i.e. find the
listk for each victim and propagate it a topological order.

Second, we use the concept of dominance to aggressively prune
the solution search space. The dominance property imposes a partial

ordering on the aggressors of a victim. If the noise envelope N1 of
aggressor a1 entirely encompasses the noise envelope N2 of another
aggressor a2, then the delay noise due to N1 is never less than that
due to N2. Therefore, while computing the top-1 aggressor set,
aggressor a1 will be chosen as compared to a2. In other words,
aggressor a1 dominates aggressor a2. This dominance property can
easily be extended to pseudo aggressors and higher order aggres-
sors. Note that dominance based pruning dramatically improves
runtime for large values of k. We will now describe the concepts of
pseudo aggressors and dominance in more detail and then present
the algorithm to compute top-k aggressors set. 
3.1  Pseudo input aggressors 
Delay noise propagated from the input of a victim driver affects the
alignment of the downstream victim nets with their respective pri-
mary aggressors. Therefore, the top-k aggressors set for a victim net
may comprise of both the primary aggressors and the aggressors
coupled to its fanin cone. A brute-force approach to compute the
top-k aggressors set for a victim could be: (1) Select p (p < k)
aggressors coupled to the fanin cone of the victim and compute the
delay noise on the victim. (2) Select  primary aggressors,
recompute the worst-case alignment and the delay noise. (3) Enu-
merate all possible permutations of p and select that set of aggres-
sors which results in maximum delay noise on the victim transition.
Clearly, the brute-force method is prohibitively expensive as there
can be numerous sets of fanin aggressors and cannot employed for
circuits of practical size. Therefore, we introduce the concept of
pseudo input aggressors which allows us to traverse the circuit in a
topological order while propagating top-k aggressor sets. 

 The noiseless and noisy input and output transitions occurring
due to delay noise at some of its fanin node(s) are shown, in Figure
5, for a typical victim net. We know that a noisy transition on a vic-
tim input may cause a noisy output transition which can alter the
worst-case alignment of the victim with its primary aggressors. For
the propagation of the top-k sets in a topological order, we wish to
break the dependence of the concerned victim output transition on
the noisy input transition at its fanin. This is achieved by represent-
ing the worst-case set of aggressors coupled to the fanin of the vic-
tim by an abstract pseudo-noise envelope. A pseudo input noise
envelope is defined as the waveform obtained by subtracting the
noiseless victim transition from the delayed noisy victim transition. 

Using the principle of linear superposition, the delayed victim
transition can be constructed by appropriately superimposing this
pseudo noise envelope with the original noiseless victim transition.
Note that this pseudo noise envelope has a shape that is somewhat
similar to the noise envelope obtained from primary aggressors. It
may so happen that, due to the circuit layout, the nets present in the
topological fanout of a victim net are its primary aggressors. Note
that the delay noise induced by these aggressors can accurately be
modeled by their pseudo input aggressors. Also, even if the delay
noise propagated from victim input exceeds the slew of the victim
transition, superposition would report delay noise accurately. 

Figure 4. Non-monotonicity in aggressor lists for aggressors a1, a2, 
and a3 (Timing windows and noise pulses as shown.)
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3.2  Aggressor Dominance 

During the bottom-up enumeration procedure, in the ith iteration
( ), we have several candidate aggressor sets, that form the listi,
which are potential subsets of the desired set of top-k aggressors. In
a naive implementation the listi can easily blow up. Therefore, it is
important to keep the cardinality of listi under check and this is
achieved by using the notion of dominance. 

• Dominance: For any given victim, if the noise envelope of
aggressor A encapsulates that of any aggressor B, then
aggressor A is said to dominate aggressor B. 

As shown in Figure 6, the noise envelope D dominates the envelope
C, whereas both A nor B are mutually non-dominated. The useful-
ness of dominance follows from the following theorem.

Theorem 1. Consider two possible aggressor sets P and Q with
the same cardinality such that P dominates Q. A higher cardinal-
ity aggressor set obtained by adding any additional aggressor ‘a’
to Q would never couple a greater delay noise on the victim than
that obtained by adding ‘a’ to P. 

Proof: Given P dominates Q, the combined noise envelope of P
must encapsulate that of Q. Now, the combined noise envelope
P ‘a’, obtained by adding the noise envelopes of P and ‘a’, must
at each point in time either encapsulate or be equal to that of the
combined noise envelope Q ‘a’. As the magnitude of noise of
Q ‘a’ is never greater that of P ‘a’, the noisy victim transition
obtained by superimposing Q ’a’ with the noiseless victim transi-
tion will always have a higher (lower) voltage for a rising (falling)
victim transition than P ‘a’. Therefore, the noisy victim t50 of
Q ‘a’ must always be earlier than that of P ‘a’. Consequently,
the delay noise of P ‘a’ is always larger than that of Q ‘a’.  

Consequently, we do not need to propagate dominated aggressor
such as aggressor C (in Figure 6), since we can always replace it
with aggressor D which produces a higher delay noise. This obser-
vation naturally leads to the creation of irredundant lists, defined as:

• Irredundant Lists: If listi be the list of all possible aggres-
sors sets each having cardinality i, then the irredundant list
I-listi is a subset of listi, such that all aggressor sets x I-
listi, are not dominated by any aggressor set y listi.    

In other words, I-listi consists of all sets of non-dominated
aggressors of cardinality i. The fact that the desired top-k aggressors
set is a subset of I-listk, reduces our search space significantly.

 Finally, we show how the dominance property can be applied to
the aggressor noise envelopes. We first identify a time interval
(referred to as the dominance interval) within which a noise enve-
lope has to encapsulate another noise envelope for it to dominate the
other aggressor. The lower bound of the dominance interval is the
t50 of noiseless victim, since a noise envelope that ends before the
t50 will not induce any delay noise. For the other boundary of the
dominance interval, we compute an upper bound on the delay noise
by performing standard noise analysis by assuming all aggressors to

have infinite timing windows. In practice, we find that a large num-
ber of noise envelopes dominate each other within the dominance
interval, thereby significantly reducing the search space. 

3.3  Algorithm to compute the top-k addition aggressors

In this subsection, we explain the algorithm for computing the top-k
aggressors set. The pseudo-code of the proposed algorithm is given
in Figure 9. As discussed earlier, for a desired value of k, the goal of
the algorithm is to iteratively construct an I-listk. The top-k aggres-
sor set is that aggressors set which belongs to I-listk and causes the

maximum delay noise. Now, in the ith iteration of the algorithm, we
compute the corresponding I-listi by operating on the I-listi-1 com-
puted in the previous iteration. Using the concept of pseudo-aggres-
sors and Theorem 1 we can implicitly propagate irredundant lists
through the circuit in topological order. The irredundant list at the
sink node of the circuit gives us the desired I-listi. For ease of
understanding, we explain the steps of algorithm in more detail
using an example (as shown in Figure 7).

In the first iteration we would like to find all non-dominated
aggressors of cardinality one. Figure 7 shows two victim nets v1
and v2, with v1 being the input to the driver of v2. Victim v1 is cou-
pled to four primary aggressors a1-a4 and similarly v2 is coupled to
aggressors b1-b4. Running traditional noise analysis, we obtain the
timing windows and the noise envelopes of all the primary aggres-
sor on each victim net. The partial ordering on the noise envelopes
of the aggressors based on the dominance is also shown in Figure 7,
where aggressor a1 dominates all the other primary aggressors (i.e.
a2, a3, a4) and b1 dominates all primary aggressors (i.e. b2, b3, b4).
Since v1 is a primary input it has no pseudo input aggressors. The
irredundant list of cardinality one (as shown in Figure 8) contains
only one set that contains aggressor {(a1)}. 

 For victim v2, we propagate only aggressor a1 as a pseudo input
aggressor, since it is the only aggressor present in the irredundant
list for v1. If the driver had multiple inputs, we would compute the
top-k aggressors sets for each input independently and finally select
the one which results in the maximum victim output arrival time. In
the example, pseudo input aggressor a1 is not dominated by aggres-
sors b1-b4 and hence, I-list1 for victim v2 includes two aggressor
sets {(a1), (b1)}. 
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Figure 6. Dominance of two aggressor noise envelopes.
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Now, I-list2 can be computed by the explicit enumeration of all
possible pairs of aggressors. However, a more effective approach is
to reuse the information from the previous irredundant list (i.e I-
list1). In the example, both sets (a1, a2) and (a1, a3) are added to
the I-list2 for the victim v1. Using Theorem 1, we can ignore domi-
nated sets such as (a2, a4). 

I-list2 for victim v2 is computed by first adding aggressor b2 to
each aggressor set in I-list1. Next, we add the pseudo input aggres-
sors of cardinality 2. The set of non-dominated aggressors propa-
gated from v1 is {(a1,a2), (a1,a3)}. Thirdly, we account for higher
order aggressors by using a partial ordering of aggressors that have
an order 2 (i.e. whose timing window has increased due to one addi-
tional aggressor). The innate cardinality of such an aggressor is 2
and is denoted as b12. Note that the height of noise envelope of an
order 2 aggressor is the same as its order 1 counterpart. However,
the width of the envelope increases due to its larger timing window.
Using the property of dominance, we find that b12 dominates every
other order 2 aggressor and is added to I-list2. 

Note that at this point, I-list2 for v2 contains 5 entries (see Figure
8). However, some of these entries may dominate each other and
can therefore be reduced further as shows in the right most column
of Figure 8. Similarly, we generate the I-list3 by operating on I-list2.
This procedure is repeated for k iterations. Finally, we choose the I-
listk of the sink node and superpose the noise envelopes from all the
aggressor sets present in I-listk with the latest sink transition wave-
form. The top-k aggressors set is the one which belongs to I-listk of
the sink such that it results in the worst-case delay noise. 

3.4  Top-k aggressors elimination set

In this section, we briefly discuss how the analysis for finding the
top-k aggressors addition set can be easily modified to find the top-k
aggressors elimination set. For the latter, we assume that all aggres-
sors are present in the design and we wish to find the set of k aggres-
sors such that fixing them will reduce the delay noise by a
maximum amount. The key difference in both algorithms is that for
aggressors addition set, we start with noiseless timing windows and
for the aggressors elimination set, we start with noisy timing win-
dows. Therefore, the noise envelopes of the primary aggressors are
expanded since their timing windows contain delay noise. The dom-
inance property remains the same and irredundant lists of aggressor
sets are computed in a similar manner. 

However, while superposing the noise envelope we are trying to
reduce the delay noise in the design. To do this we first define a
total noise envelope as the noise envelope due to all aggressors cou-
pled to the victim net with their largest timing windows, such that it
results in the maximum noise delay in the design. The superposition
of aggressor sets in the irredundant list requires: (1) Subtract the
noise envelope from the total noise envelope, (2) Superpose the
resulting envelope with the noiseless victim transition, and (3)
Select that aggressor set which results in the smallest delay noise.
The overall algorithm functions in the exactly the same manner and
the top-k aggressor set is selected from the I-listk of the sink node.   

4.  RESULTS 
In this section, we show experimental results of the proposed top-k
aggressors addition and elimination algorithm by using a prototype
noise analysis tool implemented in C++. A 0.13mm standard cell
library was used for synthesis and technology mapping. The synthe-
sized designs were placed and routed by using a commercial APR
tool and the distributed RC was extracted by using a commercial
parasitic extraction tool. 

A brute-force method, as explained earlier, was also imple-
mented to verify the proposed algorithm. We ran both the proposed
algorithm and the brute-force algorithm on all circuits and observed
that the enormous complexity of the brute-force method resulted in
its failure to generate the top-k aggressors sets of size greater than 3
in 1800 sec. However, the proposed algorithm was able to generate
sets of size up to 50 with tractable runtimes. As shown in Table 1,
for values of , the top-k aggressors set computed by proposed
algorithm was consistent with brute-force method. It can be
observed that about 2 orders of magnitude runtime speedup was
achieved over the brute-force approach. 

Figure 9. Pseudo-code for the proposed algorithm

p

for (all i < k)

    for each victim net (in topological order)

1.  Create listi containing aggressors sets of cardinality i by add-
ing an additional aggressor to each aggressor set  I-listi-1; 

2. Add pseudo input aggressors of cardinality i to listi; If a gate 
has multiple inputs, select that aggressor which results in the 
latest output arrival time;

3. Add higher order aggressors of cardinality i to listi;

4. Use Theorem 1 and partial ordering on listi to compute I-listi; 

5. Superimpose the noise envelopes of all aggressor sets  I-
listi with the noiseless victim waveform and select the aggres-
sor set that gives the worst-case delay noise; Propagate this 
set as the pseudo-input aggressors for downstream gates. 

return the top-k aggressor set from I-listk of the sink node

⊂

⊂

Figure 10. Aggressor addition vs. aggressor elimination set for 
circuits i1 and i10
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k ckt delay Runtime ckt delay 
(ns.)

runtime

1 .743 0.12 .743 .01
2 .722 9.65 .722 .01
3 .709 621.4 .709 .02
4 - - .703 .06

Table 1. Validation of proposed approach with brute-force enumeration

k 3≤
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In Figure 10 we present the convergence trend of the delay noise
for circuits i1 & i10, while computing both the top-k aggressors
addition and elimination set for different values of k ranging form 1
to 75. The delay and runtime results for both algorithms are shown
in Table 2 (a) and (b). Although the worst-case complexity of the
proposed algorithm is exponential, in practice it can be seen that
due to the efficient pruning of search space, the runtime of the algo-
rithm grows at much smaller rate. In fact, the analysis for top-50
aggressor sets, for all benchmark circuits, completes in less than
100 sec.

5.  CONCLUSION
In this work, we introduced the concept of top-k delay aggressors
for fixing noise violations. The proposed problem is non-trivial and
a naive brute-force implementation leads to impractical runtimes.
Addressing this issue, we proposed the concept of pseudo aggressor
that allows us to propagate possible top-k candidate aggressors in
an organized manner. Furthermore, we proposed the dominance of
noise envelopes which imposes a partial ordering on aggressors and
enables us to efficiently prune the enumeration space. Based on
these concepts we implemented an implicit enumeration algorithm
for identifying the set of top-k aggressors. Experiment results show
that the proposed algorithm achieves a speedup of a couple of
orders of magnitude without compromising accuracy. Future work
includes extension to non-linear driver models and finding a ‘good’
value of k for reasonably fixing noise violations in a design.
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ckt # 
gates

# 
nets

# 
coupling

caps

Circuit Delay (in ns.) Runtime (in s)

all
agg.  5 10 20 30 40 50 no 

agg. 1  5 10 15 20 30 40 50

i1 59 46 232 .546 .521 .513 .489 .465 .456 .453 .452 .01 .01 .02 .03 .15 .49 .79 1.12
i2 222 221 706 .743 .695 .671 .649 .633 .625 .621 .582 .03 .07 .20 .38 .71 1.38 2.47 3.13
i3 132 126 551 .529 .471 .453 .438 .431 .427 .421 .413 .03 .07 .10 .13 .29 .71 1.24 1.93
i4 236 230 1181 .801 .763 .746 .716 .712 .702 .697 .661 .04 .15 .21 .63 1.15 2.47 4.19 7.63
i5 204 138 1835 1.21 1.11 1.09 1.04 1.01 1.00 1.00 .958 .04 .46 .97 2.63 3.42 7.31 13.2 18.7
i6 735 668 7298 1.05 .976 .960 .955 .949 .936 .921 .861 .16 .62 2.27 3.84 4.29 12.5 28.5 42.5
i7 937 870 9605 1.12 1.09 1.06 1.05 1.04 1.04 1.02 .823 .20 .69 4.27 10.2 14.8 25.4 47.2 71.5
i8 1609 1528 10235 1.64 1.61 1.59 1.58 1.57 1.55 1.54 1.47 .24 .72 3.68 6.72 12.5 21.7 42.7 79.3
i9 1018 955 14140 1.84 1.81 1.80 1.78 1.77 1.76 1.75 1.52 .31 .78 3.65 7.36 13.4 26.4 41.8 75.9

i10 3379 3155 18318 3.09 3.05 3.04 3.03 3.03 3.02 3.02 2.71 .41 1.23 5.43 8.76 16.4 34.6 62.8 91.4

ckt # 
gates

# 
nets

# 
coupling

caps

Circuit Delay (in ns.) Runtime (in s)

0  5 10 20 30 40 50 0  5 10 15 20 30 40 50

i1 59 46 232 .452 .466 .480 .499 .520 .527 .534 .01 .01 .01 .02 .06 .32 .65 .89
i2 222 221 706 .582 .604. .636 .667 .696 .711 .726 .01 .05 .15 .21 .48 .81 1.44 1.68
i3 132 126 551 .413 .428 .444 .459 .489 .504 .521 .01 .02 .08 .09 .17 .46 .73 1.12
i4 236 230 1181 .661 .674 .689 .716 .743 .764 .779 .04 .13 .17 .58 .92 1.82 3.64 6.78
i5 204 138 1835 .958 .984 1.01 1.03 1.06 1.08 1.11 .02 .26 .82 1.18 2.52 6.86 13.2 15.4
i6 735 668 7298 .861 .898 .924 .960 .971 1.01 1.03 .09 .72 2.36 2.94 3.57 4.12 26.1 38.4
i7 937 870 9605 .823 .843 .862 .898 .932 .964 .993 .15 .61 4.12 9.09 13.9 19.5 41.8 68.1
i8 1609 1528 10235 1.47 1.50 1.52 1.54 1.57 1.58 1.59 .21 .67 2.37 5.23 9.42 16.3 37.1 66.9
i9 1018 955 14140 1.52 1.56 1.59 1.65 1.71 1.75 1.78 .18 .68 3.17 6.42 12.1 24.9 43.9 75.6

i10 3379 3155 18318 2.71 2.75 2.78 2.85 2.91 2.94 2.96 .46 .78 4.28 6.41 13.8 27.5 55.6 81.5

Table 2. (b). Delay and runtime shown for benchmark circuits for the top-k elimination set of aggressors 

Table 2. (a). Delay and runtime results shown for benchmarks circuits for top-k addition set of aggressors
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