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A Library Compatible Driver Output Model for
On-Chip RLC Transmission Lines

Kanak Agarwal, Dennis Sylvester, and David Blaauw

Abstract—This paper presents a new library-compatible approach to
gate-level timing characterization in the presence of resistive/inductive/ca-
pacitive (RLC) interconnect loads. We show that for a gate driving an RLC
interconnect, the driver-output waveform exhibits inflection points and,
hence, the traditional approach of approximating driver output with a sat-
urated ramp is highly inaccurate. We describe a two-ramp model based
on transmission-line theory that accurately predicts both the 50% delay
and waveform shape (slew rate) at the driver output when inductive effects
are significant. The approach does not rely on piecewise linear Thevenin
voltage sources and is compatible with existing library characterization
methods. Results are compared with SPICE and demonstrate typical er-
rors under 10% for both delay and slew rate. We also propose a new cri-
terion for evaluating the importance of on-chip inductance by comparing
rise time at the driver output with the time of flight.

Index Terms—Inductance, interconnect, timing.

I. INTRODUCTION

With higher clocking frequencies, longer and wider global intercon-
nects and faster signal rise times, on-chip inductive effects have be-
come significant in today’s high-performance deep-submicron designs.
These inductive effects are concerns for signal integrity and overall
interconnect performance and must be accounted for during timing
analysis.

Existing gate-level static timing analyzers break down the path delay
into gate delay and interconnect delay. Gate delays are precharacter-
ized in terms of input transition time and output load capacitance using
detailed circuit simulators such as SPICE. In reality, the gate drives an
RClresistive/inductive/capacitive (RLC) load and, hence, the incompat-
ibility that exists between precharacterized look-up tables and RC/RLC
loads is resolved by finding an effective capacitive load seen by the
gate. This requires synthesizing a reduced order driving point model,
which is then mapped to an “effective capacitance” value. O’Brien and
Savarino [1] synthesized a pi-model for RC loads by matching the first
three moments of the driving point admittance and Pillage er al. [2]
presented an effective capacitance model for this pi-load. It has been
shown that, with the introduction of inductance, the pi model cannot
be synthesized [3]. A ladder-type model is presented in [3] that assures
the realizability of a reduced-order circuit by introducing a realizability
parameter k. However, no physical explanation is given for £ and no
approach is described to map this model to an effective capacitance.

Another issue with inductance is that the driver-output waveform
may be nonmonotonic and frequently exhibits inflection points. Tra-
ditionally, static timing analysis tools compute delay and rise time at
the output of a gate using its precharacterized look-up table. The gate
output is then approximated with a saturated ramp and this ramp is
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used to derive the far end response of the interconnect. While this ap-
proach usually works well for RC lines, it fails for RLC lines because
the output waveform of the driving gate cannot always be well modeled
by a single ramp [4].

In this paper, we develop a methodology to enable the complicated
inductive waveforms at driver output to be modeled by using simple
traditional precharacterized look-up tables. Our approach computes
the effective capacitance for RLC interconnects by using their driving
point admittance moments. The idea of using driving point admittance
moments directly (instead of mapping them to a reduced order pi
model) was introduced in [5]. However, unlike their approach, the
proposed methodology is compatible with existing cell characteri-
zations and does not require modeling of cells with piecewise linear
Thevenin voltage sources. Also, our approach models the driver
output waveform directly as compared with the approach in [5], which
requires a SPICE or PRIMA run (with a piecewise linear Thevenin
voltage and series resistance driving an RLC line) to compute the
driver output response. We also show that, with dominant inductive
effects, a single ramp cannot model the entire driving point waveform
accurately and at least two ramps should be computed to capture both
the delay and slew. It has been shown that with significant resistive
shielding, even RC lines cannot be modeled as single ramps and a gate
resistor model is used to capture its long exponential tail [2]. However,
inductive cases are unique since the output waveform of the driver
exhibits a kink (and sometimes a flat plateau) due to transmission
line effects. This kink, which causes a clear slope change, occurs in
all inductively dominated lines and can be captured by the proposed
two-ramp model based on transmission line theory. We synthesize
this two-ramp waveform by finding two effective capacitances. In the
process, we propose a new criterion for evaluating the importance
of on-chip inductance. Our method compares rise time at the driver
output with the time of flight instead of taking the rise time at the
input to the driver as in [6].

The paper is organized as follows. We begin by reviewing some basic
properties of inductive lines and transmission line theory in the fol-
lowing section. Sections III and IV present our modeling approach to
capture the inductive waveforms at the driver output. Section V sum-
marizes our modeling flow. Section VI shows experimental results and
we conclude in Section VII.

II. DRIVER-OUTPUT WAVEFORM WITH INDUCTANCE

It is known that with significant inductance the driver output wave-
form is no longer smooth as in RC cases and exhibits inflection points.
Fig. 1 shows the driver output waveform of an RLC line driven by a 75X
inverter.! It is clear from the figure that the waveform is not smooth and
shows kinks during the transition.

This behavior can be explained based on reflections in a transmis-
sion line. For fast drivers, transmission line effects become significant
since the rise time of the signal is less than or comparable to the signal’s
time of flight delay [7]. At the source end of the line, the driver resis-
tance and the line impedance divide the input voltage, giving an initial
voltage step. This initial voltage step travels down the line and is re-
flected at the far end of the line. In typical CMOS designs, the receiver
has a small input capacitance that leads to a reflection coefficient of

Here, driver size 75X means the NMOS width in the inverter is 75 times the
minimum width (= 2*L,;, = 0.36 gzm). PMOS is twice as wide as NMOS.
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Fig. 1. Driver-output waveform of a 5-mm RLC line driven by a 75X inverter.
The waveform has three distinct pieces: AB, BC, and C'D. AB is the initial
step, BC' is the plateau, and C'D is the step due to first reflection.

around +1 at the far end [8]. Hence, the forward traveling initial step
is almost completely reflected at the far end. The voltage at the far
end of the line is nearly doubled due to the superposition of the in-
cident initial step and the reflected reverse wave. The reflected wave
returns to the source after two time-of-flight delays and adds to the ini-
tial step at the driver output. If the driver resistance does not match line
impedance, this reverse wave itself can reflect off the source leading
to multiple reflections. If the driver is weak and its output impedance
is high, then multiple reflections are required to take the line to Vpp.
But if the driver resistance is equal to the line impedance, we obtain
an initial half-amplitude step at the source end of the line and only one
reflection is needed to take the line to the switching point. Fig. 2 shows
the reflection phenomena in an ideal lossless transmission line driven
by a step voltage. The figure shows the waveforms for the cases when
the source impedance is less than, equal to, and greater than the line
impedance. The reflection coefficient at the far end of the line is as-
sumed to be +1.

We have seen that, due to transmission line effects, the driver-output
waveform rises to an initial step and then shows a plateau while waiting
for reflections from the far end to return. Once a reflection from the far
end comes back to the driver, the waveform rises to another step due to
this reflection. This pattern of plateaus and steps (due to reflections) is
continued until the waveform has risen fully to the supply voltage. For
example, in Fig. 1, AB represents an initial ramp, BC' is the plateau,
and C'D is the ramp due to the first reflection. Beyond point D, the
plateaus and reflections are not clearly visible because the signal is
near its final value of Vpp.

From the above discussion, it is clear that modeling the driver-output
waveform as a single ramp or even an exponential wave can lead to
large errors in delay and slew prediction at the near as well as far end.
When the wires are driven by strong buffers and inductive effects are
significant, the waveforms exhibit transmission line effects and a better
model of the driver output waveform is necessary for accurate timing
analysis.

III. MODELING DRIVER OUTPUT WAVEFORM

The ratio of the signal rise time to the time of flight delay can be
related to the ratio of the source resistance of the driver to the charac-
teristic impedance of the line [7]. At the driver end, the transmission
line can be modeled as a source resistance in series with the character-
istic line impedance. In this case, we have a simple voltage divider and
the ratio of the source resistance to the line impedance determines the
size of the initial step generated on the line.

If the driver resistance is Rs and the characteristic line impedance
is Zo, the height of the initial step during the transition is given by the
following expression:

ZL' D
o+ Rs

For weak drivers, the driver resistance is much larger than the line
impedance and the rise time is much larger than the time of flight.
This causes reflections to come back to the source end even before
the output has risen to the initial step. Thus, the waveform resembles
an RC line, and transmission line effects are not significant. However,
for fast drivers, the initial step is large and clear kinks and plateaus are
seen in the waveform.

Based on the transmission line theory above, nonmonotonic driver-
output waveforms should ideally be modeled as multipiecewise linear
waveforms to capture plateaus and multiple reflections. However, it is
shown in [7] that reflections and other transmission line phenomena
become important only when the source impedance of the driver is less
than or comparable to the characteristic line impedance. This causes
the initial step to be greater than 50% of Vpp. In such cases, modeling
of just the first reflection is sufficient since plateaus and ramps due to
later reflections are not visible in the driver-output waveform. In order
to model just one reflection, the driver output can seemingly be rep-
resented as a three-piece linear waveform. The three pieces would be
used to model the initial ramp, the plateau, and the ramp due to the first
reflection. For example, in Fig. 1, the three ramps will correspond to
the AB, BC, and C'D portions of the waveform. However, we point
out that the plateau often spreads out so it is almost unnoticeable. Fur-
thermore, even when it is prominent it can be modeled along with the
first reflection (C'D in Fig. 1) as a single ramp with little loss of ac-
curacy. Hence, we do not require an extra piece for the plateau and
the driver output can be modeled sufficiently by two ramps. The first
ramp is used, therefore, to model the initial step and the second ramp
is used to model the remaining part of the transition. Though modeling
inductive waveforms with three or more pieces can fit the waveform
better, the two-ramp approach provides greater simplicity with compa-
rable accuracy. As mentioned earlier, in cases with weak drivers and
insignificant inductive effects, a single ramp may be sufficient for the
entire transition.

A transmission line can have overshoots at the near end and, in this
case, a simple two-ramp approximation of the driver-output waveform
is inaccurate. However, for all practical very large scale integration ap-
plications that we examined, we found that these near-end overshoots
are normally negligible and the simple two-ramp approximation is suf-
ficient. Fig. 3 shows near and far-end waveforms of a 4-mm-long and
1.6-pm-wide line driven by a 250X inverter (a large driver is chosen to
maximize near-end overshoot). In this case, the source resistance of the
driver was only 19.2 €2 compared to the characteristic line impedance
of 69 Q. Even in this scenario, the near-end overshoot is only 2.85% of
Vpp compared to 27.2% overshoot observed at the far end of the line.

Some important considerations in two-ramp modeling are to deter-
mine the slopes of each ramp and find the breakpoint during the transi-
tion. The breakpoint, defined as the point at which the first ramp (ini-
tial step) ends and the second ramp starts, can be calculated using (1).
The slopes of the two ramps can be found using an effective capaci-
tance-based approach discussed later in this paper.

Using the two-ramp approach, the driver output can be modeled as
shown in Fig. 4. The slope of the first ramp is (Vpp /T+1 ) and the slope
of the second ramp is (Vpp /Tr2). The two-ramp expression is given
by

Height of initial step = Vi ™ f, where f =

. . t
V(t)=Vop— 0<t < fh
T

, . t
V(t) :VT)T)Tﬁ +kfVon  fT <t<fTa4+(1=f)T

where k= (1 _ T ) )

Tr 2
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Fig. 2. Reflections in a lossless transmission line for various R and Z, combinations. Three different values of source resistance are considered. Z is the
characteristic impedance of the line, t¢ is the time-of-flight, and I's and I'y, are the reflection coefficients at source-end and far end of the line respectively. I'y, is

assumed to be +1.
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Fig. 3. Near and far-end response of a 4-mm line driven by 250X inverter.
Source resistance of the driver (19.2 €2) is significantly lower compared to the
characteristic impedance of the line (69 €2). Still, overshoot at near-end of the
line is almost negligible.

Voltage
L S
A H
i :
i i
fo !
’ :
Zy ‘ ' !
Pz 4R, - i :
e : i
- i I

H [ v+ Time
H *---tl-p! :
E T, E
v‘. ....................................... ’

Fig. 4. Simplified two-ramp model of driver-output waveform. Slope of the
first ramp is (Vpp/T.1), slope of the second ramp is (Vpp/T,2), and the
breakpoint is Vpp (Zo/(Zo + R.)).

We use the above driver-output model in this paper. Our modeling
approach is summarized below. The details are discussed in the fol-
lowing sections.

* Find breakpoint using (1).

» Find two effective capacitances (the first effective capacitance
models the ramp due to the initial step and the second effective
capacitance models the ramp due to the first reflection).

* Model plateau and fit a ramp that captures both the plateau and
first reflection.

* Model driver output with two ramps.

Replace the driver with a voltage source consisting of two ramps
and compute the far-end response of the interconnect.

The above flow is compatible with existing precharacterized cell ta-
bles that store only 50% delay and output transition time for each input
slew and output capacitive load. Our model uses only this information
and obtains the double-ramp waveform at the driver output. As men-
tioned in the modeling flow above, we compute two effective capaci-
tances to model driver output. For each effective capacitance, we use
the precharacterized look-up table to compute output slew. The slew
corresponding to the first effective capacitance gives the slope of the
first ramp and the slew corresponding to the second effective capaci-
tance (along with plateau) gives the slope of the second ramp. Thus,
the two-ramp waveform can be computed without changing the ex-
isting cell characterization procedure. It may seem that the above ap-
proach would require cell characterization to be changed to consider
two-ramp input waveforms. However, this is not required because the
far-end waveforms that are propagated to the next stage can be mod-
eled by a single ramp (as seen in Fig. 2).

IV. EFFECTIVE CAPACITANCE(S)

In this section, we show how the two effective capacitances can be
calculated to model the driver-output waveform. The underlying prin-
ciple of our effective capacitance methodology is similar to the ap-
proach described in [2]. We calculate effective capacitance by equating
the charge transfer required by a single capacitance to that required by
the original RLC load. It was shown in [2] that equating the charge up
to the 50% point captures delay accurately, but fails in modeling the tail
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Fig.5. Driver-output response and C.¢r approximations obtained by equating
charge up to 50% point and over entire transition.

portion of the transition. We have observed that in RLC loads with dom-
inant inductive effects, we regularly see a flattened second half (long
tail). Thus, integrating up to the 50% point is always inaccurate as it
gives unacceptably large errors in slew (although it may model delay
well). Also, equating the charge over the entire region of the transition
will not address this problem, since this approach yields an average
curve, where both the delay and slew may be inaccurate. Fig. 5 shows
that equating charge up to the 50% or 100% point can cause signifi-
cant errors in modeling driver-output waveforms. The equations used
to calculate the effective capacitance in this figure are derived later in
this section.

This leads to the conclusion that a single effective capacitance
cannot accurately model the entire transition. The key idea of our
approach is to model the driver-output as a two-ramp waveform as
described in Section III. We then find two effective capacitances,
where the first effective capacitance models the first ramp and is
obtained by equating average charge during the transition of the first
ramp. The second effective capacitance models the second ramp and
is calculated by equating average charge during the interval when the
second ramp is in transition.

The driving point RLC interconnect is modeled using a reduced-
order approximation, obtained from matching the moments of the input
admittance of the interconnect. We model the driving-point admittance
by the following rational function:
a1s + a252 =+ a353

Y & =
(S) 1—|—b1s—l—b252

3

The above expression is similar to the admittance of an RLC II load.
The coefficients in (3) can be obtained by matching the first five mo-
ments of the driving point admittance [13].

A. Cey Calculation
For the first ramp of the two-ramp waveform described in (2)

_ Voo 1
- T,«l 82-

V(s)

C))
The current delivered to the interconnect is given by

7 2 3
I(s)= V(s)¥(s) = 22 1 (L) )

T,vl 82 1+b18+b25‘2

We need to consider the cases of real and imaginary poles. Let us first
assume that the roots of 5% + (b1 /b2)s 4+ (1/b2) = 0 are real. Let the
roots be s; and s2. Using the inverse Laplace transform, we obtain

Wi
m):%(m +

2
ay +a281+a381()31f
b251(81—82) i

a1 +azsa+assy o0
bzb’z(Sz—Sl) ’ >
(0)
We define Ceg1 to be the capacitance that requires the same charge
transfer as that required by the RLC moments during the interval when
the first ramp is in transition. From Fig. 4, we know that the first ramp
is transitioning from ¢ = 0 to ¢t = f - 1}.;, where f is calculated using
(1). Charge transferred to the moments can be calculated by integrating
I(t) fromOto f-T+1. Also, the charge transfer associated with charging
the effective capacitance for this interval is given by Cer1 - f - VoD

fTr
/ I(t)dt = Cogs fVor. )
0

Solving the above equation for Ce;

2
a ass ass Tt
Comr = ay + 4 + a2s1 + as 1) (esllrlj _ 1)

bt £ ()
T1 s} (s = 51) |

®)

Now, let us assume that the roots of 5% + (b1 /b2)s + (1/b2) = 0 are
imaginary. Let the roots be o + j/3 and o — j3

I(t) = ‘1]_)]1) <a1 + et cos Bt <Z—: — a‘l)

+e“! sin Bt w . )
b2 3
By equating the charge in a similar way as done for the real roots case,
we have
{ FTr1
Cor = a1 + m <Z—: — (1,1) / (et cos At)dt
fTr

(10)

arbaa 4+ as + aza at .
+|\— e™ sin Bt)dt
< b3 ) / ( )

0

where

e™ (o cos Bt + B sin Bt)
a? 4 32

e (arsin Bt — 3 cos ()
a? 4+ 32

/((zm cos Jt)dt =

/(em sin Jt)dt =

Cefr1 can be obtained by iterating on Ty . We start with an initial guess
of Ces1 equal to the total capacitance and iteratively improve the ef-
fective capacitance until the value converges. T, at each step can be
obtained from precharacterized cell information and the T, corre-
sponding to the final Ceq is used to model the first ramp. We now
turn to the derivation of expressions for Cego to complete the two-ramp
driving point waveform model.

B. Cur2 Calculation
For the second part of the two-ramp waveform described in (2)
. +v_ Voo 1 | kfVbp
V = —
(S) 117‘2 32 P
We define Ceg2 to be the capacitance that requires the same charge
transfer as that required by RLC moments during the interval when the

second ramp is in transition. Using Fig. 4, the second ramp is transi-
tioning fromt = f - Try tot = f-Tr1 4+ (1 — f) - Tro. The charge

. (11)



132 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

transfer to charge the effective capacitance for this interval is given by
Cesr2 * (1 - f) - Voo
FTra+(1=F)Tr2
I(t)dt = Cetr2(1 — f)VbDD. (12)
IT
By using a similar approach as for C.g1 and considering the case of real
and imaginary roots separately, we have the following. For real roots
Cotro = a7 + Acm.frﬂ (cv*1(1—,f)Tr2 _ 1)
+ Bes2dTr (652(1—f)Tr2 _ 1)

(a1 + azs1 + assi) (kfs1Tr2 + 1)

A= .
(1= f)basi(s1 — s2)Tra
B ((11 + 02-‘?2‘-1- ('r;sjg) (Efs2Tro + 1). (13)
(1 - f)ngZ(SQ - Sl)Trz
For imaginary roots
FTra+(1=F)Tr2
Cotio = a1 + A (e cos pt)dt
FTm
fTri+1—f)Tr2
+ B (e cos ft)dt
fTr
4= 1 as —arby  kf(2aza + as)
T (-5 b2 1o Do
B= 1 arbsav + as + aza
(1= b2 3T,
+kf(¢11 +a2ab+;l,3a2 —(13/32)> a4
2/

Cefro is obtained by iterating on Ty with an initial guess of Cemo
equal to the total capacitance. Typically 3—4 iterations are required for
each effective capacitance calculation. The final value of T,z corre-
sponding to the converged Cer2 is then used to model the second ramp.

One of the issues involved in using existing gate-characterization
techniques to calculate C.g2 is that gates are normally characterized
for delay and rise time assuming the input signal starts rising from
zero at time zero. In our approach, Ceg is evaluated for a region of
time in which the input ramp has already reached a value greater than
0 V (a similar argument applies for falling input transitions). Also,
when the load changes from C.1 to Cegrz, the internal nodes in the
driver are already charged to some value. Hence, it seems that using
a standard characterization approach could cause errors in Cez com-
putation. However, our studies found this difference to be very minor
(<1% error) and Ceg. iterations can be performed using precharacter-
ized look-up tables without loss of accuracy.

As described in Section III, the complete modeling of the driver
output requires capturing the plateau along with the initial ramp and
the first reflection. We account for the plateau by modifying T',» such
that the resulting ramp fits both the plateau and the first reflection. The
plateau is difficult to represent because it is not flat and, hence, an in-
tuitive approach of modeling the driver output by a linear ramp, a flat
step, and then another ramp, is often inaccurate. We incorporate the ef-
fect of a plateau by modifying the second ramp as shown in Fig. 6. The
point where the second ramp meets V) is shifted by the plateau time
and a new ramp is fitted as shown in the figure. The new T, can be
obtained by

Qtf — T

- o

Tr?_new = 1ir2

] S S
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Fig. 6. Summary of the proposed two-ramp approach. The first ramp is
modeled by Cege1 and the second ramp is modeled by first finding a ramp due
to Cegr2 and then shifting it by the plateau time.

In this equation, t¢ is the time of flight and 2tf — T is the duration
of the plateau. The idea behind this approach is that there is no charge
transfer during the plateau time (2tf — T+ ). Hence, when we calculate
Cem2 by equating the charge during the second portion of transition,
we consider charge transfer after the plateau, but we fail to capture the
delay due to the plateau effect. One solution to account for the plateau
is to have a flat step for time 2t¢ — T, between the two ramps. Another
solution is to modify T2 as in (15), where plateau delay is accounted
for by shifting the second ramp by the plateau time. The first solution
is more accurate when a clear flat plateau exists and the second solu-
tion works better when the plateau is not flat and smears out such that it
is almost unnoticeable. Experimentally, we have found that the second
case occurs more often than the flat case in practice and hence modi-
fying T'.» using (15) works better for most cases.

V. MODELING FLOW

The two-ramp modeling of the driver-output waveform requires
finding the breakpoint (1) and computing two effective capacitances,
one for each portion of transition. Ty (Ceq1) gives the slope of the
initial ramp and Ty _new(Cerrz) gives the slope of the transition
after the reflection has come back to the output of the driver. In
order to model the breakpoint, we need to find the on-resistance Rq
of the driver and the characteristic impedance Zy of the line. We
use a simple approximation of Zg = +/L/C in our calculations.
On-resistance of the driver is modeled using a similar approach as in
Thevenin-based models [10]. We observe the delay between 50% and
90% points of the output waveform and fit an exponential between
these points. The on-resistance calculated in this way depends on the
load capacitance. We use total capacitance of the line to compute
on-resistance. Ideally, one should find an effective capacitance and
then calculate on-resistance of the driver for this value of the load
capacitance. However, we have seen that the resistance value and,
more importantly, the breakpoint do not change significantly by using
total capacitance instead of the effective capacitance. Since using the
effective capacitance makes this an iterative process, we use the total
capacitance to find driver on-resistance in our flow.

In order to validate the approximation used in on-resistance calcu-
lation, we considered a 4-mm-long and 1.6-pm-wide line (R = 58 €2,
L = 4.12 nH, and C = 884 fF). This line was driven by an inverter
whose size was swept from 75 to 250X. The characteristic impedance
of the line was 69 2. For each driver size, we calculated on-resistance
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TABLE 1
COMPARING CALCULATED AND MEASURED TRANSITION
BREAKPOINTS FOR A 4-mm LINE DRIVEN BY
DIFFERENT DRIVER SIZES. LINE IMPEDANCE IS 69 2

Driver Size Calculat.ed driver Calculat.ed Measur?d

on-resistance breakpoint |breakpoint
75X 58Q 0.54 0.52
100X 44Q 0.61 0.62
125X 36Q 0.66 0.67
150X 30Q 0.7 0.72
175X 26Q 0.73 0.76
200X 23Q 0.75 0.78
225X 21Q 0.77 0.81
250X 19Q 0.78 0.82

of the driver and used this value to calculate the breakpoint during tran-
sition. The calculated breakpoint was compared to the value measured
from HSPICE simulations. Table I shows this comparison. This table
shows that the calculated breakpoint is close to the measured value and,
hence, the approximation of using total capacitance to calculate Ry is
acceptable.

When the inductive effects are insignificant, the driver-output wave-
form looks like an RC waveform. In this case, one effective capacitance
is sufficient to model the entire transition accurately. This effective ca-
pacitance can be calculated by equating the charge over the entire re-
gion of transition. We have already derived equations to calculate Cef1 ;
the same equations can be used with f = 1 to calculate this single ef-
fective capacitance. Usually, a single ramp obtained by this capacitance
can model such waveforms very well but if there is significant resistive
shielding, the gate resistor model [2] can be used to model the expo-
nential tail of the transition.

We use the following criteria from [6] and [11] to determine the sig-
nificance of inductive effects:

Cr Ll
RI <27,
R, < Zy

T, <2ty. (16)

Here, R and C' are line resistance and capacitance per unit length, /
is line length, Cf, is load capacitance (contributed by fanout input ca-
pacitance), T is the rise time at the output of the driver, and t; is the
time of flight. If the above criteria are satisfied, then inductive effects
are significant and we use the two-ramp modeling approach. Other-
wise, a single effective capacitance is used to model the driving point
waveform.

The criteria in (16) are identical to those in [11], but with an addi-
tional condition that compares rise time with the time of flight. This
condition is important for screening short lines. These lines rarely ex-
hibit inductive behavior since their time of flight is normally smaller
than their transition time. The authors of [6] consider this by comparing
rise time at the input of the driver with the time of flight. However, in-
ductive effects are fairly insensitive to the input transition times and
strongly dependent on the driver’s output transition time [12]. Hence,
we use output transition times in (16). This is complicated by induc-
tive effects, however, as the driver output waveform rises sharply to
a certain level and then flattens before meeting the reflections. When
comparing the rise time with the time of flight, it is the initial ramp that
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Driver 100x, Input Slew=100 ps
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¢ 100 200 300 400
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Fig. 7. Two-ramp driver output response and two-ramp with flat plateau
response compared to HSPICE for a 5-mm line driven by 100X driver.

is important. We compute this initial ramp (T,1) using Ces: iterations
and apply it to the inductance criteria.

The outline for the overall modeling flow is as follows. Given the
line parasitics (R, L, (') and the characterized output delay table for
the driver, perform these steps for timing analysis.

1) Find driving point admittance moments and compute a1, as,
as, b1 N and bQ.
2) Find driver on-resistance (R.) and compute breakpoint ( f)
using (1).
3) Perform C.g; iterations using (8) or (10) and compute T\ .
4) Check inductance criteria using (16).
If inductance is significant:
* perform Ceg. iterations using (13) or (14) and
compute T',2;
e modify T2 ,2_new using (15);
e use Tri, Ti2_new and breakpoint to model the
driver output as a two-ramp waveform.
If inductance is not significant:
* perform C.g iterations using (8) or (10) with
f = 1 and compute T,;
* model the output as a single ramp. If there is sig-
nificant resistive shielding, then model an expo-
nential tail using the approach of [2].
5) Convolve driver output waveform with interconnect transfer
function and compute far-end response.

VI. EXPERIMENTAL RESULTS

We tested the new two-ramp approach for varying line lengths,
widths, and driver sizes. All experiments were performed using
a commercial 1.8-V, 0.18-pm CMOS technology. Line parasitics
were extracted using the commercial extraction tool Raphael. A
two-dimensional power grid of 50-um pitch and 5-p2m linewidth was
used for inductance extraction.

First, we compare the driving point waveforms obtained by our
model with HSPICE simulations. Figs. 7 and 8 show two such compar-
isons for RLC lines driven by inverters. The inputs to the inverters are
ramp signals having 100-ps and 75-ps transition times, respectively. It
is clear from the figures that the two-ramp model captures the overall
shape of the driver output waveform (including the breakpoint and
key delay points) very accurately. These examples also show that,
even when the plateau is clearly visible in SPICE waveforms, the



134 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

1.8
1.54
o~ 1.2 - ——HSPICE
% — — 2 Ramp Model
D 094
=
[<]
>
0.6 -
Line length = 3 mm, Width = 1.2 um
0.3 4 (R=56.3 ohms, L=3.2 nH, C=597 fF)
Driver 75x, Input Slew=75 ps
0.0 T T T T T 1
0 50 100 150 200 250 300
Time (ps)
Fig. 8. Two-ramp driver output response compared to HSPICE for a 3-mm

line driven by 75X driver.
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Fig.9. One-ramp driver output response compared to HSPICE for a 4-mm line
driven by 25X driver.

assumption of modeling plateau and reflection together with one ramp
is effective. Fig. 7 also shows the model where the plateau is captured
with a flat step. It is clear from the figure that modeling the plateau as a
flat step is significantly less accurate than the simple two-ramp model.

Next, we compare the waveforms of a 4-mm line driven by a 25X
inverter (Fig. 9). In this case, driver resistance was much higher than
the line impedance. The inductance criteria (16) were not satisfied and
a single Coi model was used. We see that a single ramp is sufficient to
model the entire transition in this case. This result is useful because it
shows that transmission line effects are significant only when lines are
driven by strong drivers and that two-ramp model should be used only
when inductive effects are dominant.

We also observed the far-end waveforms by applying the modeled
two-ramp input waveform to an RLC line within HSPICE. These wave-
forms were compared with the actual far-end response. Fig. 10 shows
one such comparison for a 4-mm line driven by 75X driver. The figure
shows that the far-end response derived using the two-ramp model
matches very well with SPICE, validating the two-ramp assumption
at the near end.?2 The figure also shows that the plateau and the reflec-
tions are visible only in near-end waveforms. The far-end waveforms

2The far-end waveforms from the model show higher overshoot due to the
ramp approximation at the near-end.
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Fig. 10. Two-ramp driver output response and corresponding far-end response
compared to HSPICE for a 4-mm line driven by 75X driver.

do not show these effects and can be modeled by one ramp. This obser-
vation ensures that the two-ramp modeling of the near-end waveform
does not require characterizing drivers for two-ramp inputs. Hence, our
approach remains compatible with existing cell characterization.

We tested the new model by sweeping line lengths from 1 to 7 mm
and linewidths from 0.8 to 3.5 pm. Driver strengths were also swept
from 25 to 125X. Input transition was varied from 50 to 200 ps. The
two-ramp model results were compared to HSPICE and one-ramp as-
sumptions. For one-ramp modeling, we considered both possibilities:
when the ramp is obtained by equating charge transfer till 50% of the
transition and also when it is obtained by equating charge over entire
transition (as shown in Fig. 5). For the target 0.18-pm technology, we
found inductive effects to be particularly significant in long (>3 mm)
and wider wires (> 1.6 zm) driven by fast inverters (75X and larger).
When inductive effects were dominant, the single ramp assumptions
were highly inaccurate and the two-ramp model provided good results.
The two-ramp model results for the 165 inductive cases we tested are
shown in Fig. 11. The average error in delay was 6% and the average
error in the slew rates was 11%. For delay, 48% of the cases had less
than 5% error and 83% of the cases had less than 10% error. For slew
rate, 31% of the cases showed less than 5% error and 61% of the cases
showed less than 10% error.

Table II shows more complete results for a representative set of cases
with significant inductive effects. HSPICE delay and slew numbers are
compared with the single ramp and two-ramp modeling results. It is
clear from the table that increasing linewidths lead to more significant
inductive effects and the delay values from one-ramp assumptions be-
come more inaccurate. The delay values for the one-ramp model based
on equating the charge until the 50% switching point are much better
than those obtained by the one-ramp model when equating charge over
the entire transition. However, as discussed in Section IV and shown in
Fig. 5, the slew values with 0-50% one-ramp model are much worse
than the 0-100% one-ramp model. In addition, the 50% delay esti-
mates for the two-ramp model are typically superior to those using the
standard one-ramp C.s methodology (0-50%). In general, the slew
predictions using one-ramp modeling approaches exhibit substantial
error, since they cannot capture the long tail of the inductive wave-
form. We also note that the extended model of [2], which captures RC
tails due to resistive shielding, cannot be applied to inductive cases as
it is RC-based and does not comprehend the nature of the tail in the in-
ductive response. The results in Table II both demonstrate the accuracy
of the two-ramp approach and confirm that the traditional approach of
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Fig. 11. 50% delay and 10%-90% slew obtained with two-ramp model compared to HSPICE for 165 inductive cases.
TABLE 1II
HSPICE, ONE-RAMP, AND TWO-RAMP MODEL COMPARISON RESULTS
Input Delay (ps) Slew (ps)
Len/Wid| Line Parasitics |Driver Slew 2 ram 1ramp | 1 ramp 2 ram 1ramp | 1 ramp
mm/p  |R(Q)/LmH)/C(pF)| Size SPICE| ; "*™P | 0-100% | 0-50% |SPICE| > "*™P |0-100% | 0-50%
(Ps) (Yoerror) (%error)|(%error) (Yoerror) (Y%error)|(%error)
242 413 233 129.9 61.5 27.8
3/0.8 81.8/3.3/0.52 75x | 50 |[25.01 (32%) | (65.1%) | (-6.8%) 124.1 (4.6%) |(-50.4%) | (-77.5%)
25.6 56.3 249 141.1 91.8 304
3/1.2 56.3/3.2/0.59 75x | 50 | 26.44 (3.1%) |(112.9%)| (-5.7%) 128.9 9.4%) | (:28.7%) | (-76.4%)
29.9 66.1 26.3 148.8 112.1 329
3/1.6 43.5/3.1/0.66 75x | 50 | 32.15 (-6.9%) |(105.5%)] (-18.1%) 135.4 9.8%) | (-17.2%) | (-75.6%)
25.7 39.1 249 163.1 57.3 304
4/0.8 108.9/4.4/0.7 75x | 50 |25.02 2.7%) | (56.2%) | (:0.5%) 157.3 (3.6%) | (-63.5%) | (-80.7%)
27.7 59.1 26.8 179.0 97.6 339
4/1.2 75/4.2/0.8 75x | 50 | 26.51 4.4%) |(122.9%)| (1.24%) 164.4 (8.8%) | (-40.6%) | (-79.3%)
30.2 74.9 28.6 196.0 130.5 37.1
4/1.6 58/4.1/0.88 75x | 50 | 32.69 (7.6%) |(129.19%)| (-12.5%) 175.0 (12.0%) | (-25.3%) | (-78.8%)
35.6 46.4 335 173.7 60.0 42.0
5/1.2 93.7/5.3/1 100x | 100 | 36.43 (22%) | 27.3%) | (:8.1%) 192.8 (:9.9%) | (-68.8%) | (-78.2%)
37.7 53.0 35.6 204.0 71.8 44.5
5/1.6 72.4/5.1/1.11 100x | 100 | 39.56 -47%) | 33.9%) | (:9.9%) 200.3 (1.8%) | (-64.1%) | (-77.7%)
39.5 63.1 37.7 226.3 90.9 47.0
5/2.0 59.7/5/1.22 100x | 100 | 42.53 (7.1%) | (483%) | (-11.4%) 207.6 (9.0%) | (-56.2%) | (-77.3%)
424 78.2 394 231.8 121.1 493
5/2.5 49.5/4.8/1.31 100x | 100 | 45.26 (63%) | (72.7%) | (-13.0%) 212.2 9.2%) | (-42.9%) | (-76.7%)
37.0 46.5 349 203.7 60.1 43.7
6/1.2 112.4/6.3/1.19 100x | 100 | 36.44 (1.5%) | 27.6%) | (-4.2%) 222.7 (8.5%) | (-73.0%) | (-80.4%)
39.3 52.4 37.4 235.5 70.7 46.8
6/1.6 86.9/6.2/1.33 100x | 100 | 39.58 -0.7%) | (32.3%) | (-5.4%) 232.0 (1.5%) | (-69.5%) | (-79.8%)
414 60.8 39.7 254.7 86.4 49.8
6/2.0 71.6/6/1.46 100x | 100 | 42.55 2.7%) | 42.8%) | (:6.6%) 240.9 (5.7%) | (-64.1%) | (-79.3%)
45.9 75.1 41.7 276.9 114.2 52.6
6/2.5 59.3/5.8/1.58 100x | 100 | 45.29 (1.3%) | (65.9%) | (-8.0%) 246.3 (12.4%) | (-53.6%) | (-78.6%)
47.8 101.4 44.8 299.1 168.4 57.3
6/3.0 51.2/5.6/1.80 100x | 100 | 49.41 (-32%) |(105.2%)| (:9.3%) 261.7 (14.2%) | (:35.6%) | (-78.1%)

modeling driver output with one ramp is highly inaccurate in inductive
interconnects.

VII. CONCLUSION

In this paper, we presented a new approach to model the driving point
waveform in the presence of RLC interconnect loads. We showed that
when transmission line effects are significant in RLC interconnects,
driver output waveforms are nonsmooth and they exhibit inflection
points during transition. We developed a two-ramp model to accurately
capture these inductive effects. Our approach is based on the theory
of reflections in transmission lines and is compatible with existing
precharacterized cell delay tables. We tested this model on a variety
of test cases and showed that it accurately predicts delay and slew at
the driver output when inductive effects are significant. We also showed

that a one-ramp assumption may be sufficient for RC and weakly in-
ductive lines, but becomes highly inaccurate for inductively dominated
interconnects. In such cases, the two-ramp modeling approach provides
delay and slew estimates that are within 6% and 11% of SPICE on av-
erage, respectively.
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