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Abstract—Static-timing analysis (STA) has been one of the most
pervasive and successful analysis engines in the design of digital
circuits for the last 20 years. However, in recent years, the in-
creased loss of predictability in semiconductor devices has raised
concern over the ability of STA to effectively model statistical
variations. This has resulted in extensive research in the so-called
statistical STA (SSTA), which marks a significant departure from
the traditional STA framework. In this paper, we review the recent
developments in SSTA. We first discuss its underlying models
and assumptions, then survey the major approaches, and close by
discussing its remaining key challenges.

Index Terms—Algorithm, circuit, performance, process varia-
tions, timing analysis.

1. INTRODUCTION

INCE the early 1990s, static-timing analysis (STA) has

been a widely adopted tool for all facets of very-large-
scale-integration chip design. STA is not only the universal
timing sign-off tool but also lies at the heart of numerous
timing optimization tools. The main advantage of STA over
vector-based timing simulation is that it does not rely on input
vectors, which can be difficult to construct and can easily
miss an obscure performance-limiting path in the circuit. The
widespread use of STA can be attributed to several factors:
1) The basic STA algorithm is linear in runtime with circuit size,
allowing analysis of designs in excess of 10 million instances;'
2) the basic STA analysis is conservative in the sense that it
will overestimate the delay of long paths in the circuit and
underestimate the delay of short paths in the circuit. This makes
the analysis “safe,” guaranteeing that the design will function
at least as fast as predicted and will not suffer from hold-time
violations; 3) the STA algorithms have become fairly mature,
addressing critical timing issues such as interconnect analysis,
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'As discussed in Section III, the propagation of arrival times through
the combinational portion of a circuit using the critical-path-method (CPM)
algorithm has a runtime that is linear with circuit size. However, industrial STA
tools often include methods for common-path removal in the clocking network
and for false-path elimination. These methods have a higher runtime complexity
than the simple CPM algorithm.

accurate delay modeling, false or multicycle paths, etc; and
4) delay characterization for cell libraries is clearly defined,
forms an effective interface between the foundry and the design
team, and is readily available.

Traditional STA tools are deterministic and compute the
circuit delay for a specific process condition. Hence, all pa-
rameters that impact the delay of a circuit, such as device
gate length and oxide thickness, as well as operating voltage
and temperature, are assumed to be fixed and are uniformly
applied to all the devices in the design. In this paper, we refer
to traditional deterministic STA as DSTA. In DSTA, process
variation is modeled by running the analysis multiple times,
each at a different process condition. For each process condition
a so-called corner file is created that specifies the delay of
the gates at that process condition. By analyzing a sufficient
number of process conditions the delay of the circuit under
process variation can be bounded.

The fundamental weakness of DSTA is that while global
shifts in the process (referred to as die-to-die variations) can
be approximated by creating multiple corner files, there is no
statistically rigorous method for modeling variations across
a die (referred to as within-die variations).> However, with
process scaling progressing well into the nanometer regime,
process variations have become significantly more pronounced
and within-die variations have become a non-negligible com-
ponent of the total variation. We will show later in this paper
that the inability of DSTA to model within-die variation can
result in either an over- or underestimate of the circuit delay,
depending on the circuit topology. Hence, DSTA’s desirable
property of being conservative may no longer hold for certain
circuit topologies while, at the same time, DSTA may be overly
pessimistic for other circuit topologies. The accuracy of DSTA
in advanced processes is therefore a serious concern.

In addition to the growing importance of within-die process
variations, the total number of process parameters that exhibit
significant variation has also increased [1]. Hence, even the

2While the deterministic model of gate delay as used in DSTA excludes
a statistical treatment of across-die variation, industry tools have over time
developed a number of methods to approximate the impact of such variations.
A common method is to use a predetermined delay scaling factor for all circuit
elements (delay is increased for long-path analysis and is decreased for short-
path analysis). However, if the scaling factor is set to the worst-case within-die
variation, the analysis becomes exceedingly pessimistic. On the other hand,
lesser values cannot be proved to be conservative, negating one of the major
advantages of DSTA.
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modeling of only die-to-die variations in DSTA now requires
an untenable number of corner files. For instance, in addition to
device parameters, interconnect parameters must be considered,
and which combination of interconnect and device parameters
results in the worst-case (or best-case) delay often depends on
the circuit structure. In an attempt to capture the worst-case die-
to-die variation for all cases, the number of corner files used in
industry has risen sharply. It is now common to use more than
a dozen corner files [2], whereas the number can even exceed
100, thereby increasing the effective runtime of DSTA by one
order of magnitude or more.

The need for an effective modeling of process variations
in timing analysis has led to extensive research in statistical
STA. Some of the initial research works date back to the very
introduction of timing analysis in the 1960s [3] as well as the
early 1990s [4], [5]. However, the vast majority of research
works on SSTA date from the last five years, with well over
a hundred papers published in this research field since 2001.
In this paper, we give a brief review of the different issues and
approaches to SSTA. In Section II, we examine the different
sources of uncertainty and their impact on circuit performance.
In Section III, we present the formulation of the SSTA problem
and discuss its key challenges and approaches. In Section IV,
we discuss the so-called “block-based” approaches in more
detail and present their strengths and weaknesses. Section V
discusses the remaining key issues that must be addressed to
bring SSTA to a level of maturity that approaches that of the
DSTA today. We conclude this review paper in Section VI.

II. SOURCES OF TIMING VARIATION

In this section, we discuss the key sources of variation in
timing prediction, that make timing analysis a challenging task
for nanoscale digital circuits. We first discuss different types of
uncertainties that arise as a design moves from specification to
implementation and final operation in the field. We then focus
on process variations in more detail and discuss the distinction
between die-to-die and within-die variations and the source of
so-called spatial correlations. Finally, we discuss the impact of
different types of process variations on the timing of a circuit.

A. Process, Environmental, and Model Uncertainties

The uncertainty in the timing estimate of a design can be

classified into three main categories:

1) modeling and analysis errors—inaccuracy in device mod-
els, in extraction and reduction of interconnect parasitics,
and in timing-analysis algorithms;

2) manufacturing variations—uncertainty in the parameters
of fabricated devices and interconnects from die to die
and within a particular die;

3) operating context variations—uncertainty in the operat-
ing environment of a particular device during its lifetime,
such as temperature, supply voltage, mode of operation,
and lifetime wear-out.

To illustrate each of these uncertainties, consider the stages

of design, from initial specification to final operation, as shown
in Fig. 1. The design process starts with a broad specification
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Fig. 1. Steps of the design process and their resulting timing uncertainties.

of the design and then goes through several implementation
steps, such as logic synthesis, buffer insertion, and place and
route. At each step, timing analysis is used to guide the design
process. However, timing analysis is subject to a host of inac-
curacies, such as undetected false paths, cell-delay error, error
in interconnect parasitics, SPICE models, etc. These modeling
and analysis errors result in a deviation between the expected
performance of the design and its actual performance charac-
teristics. For instance, the STA tool might utilize a conservative
delay-noise algorithm resulting in certain paths operating faster
than expected.

In the next stage, the design is fabricated and each individual
die incurs additional manufacturing-related variations due to
equipment imprecisions and process limitations. Finally, a man-
ufactured die is used in an application such as a cell phone or
a laptop. Each particular die then sees different environmental
conditions, depending on its usage and location. Since environ-
mental factors such as temperature, supply voltage, and work
load affect the performance of a die, they give rise to the third
class of uncertainty. To achieve the required timing specifica-
tion for all used die throughout their entire lifetime, the designer
must consider all three sources of uncertainty. However, a key
difference between the three classes of uncertainty is that each
has a sample space that lies along a different dimension. Hence,
each class of uncertainty calls for a different analysis approach.

First, we recall that the sample space of an experiment or
a random trial is the set of all possible outcomes. The timing
uncertainty caused by modeling and analysis errors has as its
sample space the set of design implementations resulting from
multiple design attempts. Each design attempt results in an
implementation which triggers particular inaccuracies in the
models and tools, resulting in a timing distribution across this
sample space. However, a design is typically implemented only
once and there needs to be a high level of confidence that the
constraints will be met in the first attempt. Hence, the designer
is interested in the worst-case timing across this sample space.
Thus, margins are typically added to the models to create
sufficient confidence that they are conservative and will result
in a successful implementation. Although a statistical analysis
of model and analysis uncertainty is uncommon, it could aid
in a more accurate computation of the delay with a specified
confidence level.

In the case of process variations, the sample space is the
set of manufactured die. In this case, a small portion of
the sample space is allowed to fail the timing requirements
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since those die can be discarded after manufacturing. This
considerably relaxes the timing constraints on the design and
allows designers to significantly improve other performance
metrics, such as power dissipation. In microprocessor design, it
is common to perform so-called binning where die are targeted
to different applications based on their performance level. This
lessens the requirement that all or a very high percentage of the
sample space meets the fastest timing constraint. Instead, each
performance level in the sample space represents a different
profit margin, and the total profit must be maximized.

The sample space of environmental uncertainty is across the
operational life of a part and includes variations in temperature,
modes of operation, executed instructions, supply voltage, life-
time wear-out, etc. Similar to model and analysis uncertainty,
the chip is expected to function properly throughout its oper-
ational lifetime in all specified operating environments. Even
if a design fails only under a highly unusual environmental
condition, the percentage of parts that will fail at some point
during their operational life can still be very high. Therefore,
a pessimistic analysis is required to ensure a high confidence
of correct operation throughout the entire lifetime of the part.
Naturally, this approach results in a design that operates faster
than necessary for much of its operational life, leading to a
loss in efficiency. For instance, when a part is operating at a
typical ambient temperature the device sizing or supply voltage
could be relaxed, reducing power consumption. One approach
to address this inefficiency is to use runtime adaptivity of the
design [6], [7].

Since each of the three discussed variabilities represents
orthogonal sample spaces, it is difficult to perform a com-
bined analysis in a meaningful manner. Environmental uncer-
tainty and uncertainty due to modeling and analysis errors are
typically modeled using worst-case margins, whereas uncer-
tainty in process is generally treated statistically. Hence, most
SSTA research works, as well as this paper, focus only on
modeling process variations. However, the accuracy gained by
moving from DSTA to SSTA methods must be considered in
light of the errors that continue to exist due to the other sources
of timing error, such as analysis and modeling error, uncertainty
in operating conditions, and lifetime wear-out phenomena. We
discuss in the next section the sources of process variation in
more detail.

B. Sources of Process Variation

1) Physical Parameters, Electrical Parameters, and Delay
Variation: The semiconductor manufacturing process has be-
come more complex, at the same time process control preci-
sion is struggling to maintain relative accuracy with continued
process scaling. As a result, a number of steps throughout
the manufacturing process are prone to fluctuations. These
include effects due to chemical mechanical polishing (CMP),
which is used to planarize insulating oxides and metal lines,
optical proximity effects, which are a consequence of patterning
features smaller than the wavelength of light [8]-[10], and lens
imperfections in the optical system. These, as well as other
numerous effects, cause variation of device and interconnect
physical parameters such as gate length (or critical dimension—
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Fig. 2. Physical parameter variations resulting in electrical parameter varia-
tions, which, in turn, result in circuit-delay variations.

CD), gate-oxide thickness, channel doping concentration, in-
terconnect thickness and height, etc., as shown in Fig. 2.
Among these, CD variation and channel doping fluctuations
have typically been considered as dominant factors. However,
many SSTA methods model a much wider range of physical
parameters. Variations in these physical parameters, in turn,
result in variations in electrical device characteristics, such
as the threshold voltage, the drive strength of transistors, and
the resistance and capacitance of interconnects. Finally, the
variations in electrical characteristics of circuit components
result in delay variations of the circuit.

It is important to note that more than one electrical parameter
may have a dependence on a particular physical parameter. For
example, both resistance and capacitance of an interconnect are
affected by variation in wire width. An increase in interconnect
width reduces the separation between wires, resulting in an
increased coupling capacitance while decreasing the resistance
of the wire. Similarly, perturbations in the gate-oxide thickness
influence the drive current, the threshold voltage, and the gate
capacitance of the transistors. Dependence of two or more
electrical parameters on a common physical parameter gives
rise to correlation of these electrical parameters and ignoring
this correlation can result in inaccurate results. For instance,
if we ignore the negative correlation between capacitance and
resistance, there is a nonzero probability that both resistance
and capacitance are at their worst-case values. However, this
is physically impossible and leads to unrealistic RC delay
estimates. In [11], the authors present a method to determine the
process-parameter values that result in a more realistic worst-
case delay estimate.

Along similar lines, a particular equipment variation can
impact multiple physical-parameter values, resulting in a corre-
lation of the physical parameters themselves. For instance, con-
sider the physical-parameter variations due to lens aberration. If
multiple masks are illuminated with the same lens, the variation
of all metal layers and even polysilicon will be correlated.? In
Section IV, we will discuss methods for modeling correlated
parameters using a smaller number of independent parameters,
such as principal component analysis.

It would be ideal to model each process step in the manu-
facturing process to determine the variations and correlations
in the physical parameters. However, such an analysis is com-
plex and impractical due to the number of equipment-related
parameters in each fabrication step and the total number of
steps. Hence, most SSTA approaches have taken the physical

3Multiple scanners may be used to manufacture a particular part. This can
reduce the discussed correlation here but may not eliminate it.
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parameters themselves (such as CD, doping concentration, and
oxide thickness) to be the basic random variables (RVs). These
variables are either assumed to be independent or to have well-
understood correlations.

2) Classification  of  Physical-Parameter  Variation:
Physical-parameter variations can be classified based on
whether they are deterministic or statistical and based on the
spatial scale over which they operate, as shown in Fig. 3.

1) Systematic variations are components of physical-
parameter variation that follow a well-understood be-
havior and can be predicted upfront by analyzing the
designed layout. Systematic variations arise in large part
from optimal proximity effects, CMP, and its associated
metal fill. These layout-dependent variations can be mod-
eled premanufacturing by performing a detailed analysis
of the layout. Therefore, the impact of such variations
can be accounted for using deterministic analysis at later
stages of the design process [12], [13] and particularly
at timing sign-off. However, since we do not have layout
information early in the design process, it is common to
treat these variations statistically. In addition, the models
required for analysis of these systematic variations are
often not available to a designer, which makes it advanta-
geous to treat them statistically, particularly when it is un-
likely that all effects will assume their worst-case values.

2) Nonsystematic or random variations represent the truly
uncertain component of physical-parameter variations.
They result from processes that are orthogonal to the
design implementation. For these parameters, only the
statistical characteristics are known at design time, and
hence, they must be modeled using RVs throughout the
design process. Line-edge roughness (LER) and random-
dopant fluctuations (RDF) are examples of nonsystematic
random sources of variation.

It is common that earlier in the design flow, both systematic
and nonsystematic variations are modeled statistically. As we
move through the design process and more detailed informa-
tion is obtained, the systematic components can be modeled
deterministically, if sufficient analysis capabilities are in place,
thereby reducing the overall variability of the design.

3) Spatial Reach of Variations: Nonsystematic variations
can be further analyzed by observing that different sources of

variations act on different spatial scales. Some parameters shift
when the equipment is loaded with a new wafer or between
processing one lot of wafers to the next—this can be due to
small unavoidable changes in the alignment of the wafers in the
equipment, changes in the calibration of the equipment between
wafer lot processing, etc. On the other hand, some shift can oc-
cur between the exposure of different reticles on a wafer, result-
ing in reticle-to-reticle variations. A reticle is the area of a wafer
that is simultaneously exposed to the mask pattern by a scanner.
The reticle is approximately 20 mm x 30 mm and will typically
contain multiple copies of the same chip layout or multiple
different chip layouts. At each exposure, the scanner is aligned
to the previously completed process steps, giving rise to a
variation in the physical parameters from one reticle to the next.
Finally, some shift can occur during the reticle exposure itself.
For instance, a shift in a parameter, such as laser intensity, may
occur while a particular reticle is scanned leading to within-
reticle variations. Another example is non-uniform etch con-
centration across the reticle, leading to the variation in the CD.
These different spatial scales of variation give rise to a
classification of nonsystematic variations into two categories.

1) Die-to-die variations (also referred to as global or interdie
variations) affect all the devices on the same die in the
same way. For instance, they cause the CD of all devices
on the same chip to be larger or smaller than nominal. We
can see that die-to-die variations are the result of shifts
in the process that occur from lot to lot, wafer to wafer,
reticle to reticle, and across a reticle if the reticle contains
more than one copy of a chip layout.

2) Within-die variations (also referred to as local or intradie
variations) affect each device on the same die differently.
In other words, some devices on a die have a smaller CD,
whereas other devices on the same die have a larger CD
than nominal. Within-die variations are only caused by
across-reticle variations within the confines of a single
chip layout.

Finally, within-die variations can be categorized into
spatially correlated and independent variations as discussed as
follows.

1) Spatially correlated variations. Many of the underlying
processes that give rise to within-die variation change
gradually from one location to the next. Hence, these
processes tend to affect closely spaced devices in a similar
manner, making them more likely to have similar charac-
teristics than those placed far apart. The component of
variation that exhibits such spatial dependence is known
as spatially correlated variation. We discuss the modeling
of spatial correlated device parameters in more detail in
Section IV-B1.

2) Independent variations. The residual variability of a de-
vice that is statistically independent from all other devices
and does not exhibit spatially dependent correlations is
referred to as independent variation.* These variations in-
clude effects such as RDF and LER. It has been observed

“In the SSTA literature, this independent component of nonsystematic
process variation is often referred to as the random component. However, this
is an unfortunate misnomer since all nonsystematic variations are random.
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that with continued process scaling, the contribution of
independent within-die variation is increasing. Models
such as those of Pelgrom et al. [14], which express the
amount of independent variation as a function of nominal
device parameters, are gaining increased importance.

C. Impact of Correlation on Circuit Delay

As discussed in the previous section, nonsystematic process
variations must be modeled using RVs. Furthermore, the RVs
associated with different gates in a design will be partially cor-
related due to the joint contributions from die-to-die, spatially
correlated, and independent process-variation components. As
we shall discuss in Section IV, this partial correlation creates
significant difficulties for SSTA. The analysis can be substan-
tially simplified if the RVs are assumed to be either fully
correlated with a correlation coefficient of 1 or are assumed
completely independent. If the RVs are assumed to be fully
correlated, the variation has the same characteristics as die-
to-die variation, and DSTA can be used to bound the circuit
delay using a set of corner files. On the other hand, while
the assumption of independence requires a statistical-analysis
approach it significantly simplifies the required operations.

In this section, we investigate the error that is introduced in
the timing analysis of a combinational-circuit block under ei-
ther the fully correlated or independent assumption. This is use-
ful since traditional DSTA approaches have often made the fully
correlated assumption, whereas early SSTA work has made
an independence assumption. We will show that, depending
on the circuit topology, either assumption can yield conserv-
ative or optimistic timing estimates. In the succeeding discus-
sion, we first consider the simple case of a single path and then
treat the maximum delay of multiple paths. Finally, we note
some of the complexities involved when clocking is considered.

1) Delay of a Single Path: 1f the gate delays along a path are
independent, then they tend to average out in the overall path
delay. For example, let a path have n gates connected in series
with each gate having an independent normal-delay distribution
Py, Py, ..., P, with the same mean p and standard deviation o.
The o/ ratio of the path delay relative to that of the gate delay

is given by
o 1 (a>
=) =—=(Z) . (M
(N)path \/’E I gate

However, if the gate-delay distributions P; are correlated with
a correlation coefficient p, the o/u ratio for the path delay

becomes
) (FEI()
H path n K gate

In both cases, the standard deviation of the path delay in-
creases with the number of gates in the path. However, the ratio
o/ scales as 1/1/(n) with the assumption of independence,
whereas it remains constant under the fully correlated assump-
tion (p = 1). Hence, an assumption that the partially correlated
RVs along a path are fully correlated will overestimate the
spread of path delay. The delay specified at a confidence
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Fig. 4. Maximum of two normal-delay distributions with identical mean and
variance having different correlations.
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Fig. 5. Mean and variance of the maximum of two identical normal RVs as a
function of correlation coefficients.

point greater than 50%° will be overestimated, resulting in a
pessimistic analysis. On the other hand, assuming all variations
to be independent along a path results in an optimistic estimate
of delay (at yield points greater than 50%).

2) Maximum of Multiple Paths: The delay of a
combinational-circuit block is obtained by taking the maximum
of the delays of all the paths in the circuit. This maximum again
depends on the correlation of the gate delays. To illustrate
this, we consider a circuit consisting of two paths, each with
normal distributed delays with a mean of 750 ps and a standard
deviation of 100 ps. If we assume that all of the gate delays in
the circuit are fully correlated with p = 1, the two path delays
will also be perfectly correlated. On the other hand, if the gate
delays are assumed to be independent, the two path delays will
be independent. Fig. 4 shows the probability distribution of the
maximum of the two path delays assuming perfect correlation
(p = 1), partial correlation (p = 0.5), and independent path
delays (p = 0). It can be seen that the probability distribution
for the independent case always gives a higher delay than that
in the two positively correlated cases. Hence, the independence
assumption will overestimate delay and vice versa. This
concept is mathematically known as Slepian’s inequality.
Intuitively, when the two path delays are independent, the
number of cases in the sample space, where at least one of the
two delays is toward the high end of the distribution, is much
greater compared to the correlated case.

Fig. 5 shows the mean and variance of the maximum of the
two path delays as a function of their correlation coefficient.
The mean of the maximum delay decreases with increased

SFor long-path delay analysis, delay is typically computed at confidence
points greater than 50%, whereas, for short-path delay analysis, the confidence
point is typically placed < 50%. In both cases, overestimation of p results in a
pessimistic analysis.
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correlation, whereas the standard deviation increases. There-
fore, the independence assumption will underestimate the delay
spread. Note also that the maximum of the two identical normal
path-delay distributions does not result in a normal distribution
except under the fully correlated assumption. We will discuss
this effect in more detail in Section III.

Given a combinational-circuit block, the overall circuit
delay maybe either over- or underestimated by both the fully
correlated and independence assumptions. The fully correlated
assumption will overestimate the delay of individual paths,
whereas it will underestimate the maximum of those path
delays. Hence, the final outcome depends on the topology of the
circuit. If the logic depth of the circuit is large while, at the same
time, only a few paths are critical, the overestimation along the
critical paths will dominate, resulting in a pessimistic analysis
result. On the other hand, for circuits with shallow logic depth
and highly balanced paths, the underestimation occurring in the
maximum computation will dominate, and the analysis will be
optimistic under the fully correlated assumption. The inverse is
true for the independence assumption.

Finally, when considering sequential circuits, the delay vari-
ation in the buffered clock tree must be considered. In general,
the fully correlated assumption will underestimate the variation
in the arrival times at the leaf nodes of the clock tree, which
will tend to overestimate circuit performance. However, we
must also consider the correlation between the delays in the
combinational logic and the clock tree, in which case the
analysis becomes more complex.

III. PROBLEM FORMULATION AND BASIC
SOLUTION APPROACHES

A. Problem Formulation

The traditional DSTA procedure abstracts a timing graph
from a combinational circuit. The nodes of the timing graph
represent primary inputs/outputs of the circuit and gate in-
put/output pins. Its edges represent the timing elements of the
circuit, namely, the gate input-pin—output-pin delay and wire
delay from a driver to a receiver, as shown in Fig. 6. The weight
on these edges represents the delay of the corresponding timing
element. For a combinational circuit, it is convenient to connect
all primary inputs to a virtual source node with virtual edges
having weight equal to the input arrival times. Similarly, all the
primary outputs are connected to a virtual sink node through
virtual edges with weights representing the required arrival
times. The resulting timing graph, therefore, has a single source
and sink node.

A similar timing graph can be constructed for sequential
circuits. Fig. 7 shows the additional timing elements pertaining
to a clock network (i.e., the launch and capture paths of the
clock tree) and the sequential elements. In the correspond-
ing timing graph, the virtual source node corresponds to the
input driver of the on-chip clock network. The clock-driver
delays and interconnect delays on the launch path, the clock-to-
q delay, and the setup times of the sequential elements are again
modeled using weights on their corresponding graph edges.
Similarly, the virtual sink node also corresponds to the clock
input driver, and the capture path is represented with nodes and

Fig. 6. Example circuit in (a) and its timing graph in (b).

edges in the timing graph. In this case, however, the weights
of edges corresponding to the capture path are assigned with
negative delay values as opposed to the positive values for
the launch path. Apart from this distinction, the timing graphs
for flip-flop-based sequential circuits are a direct extension of
those for the combinational circuits and can be analyzed with
the same timing algorithms. However, significant complications
arise when transparent latches are used in place of flip-flops or
when the launch and capture paths of the clock tree share the
same drivers, as is common.

As discussed in Section II, device parameters such as gate
length, doping concentration, and metal thickness must be
treated as RVs due to process variation. The delay of each edge,
being a function of these parameters, also becomes an RV. This
allows us to extend the concept of the traditional timing graph
to a statistical timing graph defined as follows.

Definition: A timing graph G = {N, E, n,,ny} is adirected
graph having exactly one source node ns and one sink node
ny, where IV is a set of nodes, and E is a set of edges. The
weight associated with an edge corresponds to either the gate
delay or the interconnect delay. The timing graph is said to be a
statistical timing graph if ith edge weight d; is an RV.

The arrival time at the source node of the timing graph
typically has a deterministic zero value. This reflects the fact
that in combinational timing graphs, clock-tree skew is not
represented, whereas in sequential circuits, the source node is
pulled back to a common point on the launching and capturing
clock paxths.6 In traditional DSTA, the most basic goal of the
analysis is to find the maximum delay between the source node
and the sink node of a timing graph, which is the delay of
the longest path in the circuit. When modeling process-induced
delay variations, the sample space is the set of all manufactured
dies. In this case, the device parameters will have different
values across this sample space, hence the critical path and its
delay will change from one die to the next. Therefore, the delay

%Note that a deterministic value at the source node of a sequential timing
graph does not account for jitter from the Phase Locked Loop (PLL) or other
sources.
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of the circuit is also an RV, and the first task of SSTA is
to compute the characteristics of this RV. This is performed
by computing its probability-distribution function (PDF) or
cumulative-distribution function (CDF) (see Fig. 8). Alterna-
tively, only specific statistical characteristics of the distribution,
such as its mean and standard deviation, can be computed.
Note that the CDF and the PDF can be derived from one
another through differentiation and integration. Given the CDF
of circuit delay of a design and the required performance
constraint the anticipated yield can be determined from the
CDE. Conversely, given the CDF of the circuit delay and the
required yield, the maximum frequency at which the set of
yielding chips can be operated at can be found.

Definition: Let a path p; be a set of ordered edges from the
source node to the sink node in G, and let D; be the path-length
distribution of p;, computed as the sum of the weights d for
all edges k£ on the path. Finding the distribution of Dy, =
maximum(D1, ..., D;, ..., Dypaths) among all paths (indexed
from 1 to n paths) in the graph G is referred to as the SSTA
problem of a circuit.

Similar to traditional DSTA, we can formulate the SSTA
problem as that of finding the latest arrival-time distribution
at the sink node in the timing graph [15], [16]. The latest
arrival-time distribution at the sink node can be found by
propagating the arrival time from the source node through the
timing edges while computing the latest arrival-time at every

node in topological order. Subsequently, the latest arrival-time
distribution at the sink node is the circuit-delay distribution. It
is worth noting that the basic DSTA algorithm is based on the
project-planning technique known as the CPM and involves a
simple topological traversal [17]. Likewise, the basic SSTA for-
mulation for circuit designs was first motivated from the project
evaluation and review technique (PERT) literature [3], [18].
However, in contrast to DSTA, PERT was shown to be an
N-P complete problem [19].

In addition to the problem of finding the delay of the circuit,
which we have posed as the basic SSTA problem, it is also
key to improve this delay when the timing requirements are
not met. Hence, DSTA methods typically report the slack at
each node in the circuit, in addition to the circuit delay and
critical paths. The slack of a node is the difference between the
latest time a signal can arrive at that node, such that the timing
constraints of the circuit are satisfied (referred to as the required
time), and the actual latest arrival time of the signal at that node
[20]. Similar to the circuit delay, the slack of a node is an RV
in the SSTA formulation. Due to space limitation, we will not
discuss efficient methods for slack computation in this paper but
refer to the pertinent literature in Section V. We also will not
discuss latch-based sequential timing analysis, which involves
multiple-phase clocks, cycle stealing, clock-schedule verifica-
tion, etc. Methods for statistical sequential timing analysis us-
ing latches and clock-skew analysis can be found in [21]-[25].

B. Challenges in SSTA

The statistical formulation of timing analysis introduces sev-
eral new modeling and algorithmic issues that make SSTA a
complex and enduring research topic [26]. In this section, we
introduce some of these issues, as well as the relevant SSTA
terminology.

1) Topological Correlation: Paths that start with one or
more common edges after which the paths separate and join
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again at a later node are called reconvergent paths and the node
at which these paths reconverge is called the reconvergent node.
For instance, in Fig. 6, the two paths P; and P» share the
same first edge (corresponding to gate g;) and reconverge at
the output of gate gy (node r). In such case, the input arrival
times at the reconvergent node become dependent on each other
because of the shared edge delay. This dependence leads to
so-called topological correlation between the arrival times and
complicates the maximum operation at the reconvergent node.
To perform accurate analysis, the SSTA algorithm must capture
and propagate this correlation so that it is correctly accounted
for during the computation of the maximum function.

2) Spatial Correlation: As discussed in Section II-B,
within-die variation of the physical device parameters often
exhibits spatial correlation, giving rise to correlation between
the gate delays. Hence, if the gates that comprise two paths have
spatially correlated device parameters they will have correlated
path delays. In this way, correlation can be introduced between
paths that do not share any common timing edges. For instance,
in Fig. 6, the paths P, and Ps do not share any common delay
edges, but if gates g; and g are within close proximity on the
die, their spatially correlated delays can give rise to correlation
between the two path delays. Hence, spatial correlation of the
arrival times must be captured and propagated during SSTA so
that it is correctly accounted for during the maximum operation.
Spatial correlation also impacts the sum operation. For exam-
ple, if in Fig. 6, gates g; and g3 have spatially correlated delays
then the arrival time at node p will be correlated with the delay
of gate gs.

While topological correlation only affects the maximum
operation, spatial correlation affects both the sum operation
and the maximum operation. This raises two fundamental
challenges for SSTA: 1) how to model gate delays and arrival
times such that the spatial correlation of the underlying device
parameters can be expressed; and 2) given a model of the spatial
correlation, how to propagate and preserve the correlation
information while performing the sum and maximum opera-
tions in SSTA. A common approach to this problem has been
to represent delay in terms of the device-parameter-space basis,
which is common to all gate delays. This approach is discussed
in more detail in Section I'V.

3) Nonnormal Process Parameters and Nonlinear Delay
Models: Normal or Gaussian distributions are found to be the
most commonly observed distributions for RVs, and a number
of elegant analytical results exist for them in the statistics
literature. Hence, most of the initial work in SSTA assumed
normal distributions for physical device parameters, electrical
device parameters, gate delays, and arrival times. However,
some physical device parameters may have significantly non-
normal distributions. In this section, we discuss the source and
impact of such nonnormal distributions.

An example of a nonnormal device parameter is CD (or
gate length) due to the variation in depth of focus (DOF).
As a result of equipment limitations and nonplanarity of the
die, the focus point of the exposed image on the die exhibits
some amount of variation. This impacts the development of
the photoresist layer and consequently impacts the CD of the
device. However, both large and small values of the DOF result
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Fig. 9. Nonnormal CD distribution due to nonlinear dependence of CD
on DOF.

in an underdevelopment of the photoresist and the dependence
of CD on the DOF is nonlinear. Even if the variation of
DOF is normal, the CD variation will decidedly be nonnormal.
As shown in Fig. 9, the PDF of CD is clearly (negatively)
skewed and nonnormal.’

Even if the physical device parameters are indeed normally
distributed (e.g., doping concentration has a normal distribu-
tion), the dependence of the electrical device parameters and
gate delay on these physical parameters may not be linear,
giving rise to nonnormal gate delays. Initial work in modeling
spatial correlations [27]-[29] used a first-order delay model
which assumed a linear dependence of the gate delay on phys-
ical device parameters. If the variations are small, this linear
approximation is justified, as the error introduced by ignoring
higher order terms is negligible. However, with reduction of
geometries, process variation is becoming more pronounced,
and the linear approximation may not be accurate for some
parameters.

Nonnormal delay and arrival-time distributions introduce
significant challenges for efficient SSTA. While this is a rela-
tively new area of research, several researchers have proposed
approaches to address this issue [30]-[35]. Finally, it should be
noted that apart from the difficulty of modeling the nonnormal-
ity of an individual RV, the dependence between two nonnormal
RVs is no longer expressed by a simple correlation factor. This
further complicates the correct treatment of topological and
spatial correlations.

4) Skewness Due to Maximum Operation: Even if gate de-
lays are assumed to be normal, SSTA has to cope with the

7 A probability distribution is said to have negative skewness if it has a long
tail in the negative direction of the RV, such as the CD distribution shown in
Fig. 9. Conversely, a positive skewness indicates a long tail in the positive
direction.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 14, 2008 at 14:26 from IEEE Xplore. Restrictions apply.



BLAAUW et al.: STATISTICAL TIMING ANALY SIS: FROM BASIC PRINCIPLES TO STATE OF THE ART 597

fact that the maximum operation is an inherently nonlinear
function. The maximum of two normal arrival times will result
in a nonnormal arrival time that is typically positively skewed.?
In addition, the nonnormal arrival-time distribution produced at
one node is the input to the maximum computation at down-
stream nodes. Hence, a maximum operation that can operate on
nonnormal arrival times is required.

Most of the existing approaches ignore the skewness intro-
duced by the maximum operation and approximate the arrival
times with normal distributions. The error of this normal ap-
proximation is larger if the input arrival times have similar
means and dissimilar variances [36]. In other words, the error
is most pronounced when two converging paths have nomi-
nally balanced path delays, but one path has a tighter delay
distribution than the other. This can occur in a circuit when
two paths with equal nominal delay have a different number of
gates or when the correlation among their gates differs. Another
example is when one path is dominated by interconnect delay
while the other is dominated by gate delay.

An example of such two delay distributions is shown in
Fig. 10(a). Intuitively, we can see that RV B will dominate the
maximum delay for values greater than its mean since B has
significantly higher probabilities in this range. For delay values
below the mean, RV A will dominate. Since A and B have
different variance, skew is introduced in their maximum. For
two input distributions that have identical means and variances,
the resulting maximum exhibits smaller skewness [Fig. 10(b)].
Finally, Fig. 10(c) shows that if the means of the input dis-
tributions are significantly different, the resulting maximum is
entirely dominated by one distribution, and skew is negligible.

The aforementioned issues address four basic challenges
in SSTA, which have received significant attention in the lit-
erature. However, many other critical challenges to the de-
velopment of a mature SSTA tool remain. For instance, the
availability of statistical data remains difficult. This, and other
challenges in SSTA, will be discussed in Section V.

C. SSTA Solution Approaches

We now give a brief overview of the principle approaches
to SSTA, moving from traditional methods to more recent
approaches.

1) Numerical-Integration Method: The simplest SSTA ap-
proach follows directly from the problem definition given
in Section III-A. A numerical integration over the process-
parameter space is performed to compute the yield of the
circuit for a particular delay. Typically, the delay of a set of
critical paths is expressed as a linear function of the physical
device parameters and a feasible region in this parameter space
is defined by the desired circuit delay. This region is then
numerically integrated, exploring all possible permutations of
physical device-parameter values that lie in the feasible region.
Efficient numerical-integration methods were proposed in [37].
The advantage of this method is that it is completely general and

81t is possible to obtain much more complex distributions, such as bimodal
distributions, even when the input parameters remain normal. While such
occurrence is rare, they introduce significant modeling difficulties.
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process variation with any type of distribution and correlation
can be modeled. However, it can be quite expensive in runtime,
in particular for balanced circuits with a large number of
critical paths.

2) Monte Carlo Methods: The second general approach per-
forms a statistical sampling of the sample space using Monte
Carlo simulation, based on the Metropolis sampling algorithm
[38]. Instead of explicitly enumerating the entire sample space,
the key idea is to identify the regions of significant probability
and to sufficiently sample these regions. Using the PDF of the
physical device parameters, a number of samples are drawn. For
each sample, the circuit delay is computed using the traditional
DSTA methods. Thereafter, by evaluating a fraction of samples
that meet the timing constraint, an estimate of timing yield
is found. If a sufficient number of samples are drawn, the
estimation error is small. By sweeping the timing constraint
and finding the yield for each value, the entire circuit-delay
distribution can be found.

As with numerical integration, the Monte Carlo approach
has the advantage of being completely general. Furthermore,
it is based on existing mature DSTA methods and performs sig-
nificantly faster than the numerical integration-based methods.
However, since DSTA is in the inner loop of the Monte Carlo
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simulation, the runtime can still be significant, particularly
if a fully featured industrial DSTA tool is used. Using the
Monte Carlo simulation, it is also difficult to perform incre-
mental analysis after a designer makes a small change to the
circuit. It has been shown that the performance of Monte
Carlo techniques can be improved using methods such as
importance sampling [2], [39]-[41]. However, more research is
required to examine if fast sampling techniques can be effective
for SSTA.

3) Probabilistic Analysis Methods: Both previous ap-
proaches are based on sample-space enumeration. In contrast,
probabilistic methods explicitly model gate delay and arrival
times with RVs. These methods typically propagate arrival
times through the timing graph by performing statistical sum
and maximum operations.” They can be classified into two
broad classes: 1) path-based approaches; and 2) block-based
approaches. The key difference between the two approaches is
where in the algorithm the maximum function is invoked.

Path-based approaches: In path-based SSTA algorithms,
a set of paths, which is likely to become critical, is identi-
fied, and a statistical analysis is performed over these paths
to approximate the circuit-delay distribution. First, the delay
distribution of each path is found by summing the delay of all
its edges. Assuming normal gate delays, the path-delay distri-
bution is normal and can be analytically computed [42]-[44].
The overall circuit-delay distribution is then found by perform-
ing a statistical maximum operation over all the path delays
(discussed in more detail in Section IV).

The basic advantage of this approach is that the analysis is
clearly split into two parts—the computation of path delays
followed by the statistical maximum operation over these path
delays. Hence, much of the initial research in SSTA was
focused on path-based approaches [5], [42], [43], [45]-[48].
Clearly, the difficulty with the approach is how to rigorously
find a subset of candidate paths such that no path that has
significant probability of being critical in the parameter space is
excluded. In addition, for balanced circuits, the number of paths
that must be considered can be very high. Therefore, most of the
later research has focused on the block-based approaches.

One of the methods that fall in the path-based category
approximates the statistical delay of a circuit early in the design
process when the exact gate-level implementation is not yet
known [49], [50]. In this work, the circuit is modeled using
a set of generic paths whose specifications are provided by
the designer. The method also determines the settings of the
transistor-level electrical parameters that give a specific yield
goal. These settings can then be used in a traditional deter-
ministic timing verification flow. The usefulness of applying
SSTA methods early in the design process, when exact gate-
level implementations are not yet available, depends on the rel-
ative magnitude of the delay uncertainty introduced by process
variations versus the uncertainty due to the undetermined circuit
implementation.

9The minimum operation is also needed for the computation of the shortest
path, clock skew, and slack computations. However, it can be derived from the
maximum operation.

Block-based approaches: The block-based methods fol-
low the DSTA algorithm more closely and traverse the circuit
graph in a topological manner. The arrival time at each node is
computed using two basic operations: 1) For all fan-in edges
of a particular node, the edge delay is added to the arrival-time
at the source node of the edge using the sum operation; and
2) given these resulting arrival times, the final arrival time at
the node is computed using the maximum operation. Hence, the
block-based SSTA methods propagate exactly two arrival times
(a rise and a fall arrival time) at each circuit node, resulting in
a runtime that is linear with circuit size. The computation of
the sum function is typically not difficult; however, finding the
statistical maximum of two correlated arrival times is not trivial.

Due to its runtime advantage, many current research and
commercial efforts have taken the block-based approach. Fur-
thermore, unlike other approaches, the block-based approach
lends itself to incremental analysis which is advantageous
for diagnostic/optimization applications. In block-based SSTA
methods, the result of the maximum operation performed at one
node is the input to the maximum operation which is performed
at downstream nodes. It is therefore essential that the sum
and maximum operations preserve the correlation information
of the arrival times so that this information is available at
later operations. Furthermore, the skewness introduced by the
maximum operation must be considered.

IV. BLOCK-BASED SSTA

In this section we discuss block-based SSTA methods in
more detail. The different methods are presented in order of
increasing complexity. We start with simpler early methods
that were based on a normal independent approximation of
the arrival times. We then discuss methods that model topo-
logical correlation due to reconvergence of arrival times. This
is followed by a number of methods that account for spatial
within-die variations. Finally, we briefly survey more recently
proposed nonlinear and nonnormal block-based methods.

A. Distribution Propagation Approaches (Gate-Delay Space)

Initial efforts in block-based SSTA approaches focused on
directly representing gate delays with RVs characterized by
their distribution or statistical characteristics. The common
technique employed by all these approaches is to explicitly
propagate the arrival-time distributions through the timing
graph. This is achieved by employing a statistical sum operator
to compute the sum of the timing arc delay and the source-node
arrival-time distribution. In the case of multifan-in nodes, a
statistical maximum operator is also applied to the arrival times
corresponding to different fan-in edges of a node.

A basic block-based SSTA algorithm based on a PERT-like
traversal was first given in [3]. Later, Berkelaar [51] presented
a linear-runtime algorithm for propagating mean and variance
of timing variables. In this approach, both gate delays and latest
arrival-time distributions are assumed to be independent normal
RVs. Based on these simplifying assumptions, the sum and
maximum of arrival-time RVs are computed using analytical
results for the normal RVs.
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input and gate-delay PDFs to compute the output-delay PDF.

In [52], the authors extend this analytical approach to han-
dle topological correlation due to reconvergent paths, and
correlation between edge delays that correspond to the same
gate, at the cost of increased complexity. The approach uses the
statistical sum operation to reduce series edges in the timing
graph to a single edge. At each step of the reduction, the
correlation of the reduced edge with the edges with which
it has nonzero correlation is recomputed. A similar reduction
procedure is then performed for parallel edges using the statis-
tical maximum operation under the normal assumption using
the analytical results given in [36]. This maximum operation
is explained in more detail in the following section. The pro-
posed approach limits the number of edges whose correlation
information is stored in the memory by identifying those nodes
whose correlation information is no longer required. This ap-
proach was extended in [53] and [54] by assigning a level to
each node in the directed acyclic graph (DAG) using a depth-
first search. The level is used to identify the nodes whose
correlation information can be discarded at each stage of the
arrival-time propagation.

In [55]-[57], the authors propose an alternative discrete
representation for relaxing the normal-distribution assumption.
The gate delays are now modeled as discrete delay distribu-
tions that are generated by sampling a continuous distribution.
Note that the discrete PDFs are renormalized after sampling to
ensure that the sum of the probabilities for the discrete events
is equal to one.

The approach then utilizes discrete sum and maximum oper-
ations for arrival-time propagation. In the case of a degenerate
or deterministic input-delay distribution, the sum operation is
simple, and the output-delay PDF is obtained by simply shifting
the gate-delay distribution by the input delay. However, in
the case where the input-delay PDF is nondegenerate, a set
of shifted output-delay distributions is generated, as shown in
Fig. 11. Each of these shifted PDFs corresponds to a discrete
event from the input-delay PDF. This set of shifted PDFs is
then combined using Bayes’ theorem—the shifted PDFs are
first scaled, where the scaling factor is the probability of the
associated discrete input event. The scaled events are then
grouped by summing the probability at each of the discrete
time points. The actual probability of an event can be obtained
by dividing the total value for each discrete point of the PDF
by the sum of the numbers corresponding to all the events in

each discrete PDF. The overall computation can be succinctly
expressed as

fo) = D fo(i)fyli —t) = fult) % fy(8)  (3)

1=—00

where s = = + y, and implies that the PDF of the sum of two
RVs can be expressed as a convolution of their PDFs.
The statistical maximum is computed using the relation

fz(t):Fw(t)fm(t)+Fy(t)fy(t) 4)

where z = maximum(zx,y), f and F represent the PDF and
CDF of the RV, respectively, and = and y are assumed to be
independent. The previous equation expresses mathematically
that the probability that the maximum of two discrete RVs
has a value t( is equal to the probability that one of the RVs
has a value equal to ¢y and the other has a value less than or
equal to %.

For handling topological correlation due to reconvergent
paths, a partitioning-based approach is used to decompose the
circuit into the so-called supergates. Each supergate is a subcir-
cuit with a single fan-out and one or more inputs, all of which
are statistically independent. The discrete events at the inputs of
the supergates are propagated separately, and the resulting dis-
tributions are finally combined at the output of the supergate us-
ing Bayes’ theorem. The process of separately propagating each
of the discrete events of the PDFs is referred to as enumeration.
Special care has to be taken in the case where a multifan-out
node lies in the fan-out cone of another multifan-out node. Un-
fortunately, the runtime complexity of this algorithm depends
on the circuit structure and is exponential in the worst case.

The authors in [15], [58], and [59] extend the work on
handling topological correlation while using the same dis-
crete framework for representing PDFs. The authors present
an approach to determine the minimum set of nodes, which
needs to be enumerated to handle reconvergence exactly. As
expected, the worst-case computational complexity of enumer-
ation remains exponential. Nevertheless, the authors show the
useful property that ignoring topological correlation results in
a distribution that is a stochastic upper bound on the exact
distribution of the circuit delay. A stochastic upper bound of a
delay distribution with CDF P(¢) is a distribution whose CDF
Q(t) has a value which is always smaller than or equal to P(t)
for all values of ¢, as shown in Fig. 12. Such an upper bound
results in a pessimistic estimate of the timing yield of the circuit
at a given performance target.

Based on this result, the authors developed a linear-runtime
method for computing both lower and upper bounds on the
exact delay distribution of the circuit. These bounds are then
used to obtain an estimate of the circuit delay at a desired
confidence point, as well as the accuracy of the bounds. In the
case when the bounds are not sufficiently close to each other,
a heuristic method is used to iteratively improve the bounds
using selective enumeration of a subset of the nodes. The
results presented in [15] showed that performing enumeration
at a small set of carefully selected nodes leads to a significant
improvement in the quality of the bounds. This is due to the
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fact that correlation between two arrival times only impacts the
maximum computation if the two arrival times have comparable
means. Hence, the correlation between two arrival times that
are substantially shifted can be ignored without incurring sig-
nificant error.

In a related work [60], a Bayesian-network-based approach
for representing the statistical timing graph is presented for
handing topological correlations. The Bayesian-network for-
mulation prescribes an efficient method to factorize the joint
distribution over the entire timing graph into an optimal set
of factors. Although the worst-case runtime complexity of
such an approach remains exponential, the complexity grows
exponentially with the size of the largest clique in the circuit,
which, in practice, is found to grow much more slowly than the
circuit size.

In [61], the authors modeled arrival times as CDFs and delays
as PDFs. Using a piecewise linear model for CDFs and PDFs,
they present a computationally simple expression for perform-
ing the sum and maximum operations. Furthermore, they also
presented a method for handling reconvergent fan-outs using
a dependence list associated with every arrival time, which
are propagated through the circuit and pruned for increased
efficiency. Using error budgeting, an approach to optimize the
runtime of this method was presented in [62]. A method to
generate device-level discrete delay distributions from the un-
derlying process-parameter distribution was presented in [63].

B. Dependence Propagation Approaches (Parameter Space)

In the previous section, we discussed techniques that con-
sider topological correlations. The next crucial step in the
development of block-based SSTA was to account for spatial
correlation of the underlying physical device parameters. The
basic difference between the two cases is that the correlation
among arrival times now originates from the correlation of the
device parameters. In addition, an arrival time at the input of a
gate can be correlated with the delay of the gate itself, impact-
ing the sum operation in addition to the maximum operation.

In the distribution propagation approaches, the gate delays
are the basic RVs in the formulation. However, to model the
correlation in the physical device parameters, it is necessary to
model these device parameters themselves as the basic RVs.
The delay of the gates is therefore expressed as a function
(linear or nonlinear) of the physical or electrical device param-

Fig. 13. Principal components of two positively correlated RVs.

eters. It is this functional form that expresses the dependence
of the gate delays on the device parameters, which is propa-
gated through the circuit. This concept of representing delay
dependences with a parametric delay model was first introduced
in [64]. To enable such techniques, it is necessary to develop
a model of the spatial correlation of the device parameters.
Therefore, we first discuss some of the models for expressing
the correlation of device parameters and then show how these
can be used to compute the final circuit delay.

1) Correlation Models: To exactly model spatial correlation
between the physical parameters of two devices, a separate RV
is required for each device. However, the correlation between
two devices is generally a slow monotonically decreasing func-
tion of their separation, decaying over distances of hundreds of
micrometers. Therefore, simplified correlation structures using
a grid model [29] or quadtree model [28] have been proposed.
These models allow the correlation among gates of the die to be
expressed using a smaller set of RVs.

In a grid model, the overall die area is divided using a square
grid. It is assumed that the grid size is chosen such that all gates
within a single square on the grid can be assumed to have per-
fectly correlated spatial variations. Let us now consider the RVs
required to model variations in a given process parameter. Each
square in the grid corresponds to an RV of a device parameter,
which has correlations to all other RVs corresponding to the
other squares. To simplify the correlation structure of the RVs,
this set of correlated RVs is mapped to another set of mutually
independent RVs with zero mean and unit variance using the
principal components of the original set of correlated RVs.
The original RVs are then expressed as a linear combination
of the principal components. These principal components can
be obtained by performing an eigenvalue decomposition of the
correlation matrix, as explained in more detail in [65].

Intuitively, this is shown in Fig. 13 where the distribution of
two correlated jointly normal RVs A and B is shown. In the
scatter plot, the x-axis is the value of A, whereas the y-axis
is the value of B. If A and B were independent, the scatter
plot would form a perfect circle or a horizontal or vertical oval.
The diagonal distribution shown indicates positive correlation
between A and B since large values of A tend to correspond
to large values of B. The principal-component-analysis (PCA)
method expresses A and B using two new RVs C and D, using
the rotated axes r and s. RVs A and B can be expressed using
a linear combination of C' and D. Furthermore, the rotation of
r and s ensures that C' and D are independent.

It is important to note that constructing the correlation matrix
directly from a distance-based correlation function may result
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Fig. 14. Modeling spatial correlation using quadtree partitioning. The
numbering of regions in different levels is shown in the figure. A region
(4, j) intersects the regions (¢ + 1,45 — 3)— (¢ + 1, 47).

in a nonpositive-definite matrix. Furthermore, the correlation
matrix must be positive definite and that this condition may be
violated if the matrix is constructed from an arbitrary distance-
based function or from measured data (especially if noisy).
Hence, some techniques, such as replacing all negative eigen-
values by zero, may need to be used. This problem has been
investigated in [66]—[71].

The quadtree model proposed in [28] and [43] also parti-
tions the overall die area into a number of regions. However,
instead of using PCA to express the correlated components
of variations, it uses an additive approach to consider the
spatial dependence of process parameters. This is achieved by
recursively dividing the area of the die into four equal parts,
which is known as quadtree partitioning. As the regions of the
die are recursively divided into parts, the number of parts at
each level increases by a factor of four, as shown in Fig. 14.
Each partition, at all levels of the quadtree, is assigned with an
independent RV. The spatially correlated variation associated
with a gate is then defined to be the sum of the RV associated
with the lowest level partition that contains the gate and the
RVs at each of the higher partitioning levels that intersects
the position of the gate. The correlation among gates arises
from the sharing of some of the RVs at higher levels of the
quadtree. The number of shared RVs depends on the distance
between the two gates. Moreover, a larger fraction of the
variance can be allocated at higher levels of the quadtree if the
parameter is known to be more strongly correlated over large
distances. In [72], a method for determining the values of the
RVs associated with each partition is presented.

An alternative grid-based model was proposed in [33] where
only four RVs are used to model the correlation structure. The
four RVs are assumed to be associated with the four corners of
a die, and the RVs associated with the gates inside the design
are represented as a weighted sum of these four RVs, where the
weighting coefficients are functions of the distance between the
position of a gate and each of the four corners of the die.

In [73], the authors use the Karhunen-Loeve expansion
(KLE) to express the distance-based correlation function in
terms of a set of RVs and an orthonormal set of deterministic

functions related to the position of a gate on the die. This allows
the correlation to be expressed as a continuous function of
the location of a gate. In addition, the authors show that KLE
provides much greater accuracy as compared to PCA of a grid
model [29], or equivalently, it provides similar accuracy with a
reduction in the number of RVs.

2) Propagation of Delay Dependence on Parameter Varia-
tions: All the described correlation models share the common
characteristic that the set of correlated device parameters is
represented by a (typically linear) function of independent RVs.
In block-based SSTA, this representation of the correlation is
then carried over to the delay and signal arrival times, which
are represented in a so-called canonical form. In this section,
we will assume that the canonical form is a linear function of
normal RVs, which allows us to express the canonical form as

do = pla + Z a;zi + ant1 R ()

where u, is the mean delay, z; represents the n independent
RVs used to express the spatially correlated device-parameter
variations, R represents the residual independent variation, and
coefficients a/s represent the sensitivity of delay to each of the
RVs. The crucial step is to express the results of both the sum
and maximum operations in canonical form. This allows the
expression of the arrival time to be maintained in canonical
form during propagation through the timing graph. This in turn
enables the use of a single sum and maximum operation at all
locations in the timing graph.

The first operation requires the computation of the sum C' of
two delay distributions A and B, C' = A + B, where A, B, and
C are expressed in canonical form. Due to the nature of the sum
operation, C' can be easily expressed in canonical form, and its
coefficients can be computed as

fe = fha + o (©6)
¢ =a; +b; Vi:1<i<n 7

Cn+1 :q/a%_,'_l +b%+1. )

Note that since the last term represents independent varia-
tions, it is not correlated with the canonical expressions for A
and B. The overall contribution of these independent variations
to C'is therefore obtained by computing the root sum square of
the individual independent contributions.

The second operation requires the computation of C =
maximum(A, B). Since the maximum is a nonlinear function,
the maximum of two canonical forms cannot be expressed
exactly in canonical form. Hence, the authors in [27] and [29]
propose the following algorithm for computing a statistical
approximation Cjypprox Of the maximum of two arrival times
A and B.

1) Compute variances and covariance of A and B

n+1 n+1

n
2 2 2 2
o, = E a;, oy = E by, r= E a;bi.  (9)
i=1 i=1 i=1
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2) Compute tightness probability T4 = P(A > B) (the
probability that arrival time A is larger than B) as pre-
sented in [36]

TAzé(”“;’“’) (10)
where
B(z) = /qﬁ(x)da: (11)
1 =2
0 =\/o% +0% —2r. (13)

3) Compute mean and variance of C' = maximum(A, B)
using the results from Clark’s work [36]

te = paT'a + Mb(l - TA) +0¢ (,Ua;ll'b) (14)

07 = (pa+02)Ta+ (o +03) (1 —Ta)

+ (tta + 10)0 (“;‘“’> — . (15)

4) Compute sensitivity coefficient ¢; of Capprox using the
tightness probability

ci =a;Ta+b;(1—Ta) Vi:l<i<n. (16)

5) Compute sensitivity coefficient ¢, of canonical form
Capprox to make the variance of Cypprox €qual to the vari-
ance of C' = maximum(A, B). It was shown in [74] that
a valid ¢, 11 always exists as the residue (62 — > ¢7) is
always greater than or equal to zero.

The approach effectively computes the first two moments of
C in aforementioned steps 1)-3) and then approximates the
maximum using a canonical form in steps 4)-5). The coeffi-
cients associated with z;s are obtained by computing the sum of
the two canonical models weighted by their respective tightness
probabilities, whereas the coefficient of the independent term is
determined to match the variance of C,pprox and C. In addition,
this approximation was shown to match the correlation of C' and
the z}s [29].

In [28], the authors propose a similar canonical form. How-
ever, the independent component of variation is propagated as a
discretized delay distribution. The assumption of normal RVs in
the canonical form is relaxed, whereas the PDF of the indepen-
dent variables is assumed to be bounded. The sum operation is
performed as mentioned previously. However, the independent
term of the sum is obtained by numerically convolving the
two independent distributions. The maximum of two PDFs is

Bound: C, ..~ max(U,, Uy

Accurate 7 " + max(a, b)AX

max(d,d,) N [~~~ Linear Approximation

A
7 -
\ v - —v’\—

- -
e d,=p,+a AX
[+7 b AX

approx

A
Al

AX

Fig. 15.
and dp.

Exact, approximation and bound of the maximum function of d,

approximated by computing a bound on the exact maximum
using the relation that

max (iai,i@) < zn:max(ai,xi). (17)
1 =1 i=1

1=

Using the prior inequality and the fact that a numerical maxi-
mum of the discrete distribution, as computed in Section IV-A,
produces an upper bound, the authors compute the bound of the
maximum in canonical form.

Intuitively, we can understand the previous linear approxi-
mations of the maximum as follows. Consider the very simple
canonical form for two delays d, = o + aAX and dy, = pp +
bAX, where p, and p, are the mean delays of d, and dp,
respectively, and a and b are their sensitivities to the common
RV AX. In Fig. 15, an example of d, and d; is shown as
a function of AX. The maximum of d, and dj, is the upper
envelope of these two intersecting lines, which is a nonlinear
function and cannot be expressed exactly by the canonical form.
Hence, to represent this maximum, a linear function of AX
must be constructed that approximates this nonlinear function.
The approach presented by Visweswariah et al. [27] and Chang
and Sapatnekar [29] does so by weighting the sensitivity of d,,
and d; to AX by their statistical importance and construct-
ing an approximation labeled cpprox in Fig. 15. Note that
Capprox Will at times underestimate and at times overestimate
the actual result. On the other hand, the method proposed in
[28] constructs a bound d., .., = lepouna T Chound AX, Where
Hepouna = Max(tla, ttp), and Cpound = max(a,b). As can be
seen, the error of capprox Will be smaller than that of cpound,
whereas cpoung Will be guaranteed conservative.

Note that the aforementioned methods do not consider the
correlation of the statistically independent variation due to
reconvergence. Extended canonical models have therefore been
proposed by Zhang et al. [75], [76], which maintain a separate
term for the independent variation associated with each gate.
This leads to a significant increase in the size of the canonical
form and the ensuing computational complexity. Hence, the
authors have also proposed pruning techniques to reduce the
size of these canonical expressions.

C. Nonlinear and Nonnormal Approaches

We have discussed various phenomena that result in nonnor-
mal delay and arrival-time distributions. Recently, the problem
of nonnormal STA has attracted a lot of attention. Unfortu-
nately, these statistical timing approaches to address nonnormal
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physical device-parameter distributions or nonlinear delay de-
pendences incur significant computational overheads.

In [31], [32], and [77], the authors extend the linear canon-
ical delay model to include quadratic dependences on device
parameters. Following a PCA analysis of the set of correlated
device parameters, the canonical form can be expressed as

dq = b + Zaizi + Z Zbijzizj + ap+1R.

i=1j=1

(18)

To enable arrival-time computations using such a quadratic
delay model, we need to define the sum and maximum oper-
ations using quadratic canonical expressions. The sum of two
expressions in quadratic form can be readily seen to result in
a quadratic canonical form. In [31], the authors use moment
matching to calculate the maximum, again expressed in the
quadratic canonical form, where the moments are calculated
using numerical integration. The same problem is handled using
a conditional linear maximum operation in [32]. The condi-
tional maximum operation implies that the maximum operation
is carried out only under the condition that the resulting dis-
tribution has a small skew. An estimate of the skewness of the
maximum is obtained by assuming the two input distributions
to be normal RV's with the same mean, variance, and correlation
(as the original RVs) and then using Clark’s expression [36] to
estimate the skew of the maximum. If the skewness is above the
threshold, the maximum is postponed, and both distributions
are propagated through the circuit as a set. If the skewness is
below a threshold, the maximum is computed at that node. To
limit the number of distributions being propagated through each
node of the DAG, two distributions are immediately replaced by
their maximum as soon as their skewness is found to be lower
than the threshold.

Nonnormal physical or electrical device parameters with lin-
ear dependences are considered in [34], which uses a canonical
expression of the form

dg = e + Zaizi + Zanﬂznﬂ +ap+1 R (19)

[ j=1

where z; to z,, represent sources of normal variations, and z,, 11
to z,4m are RVs with nonnormal variations. The authors use
independent component analysis as an analog of PCA to map
the correlated nonnormal RVs to a set of uncorrelated RVs.
The sum operation using such a canonical expression can be
directly expressed in canonical form. The maximum operation
is performed using a moment-matching technique based on
asymptotic probability extraction [78].

In [30], the authors generalize the first-order canonical form
by allowing nonlinear dependences or nonnormal device varia-
tions to be included as

da = Ua + Z a;z; + f(ZnJrly ceey Zn+m) + an+1R (20)

where f represents the nonlinear function and is described as a
table for computational purposes, and RVs 2,1 to 2,4, rep-
resent sources of normal variations with nonlinear dependences

or nonnormal variations. The tables describing the nonlinear
part of the canonical expressions are computed numerically to
perform the sum operation. The maximum operation is per-
formed using tightness probabilities. The tightness probability
and the first two moments of the maximum are computed by
estimating their value conditioned on the value of the nonlinear
parameters and then combining them using Bayes’ theorem.
The conditional values can be estimated in the same manner
as in the linear case described above. The authors show that
this approach is efficient for the cases where only a few of the
parameters demonstrate complex nonlinear and/or nonnormal
behavior.

The SSTA approach presented in [33] uses a Taylor-series
expansion-based polynomial representation of gate delays and
arrival times, which is able to effectively capture the nonlinear
dependences. The sum of such two expressions results in a
polynomial representation, thus retaining the canonical form.
To compute the maximum the authors use regression analysis
while limiting the approximating polynomial representation of
the maximum to a reasonable order. In addition, the authors
propose to propagate both polynomial and linear delay expres-
sions to reduce the overall complexity of the approach. The
linear delay expressions are then used to estimate the tightness
probability and the first two moments of the distributions of the
maximum. The coefficients of the polynomial approximation of
the maximum are then obtained by combining the two original
polynomial expressions weighted by their tightness probability
and then scaling the coefficients to match the computed first
two moments.

In [35], the authors propose the use of skewed normal
distributions to model arrival-time distributions. Skewed nor-
mal distributions generalize the normal distribution with an
additional skewness. This allows for better accuracy when the
maximum of two normal RVs results in an output distribu-
tion with significant skew. In addition, the authors extend the
Clark-based maximum operation to compute a maximum of
two skewed normal distributions.

V. BRINGING SSTA TO MATURITY

DSTA has evolved substantially over the last two decades
and handles several technology-scaling-related issues such as
resistive and inductive shielding, crosstalk noise, power/ground
noise, clock jitter and skew, transparent latches, and more.
However, most SSTA researchers have, to date, mainly focused
on solving the basic SSTA algorithm—the sum and maximum
operation required for the propagation of arrival times from
the source node to the sink node of the timing graph for
combinational circuits. For the adoption of an STA approach,
the capabilities of this basic SSTA algorithm must be extended
to match the current state of DSTA. For instance, the basic
SSTA method presented here assumes that edge weights of all
edges in the timing graph are given. Therefore, new methods
are required for modeling gate delays, coupling noise, and
interconnect delays in the presence of process variations.

Recently, a few approaches have been proposed for ad-
dressing these issues in SSTA. A response-surface-method-
based statistical gate-delay-modeling technique that handles
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both die-to-die and within-die variations was presented in [79]
and [80]. The authors in [81] propose a statistical gate-delay-
modeling technique that considers multiple input switching.
In [82], a probabilistic collocation-based method is presented
to efficiently construct statistical gate-delay models. An ap-
proach to compute statistical gate delays in canonical form
is presented using approximate variational RC'—7 load and a
variational effective-capacitance calculation procedure in [83]
and [84]. A statistical framework for modeling the effect of
crosstalk-induced coupling noise on timing was presented in
[85] and [86].

Likewise, several approaches have been proposed for per-
forming variational interconnect analysis [87]-[98]. The work
in [87] presents a study of the effect of interconnect-parameter
variations on projection-based model-order-reduction tech-
niques using matrix-perturbation theory. A balanced-truncation
(BTR) method for the analysis of interconnects is proposed
in [88] for handling interconnect variations. Using linear frac-
tional transforms, the authors in [89] present a BTR-like
method for performing model-order reduction. A method for
finding the functional representation of interconnect response
in terms of polynomial chaos of process variations is proposed
in [90]. Finally, the authors in [91] and [92] have proposed
statistical extensions of the empirical D2M delay metric for
approximating the distribution of interconnect delay.

STA of sequential circuits is another area that still requires
significant investigation. Several issues related to sequential
timing, such as accurate modeling of variations and depen-
dences in the clock tree, clock-skew analysis, common-path
pessimism-removal problem, and clock-schedule verification
for multiple clock domains and latch-based designs, still need
to be resolved. Recently, several research efforts have focused
on statistical analysis of latch-based designs [21], [23]-[25].
Deterministic timing analysis for latch designs is traditionally
performed using the Bellman—Ford algorithm. However, inac-
curacies in the maximum function preclude a direct extension
of such an approach to statistical timing. In [21], the authors
map the timing-analysis problem to a cycle-detection problem
on a transformed graph. The graph in the case of early delay
analysis (under a conservative formulation [99]) is amenable to
such an approach. However, cycle detection requires multiple
iterations in the case of late-delay analysis.

Finally, for an SSTA to enable effective circuit-optimization
methods, efficient methods for slack computation are needed,
which utilize incremental analysis. Some initial approaches for
slack computation in SSTA are given in [100]-[102]. Since a
more detailed discussion on statistical-optimization methods is
not possible in the scope of this paper, the reader is referred to
the following publications on this topic [103]-[140].

Apart from these issues pertaining to the timing analysis
and optimization methodology, there are other key practical
challenges that need to be resolved. Process variability also im-
pacts postfabrication testing, and hence, testing methods must
also be extended to find statistical critical paths [141]-[146].
Furthermore, the foundries must devise new test and mea-
surement structures for extracting spatial-correlation models.
Similar to design-rule checks, the designers and foundries
need to agree on a business model for communicating the

statistical characteristics of the fabrication process (i.e., the
device-parameter distributions and their correlation) without
disclosing proprietary information. Some initial progress is
underway in this area. One of the leading semiconductor
foundries has recently announced support for statistical-design
methodology in its reference flows for 65-nm technology [147].

VI. CONCLUSION

SSTA has gained extensive interest in recent years. Numer-
ous research findings have been published in literature and
a number of commercial efforts are underway at this time.
However, the obstacles to widespread adoption of SSTA in
industry remain formidable. Much attention has been paid to
the modeling and analysis of spatial correlations, nonnormal
physical device-parameter distributions, and nonlinear delay
dependences. However, the current state-of-the-art SSTA meth-
ods still do not address many of the issues that are taken for
granted in DSTA, such as interconnect analysis, coupling noise,
clocking issues, and complex delay modeling. A number of
these issues can probably be addressed fairly rapidly, whereas
others may prove more evasive. In addition, a major concern
is the lack of silicon verification of the proposed methods and
the limited availability of statistical foundry data in a standard
format. Finally, SSTA must move beyond pure analysis to
optimization to be truly useful for the designer. If silicon shows
that statistically optimized designs have substantially higher
yield than deterministically optimized designs, an adoption of
SSTA is virtually guaranteed.
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