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Abstract 
 
Continued technology scaling exacerbates the 
incidence of degradation and failure in integrated 
circuits due to mechanisms such as oxide breakdown, 
negative bias temperature instability and 
electromigration.  This work analyzes the impact of 
different factors on lifetime distributions for the oxide 
breakdown effect using a novel monte carlo approach 
based upon the percolation model and BSIM4.  
Results of the analysis of oxide failure distributions are 
used to explore real-time lifetime projection and the 
use of in-situ monitoring circuits.  Under an ideal 
sensor assumption, the work shows that 500-1000 
sensors would be needed to provide lifetime projections 
with error under 8-10%. 
 
1.  Introduction 
 

The continued, aggressive downscaling of 
dimensions in forthcoming CMOS technology 
generations [1] stands to increase the risk of significant 
reliability issues in integrated circuits.  Conventional 
or constant electric field scaling law, in table 1, dictates 
that supply voltages must be reduced to maintain a 
constant electric field as the critical dimensions of 
CMOS transistors and wires shrink.  However, in 
recent years, the voltage scaling trend of constant 
electric field scaling [2] has been violated to maintain 
the saturation current and other performance metrics.   

Oxide breakdown (OBD) and the negative bias 
temperature instability effect (NBTI) are two reliability 
failure mechanisms for integrated circuits that are 
strongly impacted by electric fields in the gate oxide 
region.  Both mechanisms degrade device structure 
through collisions between particles in the oxide lattice 
or the oxide-silicon interface region.  Higher electric 
fields and temperatures lead to vastly different rates of 
degradation in MOSFET devices. 

Before a reasonable approach to controlling 
reliability breakdowns and degradation can be 

proposed, there are important questions to answer 
about the nature of the problem.  Is it typical to see 
outlying device failures or will failures occur steadily 
after the first failure?  How will temperature, voltage, 
process variation and even circuit activity impact the 
probability of failure or degradation?  Is there 
significant spatial correlation between failure events?  
This work attempts to address the aforementioned 
issues and determine the most effective methods for 
reducing the probability of failure or degradation 
through voltage, temperature or activity reduction.  
The conclusions from the analysis are used to explore 
the limitations of a real-time monitoring approach to 
understanding and controlling reliability issue.  
Assuming ideal sensors, confidence bounds for the 
error of real-time projection methods are presented as a 
function of sensor count. 

Section 2-3 presents the modeling used to simulate 
the failure distributions for the oxide breakdown 
mechanism.  Oxide breakdown is an ideal mechanism 
for this study since there are a variety of mature 
modeling approaches and it is a significant limiting 
factor on the scaling of device dimensions in future 
technologies.  Section 4 will present results from 
simulation on the distribution of failure for the oxide 
breakdown mechanism.  Section 5 details the 
implications on sensor-based monitoring techniques. 

 
2.  Oxide Breakdown Modeling 

 
Oxide breakdown, or dielectric breakdown, is a 

degradation mechanism that results in a low-impedance 
path through an insulating or dielectric barrier.  
Failures related to this low-impedance path are typically 
manifest as abnormally high off-state leakage current, 
changes in circuit switching delay or even failure to 
switch in severe cases of degradation. 

The percolation model, proposed by DeGraeve [3], 
treats oxide degradation as a series of traps or defects 
generated in the oxide layer. During operation, each 
electron passing a dielectric barrier has a small 



probability to enter a high-energy state to tunnel 
through the insulating layer and collide with particles in 
the lattice, possibly creating oxide traps or defects.  
Chaining paths of these oxide defects in the dielectric 
barrier reduce the energy level required for conduction 
through the layer, and therefore increase the probability 
that electrons will travel through the layer. 

Defect generation of tunneling charges is the 
wear-out mechanism for thin dielectric films in the 
percolation model.  When a critical defect density 
inside the oxide volume is reached, there is a high 
probability that a low-impedance defect path ultimately 
leads to uncontrolled current and oxide breakdown.  
The relationship between charge tunneling through the 
oxide and the defect density is expressed below in (1), 
where NBD is the defect density, PDG is the probability of 
defect generation, and Itunnel is the tunneling current, V is 
the voltage across the oxide, and T is the temperature 
[4]. 
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The percolation model places defects of a certain size 
into a 3-D oxide volume until a path of overlapping 
defects is created between the top and bottom planes.  
Repetitive simulation at a given dielectric thickness 
results in a probability density function for a chain of 
defects as a function of the defect density.  Using the 
defect density, the probability of defect generation and 
the injected charge or tunneling current are used to 
calculate the time to formation of the defect chain, 
according to the relationship in Eq. (1). 

The tunneling current through a gate oxide is 
calculated using BSIM4 model equations [5] in this 
work. In this work, published defect generation 
relationships from an IBM technology node are used in 
the simulations [4]. The empirically collected data is fit 
to an equation relating the voltage and temperature [6] 
of the oxide layer to the probability of defect generation.  
In (2), VDD is the stress voltage applied to the oxide and 
T is the temperature of the oxide. 
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3.  Simulation Methodology 
 
 Using the oxide breakdown model detailed in the 
previous section, a monte carlo simulation methodology 
is utilized to generate a variety of oxide breakdown 
distributions with differing voltage, temperature, 

variation and stress time inputs.  The diagram 
depicting the basic method used to generate the oxide 
breakdown distributions is outlined in Fig. 1. 
 The simulation method begins by generating a 
mapping of spatial variation in oxide length, width and 
thickness using a multi-level variation model.  The 
variation model is a four-level tree model, with a global 
value at the top and random components on the lowest 
level.  The values are normally distributed with 
parameter appropriate levels of variation listed in table 
1.  Voltage and temperature values are statically set for 
the simulations presented in this work. 
 

Table 1. Parameter Values for Simulation Framework 
Symbol Quantity Value 
Ldrawn channel length 130 nm 

Vth0 device threshold voltage 250 mV 

VDDnom nominal supply voltage 1.2 V 

Tox oxide thickness 1.7-1.9 nm

σ1-TOX global variation sigma for Tox 0.036 nm (2.0%)

σ2-TOX 2nd tier variation sigma for Tox 0.009 nm (0.5%)

σ3-TOX 3rd tier variation sigma for Tox 0.009 nm (0.5%)

σR-TOX random variation sigma for Tox 0.036 nm (2.0%)

σ1-W/L global variation sigma for W/L 4.0 nm / 2.6 nm 

σ2-W/L 2nd tier variation sigma for W/L 1.0 nm / 0.65 nm 

σ3-W/L 3rd tier variation sigma for W/L 1.0 nm / 0.65 nm

σR-W/L random variation sigma for W/L 4.0 nm / 2.6 nm 

 
The variation of length, width and oxide thickness is 

used to initialize the 3-dimensional oxide container for 
the percolation placement simulation.  The small 
variations influence the density required to create a 
continuous chain between the top and bottom of the 
oxide.  The defect density needed to complete the chain 
is determined from the percolation and used to calculate 
the time-to-failure. 
 The variation information and the 
voltage/temperature data is used by the BSIM4 model 

Figure 1.  Monte carlo simulation framework for 
generating oxide breakdown distribution. 



and the empirically fit probability of defect generation 
relationships to calculate the TTF of the oxide being 
simulated.  The stress state, or the fraction of real time 
that the oxide is under max stress, is sampled from a 
simple bimodal distribution with peaks around 20% and 
80%.  This value directly modifies the “rate of injected 
charge” in a linear fashion, adding a realistic factor to 
spread the distribution of oxide breakdown that would 
be typical in a system not containing all oxides stressed 
continuously. 
 In the final step, the probability of defect generation, 
gate current and stress state are combined using the 
relationship in (1) to calculate the TTF for a single oxide 
in the simulated chip.  The simulation can be used to 
characterize a sufficient number of oxides from one 
“chip-level” variation map and voltage/temperature 
profile.  The entire process loops at the chip-level to 
develop distributions for different sets of process 
variation under the same parameters and 
voltage/temperature traces. 
 
4.  Failure Distribution Analysis 

 
The simulation framework was used to generate a 

variety of oxide breakdown distributions at different 
oxide thicknesses, temperatures and voltages.  An 
important goal for the analysis is to explore the impact 
of various inputs to the reliability model for oxide 
breakdown.  To initially present the impact of process 
variation, state dependence and the inherent 
randomness of oxide breakdown, a simulation with 
fixed oxide dimensions, voltage and temperature is 
explored.  The voltage is fixed to 1.2V, temperature at 
350K and the oxide is 400nm x 130nm.   

Graphically, in fig. 2, the lifetime distribution for a 
chip composed of 25,000 oxides is presented and the 
change in the distribution can be seen as the factors are 
added to the analysis one by one.  Initially, the 

percolation model is used alone to observe the innate 
randomness of the process, and this results in a 
distribution that clearly matches a Weibull, which is 
used in most oxide breakdown projection 
methodologies.  However, as the effect of process 
variation is added, the curve PV-Percolation in fig. 2 
shows a distribution that has shifted to appear 
lognormal.  The variation in the oxide thickness and 
the oxide size causes an exponential effect on the 
tunneling current and injected charge, which introduces 
this lognormal shape.  The effect of state dependence, 
the fraction of lifetime that the oxide spends at high 
stress (when not at stress, degradation is assumed to be 
0), spreads the distribution, pushing the peak of early 
failures to an earlier predicted year and smoothing the 
long tail on the right side.  The trends in distribution 
shape shown in Fig. 2 determine the appropriate fitting 
functions for real-time lifetime projection in Section 5. 
 Figure 3 is a plot of the failure distribution of a 
1.9nm oxide with 400x130nm dimensions considering 
percolation, process variation, stress state and varying 
environmental conditions.  The effects of 
environmental conditions on the failure distribution of 
the oxides is enormous in this plot, particularly so for 
the wide range of temperatures (60-110C).  The 
voltage range is selected to be on the order of a static 
offset in a regulator or a consistent small amount of 
noise in a power supply network.  Even small voltage 
discretions lead to large changes in potential oxide 
lifetime due to exponential relationships in voltage and 
temperature.  One of the greatest advantages of 
real-time monitoring of these effects is the ability to 
capture the impact of the environmental conditions on 
each die, which can be difficult to estimate for 
general-purpose components. 

Figure 4 displays the 25th and 75th percentile values 
for the first failures of a simulation of 100 dies with 
25,000 oxides on each die.  A simulation size of 
25,000 oxides provides reasonable simulation time and 

Figure 3.  Failure distribution for 1.9nm oxide with 
conditions varying from 1.15-1.25V and 60-110C. Figure 2.  Oxide failure distributions with different 

simulation components included. 



exhibits the comparable results to a 250,000 oxide 
simulation.  Starting with the basic percolation 
simulation at the top, the added effects typically reduce 
the TTF, for example the baseline percolation 
simulation minimum observed TTF of 12.17 years, 
becomes 1.01 years when considering process variation, 
state, and temperature effects.  
 

Table 2. Spatial Correlation between Blocks 
Description Expected Simulated 

2nd failure in 3rd level block of first failure 6.25% 3.20% 
2nd failure in 2nd level block of first failure 25.00% 22.30% 
5 of first 5 failures share 2nd level block 0.39% 3.20% 
4 of first 5 failures share 2nd level block 1.56% 9.80% 
3 of first 5 failures share 2nd level block 6.25% 29.50% 

The 2nd level blocks are ¼ of the die area in the process variation 
model, and the 3rd level blocks are 1/16th of the die area in the model. 
 
 The effects of spatial correlation within the 
multi-level process variation model are analyzed in 
table 2.  From the simulations of 100 dies consisting 
of 25,000 oxides, there are no signs of direct spatial 
correlation between the first observed failure and the 
second observed failure.  However, when considering 
the first 5 or 10 failures, the data supports a moderate 
level of spatial correlation in large (25% die area) 
blocks.  Monitoring circuits may be able to detect 
large areas that may be more susceptible to oxide 
failure, but to pinpoint a region for a second failure 
following an observed first failure is not likely. 
 The analysis of failure distributions using the 
simulation methodology answers many of the crucial 
questions posed in the introduction.  There is an 
innate randomness to the oxide breakdown effect, and 
outlying failures are typical.  Voltage and temperature 

have a dominant effect on predicted failure time and 
effects like state dependence and process variation alter 
the shape of the distribution from a pure weibull shape 
to nearly lognormal.  These observations guide the 
exploration of the use of real-time monitoring in 
section 5. 
 
5.  Real-time Monitoring 
 

Recent research into dynamic systems and 
reliability management has proposed the use of in-situ 
sensors to improve the inputs to model-based 
algorithms.  The results of section 4 show that much 
can be gained from a reliability standpoint if you have 
some awareness of environmental conditions and the 
process variation of the die.  Process variation and 
environmental conditions can be measure in real-time 
with known circuit techniques, yet even with 
knowledge of these values, a layer of modeling is 
needed to extrapolate the impact on reliability 
mechanisms.  If a sensor could be designed to isolate 
and directly measure the degradation due to a 
particular mechanism, this layer of uncertain modeling 
could be eliminated.  Based upon the analysis in 
Section 4, if an ideal sensor to detect the TTF for an 
oxide device under test could be designed, we aim to 
explore the bounds on accuracy and the requirements 
to gain some benefit from a real-time monitoring 
system. 

Based upon the near-lognormal distribution shapes 
from section 4, least-squares method, a modified 
least-squares method and maximum likelihood 
estimators for lognormal distributions were used to fit 
samples of simulated distributions to obtain a 
prediction.  The most accurate method for accurate 
prediction was least-squares fitting with the fit range 
censored to the earliest 30% of the sample set to ensure 
a good fit in the early failure range.  Subsequent 
results on the quality of real-time monitoring 
approaches assumes the modified least-squares fitting 
method. 

From the high degree of innate randomness in 
oxide breakdown failures, it is clear that multiple 
sensors will be needed to obtain any information when 
directly measuring the oxide degradation.  To analyze 
the effects of the number of sensor samples needed to 
effectively predict the TTF for a die, a simulation of a 
single die was performed and the failure times for the 
die are sampled (assuming the samples are the 
available sensors) with different sensor counts, ranging 
from 35 sensors to 5000 sensors on the die.  The error 
from the predicted value of TTF using the modified LS 
method is used as a figure of merit and the findings are 
listed in Table 3.  For the die in question, the actual 
failure time is 4.841 years (1.8nm oxide).  From this 

Figure 4.  25th to 75th percentile ranges for 100 die 
simulation of 1.9nm oxide first failures.  The bar to 
the left of each range indicates the minimum TTF 
outlier.  Each bar includes a different set of 
simulation components to demonstrate effects of 
process variation, state or temperature on failure. 



table, the sensor prediction approaches 10% average 
error around 1000 sensors.  The clear point is that if 
direct measurement is intended, many sensors will be 
required and they will need to be very compact and 
accurate to provide a reasonable degree of accuracy. 

 
Table 3. Sensor Count and Prediction Error  

TTF of Die = 4.841 years 
Sensors Abs. Mean Error 

( )
Min Error 

( )
Max Error 

( )35 3.7148 -3.5437 18.0896 
50 2.5499 -3.3444 18.7818 
100 1.4777 -3.8320 6.8266 
250 0.9150 -2.3437 3.6080 

500 0.7514 -1.8663 3.1098 

1000 0.4415 -1.1737 2.3487 

1500 0.3537 -1.2094 1.0934 

2000 0.3339 -0.9953 1.3249 

5000 0.1929 -0.5549 0.6913 

 
Figure 5 displays the 95% confidence bounds for 2 

different dies using the modified LS method as sensor 
count increases.  The worst case PVT line represents 
a typical corner estimate of the TTF for a chip from 
this process considering 85C, high voltage and 
pessimistic process variation.  With low amounts of 
sensors, the 95% confidence bound can be worse than 
the corner estimate, yet with 500-1000 sensors, even a 
95% confidence bound will result in a much better 
prediction than the corner model labeled worst-case 
PVT.  A carefully designed real-time monitoring 
system can realize excellent improvements in TTF 
awareness (and the dynamic control schemes possible 
with this knowledge) over traditional corner-based 
reliability qualification. 

Facing implementation of 500 or more sensors to 
directly monitor reliability mechanisms places strict 
constraints to realize a feasible system.  The sensor 
design needs to be on the order of a standard cell 
macro block to ease placement and routing for such a 
large number of blocks.  The accuracy requirement is 
high, since under the ideal assumption in this first look, 
large numbers of sensors are needed to reach an 
accurate prediction.  In an era of billion transistor 
systems, 500-5000 sensors are a feasible budget to 
control the difficult problem of a priori reliability 
qualification. 
 
5.  Summary 
 

This work presents a new method for oxide 
lifetime simulation that delivers lifetime distributions 
using a computationally reasonable approach.  
Analysis of the impact of process variation, state 
dependence and environmental conditions on the 

lifetime distribution of thin-film oxides is presented 
using the methodology.  The conclusions from the 
analysis of oxide lifetime distributions are used to 
explore the feasibility of direct real-time measurement 
of a highly random breakdown mechanism in a system.  
Assuming an ideal sensor is available; 1000-2000 
sensors throughout a chip can provide lifetime 
predictions with less than 10% average error.  Current 
and future work on small, embedded process and 
reliability sensors is underway and future work on the 
application and accuracy of sensors implemented in 
silicon is planned. 
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