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Abstract

Modeling and accuracy difficulties exist with traditional SSTA analy-

sis and optimization methods. In this paper we describe methods to 

improve the efficiency of Monte Carlo-based statistical static timing 

analysis. We propose a Stratification + Hybrid Quasi Monte Carlo (SH-

QMC) approach to reduce the number of samples required for Monte 

Carlo based SSTA. Our simulations on benchmark circuits up to 90K 

gates show that the proposed method requires 23.8X fewer samples on 

average to achieve comparable accuracy in timing estimation as a ran-

dom sampling approach. Results on benchmark circuits also show that 

when SH-QMC is performed with multiple parallel threads on a quad 

core processor, the approach is faster than traditional SSTA with compa-

rable accuracy. SH-QMC scales better than traditional SSTA with circuit 

size. We also propose an incremental approach to recompute a percentile 

delay metric after ECO. The results show that on average only 1.4% and 

0.7% of original samples need to be evaluated for exact recomputation of 

the 95th percentile and 99th percentile delays, after sample size reduction 

using SH-QMC. 

Categories and Subject Descriptors

J.6 [Computer Applications] Computer-Aided Design - computer-

aided design (CAD). 

General Terms

Algorithms, Verification
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1.   Introduction

Process parameter variations have taken on increasing importance in

nanometer-scale CMOS. Rather than using simple corner models that

capture worst-case behavior at the device level (and lead to large guard

bands), modern CAD tools are moving towards a more probabilistic view

of circuit timing behavior. In replacing corner models, there are two pri-

mary approaches that incorporate process parameter uncertainty in tim-

ing analysis. The first is to perform statistical static timing analysis

(SSTA) by modeling gate delay as a function of process parameters and

propagating these distribution functions to compute the distribution of

circuit delay [1,2]. We refer to these approaches as traditional SSTA. In

traditional SSTA it has proven challenging to efficiently model skewness

in the arrival time distribution which results from non-linearity of the

gate delays and the maximum function. Also, a number of modeling

issues are still in early stages of development, such as combined analysis

of large interconnect structures driven by non-linear drivers, coupling

events, and modeling of transparent latches. While some progress has

been made in addressing these issues [1-4], it is expected that a fully

mature traditional SSTA tool capable of performing timing sign-off may

not be widely available in the near future. The second approach is Monte

Carlo based SSTA, which involves selection of samples of the process

variation space to obtain statistical distributions of circuit timing behav-

ior. The application of Monte Carlo (MC) for statistical timing was dis-

cussed in [5], where it was shown that Monte Carlo based SSTA is

accurate even in scenarios with high dimensionality and non-standard

distributions in the process variation space, where traditional SSTA has

difficulties. However, there are two main difficulties with this approach.

First, the standard MC approach of random selection of samples in the

process variation space requires too many samples for sufficient accu-

racy, resulting in high runtime cost. Second, there is no work to show the

applicability of MC based SSTA for incremental statistical timing analy-

sis. In this work, we address both concerns. 

Standard techniques to reduce the sample size for MC based

approaches exist in statistics literature and are called variance reduction

techniques. The application of these techniques for parametric yield esti-

mation has been analyzed in literature [6-9]. In [6], a Latin Hypercube

approach for parametric yield estimation is proposed. In [7], mixture

importance sampling for statistical SRAM design and analysis is pro-

posed. The approach in [8] uses the control variates technique in con-

junction with importance sampling for timing yield estimation. However,

while several approaches are reviewed, no results are presented. In [9],

the authors propose to use Quasi Monte Carlo Analysis for yield estima-

tion. However, it is not clear how this approach can be extended to sys-

tems with large number of dimensions (variables) which is often the case

with process variation. Also, these approaches do not focus on the spe-

cific problem of using MC as an alternative to traditional SSTA for tim-

ing analysis. Variance reduction relies heavily on information about the

system [11], hence it is important to adapt it specifically to timing analy-

sis. To the best of our knowledge this work is the first to directly study

variance reduction aimed at improving the efficiency of MC-based SSTA

with an accurate process variation model considering intra-die variation

with spatial correlation [2] and uncorrelated random variation. 

ECO(Engineering Change Order) and synthesis tools require incre-

mental timing analysis techniques for fast recomputation of circuit delay

with small changes in the design. To meet time to market, designers need

tools capable of performing fast incremental timing analysis, and such

tools need to incorporate process variations. While incremental tech-

niques for traditional SSTA exist in literature [1], the lack of such tech-

niques has been a major drawback for MC based approaches to SSTA.

We address the specific problem of recomputing a percentile delay metric

after incremental circuit sizing. To the best of our knowledge, this work

is the first to address incremental timing analysis in MC based SSTA. 

This paper has two main contributions. First, we introduce a new

approach for variance reduction in MC based SSTA, Stratified Sampling

+ Hybrid Quasi Monte Carlo (SH-QMC). In SH-QMC, we propose to

use circuit timing criticality information for sample size reduction. We

use information about the criticality of variables to the circuit delay to

order them. For the most critical variables, we then employ techniques

that achieve high accuracy with few samples. For the less critical vari-

ables, we use techniques that are effective for problems of higher dimen-

sionality. The proposed approach is implemented and tested on

benchmark circuits with sizes up to 90,000 gates, and compared to a ran-

dom sampling approach for selecting samples in the process variation

space. In general SH-QMC shows large speedups relative to the random

sampling approach: 23.8X on average and upto 44X on the benchmarks

studied. Our results also show that the number of samples required does

not increase with the number of gates in the circuit. Additionally, when

SH-QMC is implemented with multiple threads on a quad core processor,

it is faster than traditional SSTA for comparable accuracy. We also

observe that the performance of SH-QMC scales better than traditional

SSTA with circuit size. 

 Second, we propose a technique to recompute a percentile delay met-

ric after incremental circuit sizing, where individual gates are resized. In

this technique, we use information local to the resized gate to prune out

most of the samples, leaving only a few samples to be reevaluated. Our

results for the incremental computation of the 95th percentile and 99th
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percentile delays of benchmark circuits show that on average only 1.4%

and 0.7% of original samples need to be evaluated for exact recomputa-

tion, even after sample size reduction using SH-QMC.

This paper is organized as follows. Section 2 discusses the applicabil-

ity of existing variance reduction approaches in statistics to the statistical

timing analysis domain. Section 3 presents our work on variance reduc-

tion for MC based SSTA. In Section 4, we propose our approach to incre-

mental statistical timing analysis. We present detailed results in Section 5

and conclude with Section 6. 

2.   Variance Reduction Approaches for Statistical Timing

MC based statistical timing involves selecting samples of the process

variation space to obtain statistical distributions of circuit delay. This is

mapped to the standard mathematical problem of MC, which is to esti-

mate the integral of a function, using samples in its domain. There are

standard techniques for variance reduction of MC, which include Quasi

Monte Carlo techniques, Latin Hypercube sampling, stratified sampling,

importance sampling and control variates. In this section, we briefly dis-

cuss their applicability to the statistical timing analysis framework. 

2.1  Quasi Monte Carlo 

The standard MC method addresses the problem of approximating the

integral of a function f(x) over the s-dimensional hypercube

, where x represents a point in an s-dimensional space. The

MC estimate of the integral f is given by the arithmetic mean of fi, which

are values of the function f(x) evaluated at n samples distributed through-

out the hypercube. The Koksma-Hlawka inequality relates the error

bound of a method to numerically estimate an integral using a sequence

of samples, to a mathematical measure of uniformity for the distribution

of the points, called “discrepancy” [10]. This inequality suggests that we

should use a sequence with the smallest possible discrepancy to evaluate

the function in order to achieve the smallest possible error bound. Such

sequences constructed to reduce discrepancy are called Low Discrepancy

Sequences (LDSs). Quasi monte carlo techniques are characterised by

their use of LDSs to generate samples. LDSs are deterministic sequences,

in other words there is no randomness in their generation. Intuitively,

these sequences are well dispersed through the domain of the function,

minimizing any gaps and/or clustering of points. Figure 1 illustrates that

quasi random sequences generate samples with lower discrepancy com-

pared to pseudo random sequences (sequences with properties similar to

“truly” random sequences). Sobol[12], Faure and Niederreiter[9] are

LDSs that have been studied extensively. In this work, we consider Sobol

sequences, which are known to be simple to construct and more resistant

to the pattern dependency issue (mentioned below), compared to the

other sequences. Interested readers can refer to [12] for a construction of

the Sobol sequence, and [13] for an implementation. 

 In the context of statistical timing analysis, Quasi Monte Carlo tech-

niques have been studied in [9]. The author notes that LDSs are imperfect

and as the number of dimensions in the problem increases, there is

degraded uniformity. This effect is especially significant among the

higher coordinates of LDSs, which show undesirable patterns as opposed

to the low discrepancy pattern in Figure 1. This phenomenon is referred

to as pattern dependency. The author suggests that in timing analysis the

lower coordinates of Sobol sequences, which have no significant pattern

dependencies, be assigned to the important variables in the sampling pro-

cedure. Therefore, a concept of criticality of variables in timing analysis

needs to be defined, which can be used to sort the variables in the order

of their decreasing importance.The coordinates of the Sobol sequence

can then be assigned to variables in this order. We present a technique for

ordering the variables based on their criticality to circuit delay in the sta-

tistical timing framework. 

A related point is that Sobol sequences are not accurate beyond a cer-

tain number of dimensions. Hence, in this work, we use Quasi Monte

Carlo techniques in conjunction with stratified sampling and Latin

Hypercube Sampling (LHS). The next two subsections provide a brief

overview of stratified sampling and LHS. 

2.2  Stratified sampling

Stratified sampling is a technique to partition the sample space into

mutually exclusive strata, and then sample using any of the known vari-

ance reduction techniques within each [11]. The stratification method in

this work is illustrated for a 2D example in Figure 2, where random vari-

able X is divided into 4 equal probability bins (X is equally likely to fall

in any of the 4 bins), whereas random variable Y is not binned. This

method is adopted when X is critical to the function value to be esti-

mated, whereas Y is not. In this way, the 2D space is partitioned into 4

strata as shown in the figure. Throughout the work, we use ‘bin’ to refer

to regions in individual variables, and ‘strata’ to refer to partitions in the

nD space, where n is the dimensionality. In general in multidimensional

space, 1 or more variables are binned, and the permutations of bins

across variables define strata. In the case of timing analysis, the timing

behavior of the circuit is more sensitive to the critical variables by selec-

tion and these variables are binned. Therefore within strata the timing

behavior exhibits lower variation and is easier to estimate. The technique

leads to accuracy with few samples, however cannot be used over very

large dimensions since the number of strata increases exponentially.

2.3  Latin Hypercube Sampling

Latin Hypercube sampling is a technique in variance reduction which

deals with multidimensional systems [14]. This technique tries to sample

each variable involved uniformly by dividing the variable into equal

probability bins. The samples from bins in variables are combined across

dimensions to obtain faster convergence than random sampling. This is

in contrast with taking all permutations of the bins across variables to
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Figure 1. Quasi random and pseudo random sequences.
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Figure 2. Stratification of a 2D space. Variable X is divided into 4 

bins, thus dividing the sample space into 4 strata.
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Figure 3. Latin Hypercube Sampling (a) Divide each variable in 8 equal probability bins and sample in bins. (b) Combine randomly to form 8 triplets
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define strata, and then sampling within each stratum as in stratified sam-

pling described above. This means that LHS can deal with large dimen-

sions, however with a moderate rate of convergence compared to full

stratification. 

 The LHS procedure is illustrated in Figure 3. Each random variable is

divided into equal probability bins. One sample is generated within each

bin. Such samples are combined across variables to obtain Latin Hyper-

cube samples. This is the procedure to obtain k samples, where k is the

number of bins per variable. To obtain mk number of samples, we repeat

the LHS procedure m times. 

Two other techniques that have been studied for application to inte-

grated circuit yield estimation are importance sampling and control vari-

ates. In general, these methods require more detailed information about

the circuit. For literature in statistics about the method, refer to [11].

More work is required to establish the effectiveness of these approaches

for use in the modern integrated circuit design process.

3.   Smart sampling based on timing criticality

In this section, we first describe our process variation model and then

go on to discuss our smart sampling approach. 

3.1  Process variation model

Our process variation model is based on [2] which takes into account

intra-die spatially correlated variation by partitioning the die into n ∗ n

grids and assuming identical parameter variations within a grid. There-

fore, each source of variation is represented by a set of random variables

for all grids. For example, transistor gate length variation is represented

by a set of random variables for all grids and the set is of multivariate

normal distribution with a covariance matrix RLg. Principal component

analysis is performed on these correlated random variables to obtain a set

of principal components. Similarly, principal components are obtained

for other sources of variation. Let pi : i=1,...,m be the principal compo-

nents of all global sources of variation. In addition to these global sources

of variation, we have an independent random variable ∆r to account for

random variation at the gate level. The delay for a gate is expressed as a

linear combination of principal components of pi’s and ∆r: 

(1)

where d0 is the gate delay mean, ki: i=1,...,m are the coefficients for

the principal components. pi’s and ∆r are independent unit normal ran-

dom variables after suitably scaling their coefficients. 

3.2  Stratification+Hybrid Quasi Monte Carlo(SH-QMC)

In our smart sampling approach SH-QMC, we propose to use circuit

timing criticality information to reduce the sample size for MC based sta-

tistical timing analysis. In the previous subsection, we have defined the

variables representing process parameter variation. In our proposed

approach, we order these variables based on their criticality to the circuit

delay using a timing criticality parameter Pcrit defined in the next subsec-

tion. We then apply Quasi Monte Carlo (QMC), stratified sampling and

LHS to variables based on their convergence property and the ability to

handle multiple variables (dimensions) as illustrated in Figure 4. The top-

most critical variables guide the stratified sampling approach, which

leads to faster convergence. Only the top 2-5 variables are used to guide

stratification since the number of strata increases exponentially with the

number of variables as explained in Section 2.2. QMC method is then

employed on the topmost to moderately critical variables for its fast con-

vergence properties. However, QMC can exhibit pattern dependencies

with large number of variables, so only a limited number of variables are

sampled using QMC. On the non-critical variables, we use Latin Hyper-

cube Sampling which is applicable for large number of variables, but has

slower convergence to an accurate result. 

The method is illustrated in Figure 5 using a 5 variable example. As

mentioned before, variables are ordered as critical, moderately critical

and non-critical. The two most critical variables r1 and r2 are divided

into 4 bins each (Figure 5a). A stratum is defined as a set of points in the

5D space restricted to one bin each in r1 and r2, but unrestricted in r3, r4

and r5. The total number of strata is 16, arising from 4 by 4 permutations

of the bins. Figure 5b illustrates one particular stratum which we use to

explain the remaining steps. In this stratum, points are restricted to bin 2

in r1 and bin 3 in r2. As shown in Figure 5c, QMC method based on

Sobol sequence is used to sample r1, r2 and r3 in the stratum and LHS is

applied to r4 and r5. Note that since we are only sampling within the stra-

tum, samples of r1 and r2 are restricted to the respective bins. QMC gen-

erates triplets as shown in the figure. For performing LHS, r4 and r5 are

divided into 8 bins each and one value is selected from each bin as in Fig-

ure 5c. 8 LHS pairs are generated by randomly picking from r4 and r5 in

one step of LHS. Two LHS pairs are shown in Figure 5d. Next, the LHS

pairs are combined with the QMC triplets to generate our final samples.

The procedure is repeated: LHS pairs are generated again in r4 and r5,

and QMC triplets are generated in the other 3 variables. These are then

combined as before. After generating the samples in this stratum, we

move to the next stratum and repeat our steps. In this manner, we gener-

ate samples in all 16 strata. 

As mentioned in Section 2.1, among the variables on which QMC is

employed, the lower coordinates of LDSs are assigned to the more criti-

cal variables. The order of criticality here is again decided using the

parameter Pcrit. 

Figure 4. Ordering variables using timing criticality. 
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3.3  Timing criticality Pcrit

To order the principal components, we employ a timing criticality

metric Pcrit. To compute Pcrit, we perform static timing analysis on the

nominal circuit to identify critical paths within a slack of s% of worst-

case arrival time, where s is a parameter. This STA run is performed

under nominal process conditions. Now, each grid is assigned a weight

equal to the number of gates falling in any of the potential critical paths.

Let wi
g be the weight of the ith grid. The weight of the jth principal com-

ponent is given by 

(2)

 where kij is the coefficient of the jth principal component in the ith grid

variation. This empirical technique leads to fast computation of Pcrit with

sufficient accuracy to guide our proposed SH-QMC.

4.   Incremental Evaluation of a Percentile Delay

ECO and synthesis tools require efficient incremental timing analysis

techniques for fast recomputation of circuit delay with small changes in

the design, while also accounting for process variation. In MC based

SSTA there is a lack of incremental capability to date. In this section, we

present an approach for the incremental evaluation of a specific percen-

tile delay of a circuit with a small change in circuit sizing. We illustrate

the approach for the case of single gate sizing in this work. However, the

approach can be extended to the case of simultaneous multiple gate siz-

ing. The key intuition is that if the samples for SH-QMC on circuit C are

reused for C’ (C with gate g sized), then most samples need not be

reevaluated to recompute the xth percentile delay; only those samples that

have a circuit arrival time ‘close’ enough to the xth percentile delay of C

need to be reevaluated. An upperbound on change in circuit arrival time

of a sample from C to C’ can be determined from a local bound computa-

tion involving only a few gates connected to the gate g being resized.

This bound can be used to prune out a majority of the samples, leaving us

with a few that need to be reevaluated. Further speedup can be achieved

with established techniques for incremental STA on the samples selected

for reevaluation. 

4.1  Algorithm

We perform timing analysis on an original circuit C using our SH-

QMC approach and store the samples for the process variation space and

the corresponding circuit arrival time in memory. Our approach for the

recomputation of a specific percentile delay using the stored samples is

illustrated in Figure 6. For each sample, a bound on change in circuit

arrival time from C to C’ (C with gate g sized) is obtained as explained in

Section 4.2. Each sample has a positive bound and negative bound for

either direction of change. The samples are sorted in the order of increas-

ing circuit arrival time for C. In Figure 6a, the samples are represented by

points on the circuit arrival time distribution curve. They are visited in

the decreasing order of arrival time starting from the xth percentile value

tx. A sample k is selected for reevaluation if its arrival time for circuit C

and the positive bound for k add up to exceed tx. For example, in Figure

6a, sample i is pruned out since its positive bound is not large enough to

cross tx. However, sample i-1 is reevaluated as it has a large enough

upper bound to cross tx. As illustrated in Figure 6b, the arrival time for i-

1 is recomputed. Sample i-1 is updated with this value of arrival time

which shifts tx to the right. Next sample i-2 is reevaluated, however the

arrival time value obtained is less than tx, so tx does not change. Sample

i-2 is also updated with the recomputed arrival time value. After consid-

ering all samples to the left of tx, we visit the samples to the right. The

criterion for reevaluating a sample here is that its arrival time for C and

the negative bound for the sample should add up to less than tx. After this

step, we repeat the procedure and visit samples to the left of the updated

tx. Samples reevaluated earlier are not visited again. The termination cri-

terion is that there are no samples to the left or right of tx which satisfy

the criterion for reevaluation. The final value of tx is the xth percentile

delay of C’. 

The justification for reuse of samples is that our metric to guide SH-

QMC Pcrit (Section 3.3) is measured at the grid level in our process vari-

ation model, so within reasonable ECO changes the timing criticality of

the circuit does not change to significantly alter our metric Pcrit. In par-

ticular, we are only concerned about the relative ordering of variables

based on Pcrit. Therefore with single gate sizing, the samples are still

accurate. For cases where there is significant design change, SH-QMC is

performed again to generate new samples. As mentioned the samples for

C are stored in memory. Our results on the benchmarks studied demon-

strate that the number of samples for SH-QMC that gives sufficient accu-

racy is 80 for the largest circuits. Therefore, we need to store 80 samples

for each gate. In general, if the number of samples required is much

higher, the memory overhead could be significant. Section 3.1 defined

the variables to model process variation, which are the principal compo-

nents for all sources of variation and an independent random component

at the gate level. Now, it is enough to store samples for these compo-

nents, as the device parameters can be retrieved using the values of com-

ponents. Storing samples for the principal components incurs negligible

memory overhead. In the case of the independent random component,

instead of storing all samples of the component for all the gates, we store

the initial ‘seed’ value for the pseudorandom number generator. Note that

for STA, gate delays are propagated in the topological order. This offset

in the topological order along with the ‘seed’ value is provided to the

pseudorandom number generator which reproduces the random numbers

while incremental analysis is performed. 

4.2  Computing circuit arrival time bound for samples

We compute the maximum possible increase and decrease in the cir-

cuit arrival time for each sample of circuit C using local gate delay

change information when gate g is sized. Define sets Fi(g) of fanin gates

of g, FoFi(g) of fanouts of gates in Fi(g) and Fo(g) of fanout gates of g.

We select subpaths that are candidates for obtaining the bounds in circuit

arrival time and evaluate the change in delay of these subpaths when g is

sized. Every subpath starting from an input pin of a gate in Fi(g) and end-

ing in an output pin of a gate in either Fo(g) or FoFi(g) is a candidate for

this evaluation. Some such subpaths could have more than one gate in

Fi(g). We assume that delay change is significant only in the gates in the

three sets defined above, therefore only these gates affect the change in

subpath delay. Now, we obtain bounds for circuit arrival time change for

a sample S as follows. Let P(g) be the set of all candidate subpaths. tS(p)

w
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Figure 6. (a) Samples are visited in decreasing order of circuit arrival 

time, starting from the xth percentile (tx). Samples with delta crossing 

tx are selected, others pruned. (b) Recomputation of circuit arrival 

time is performed at the selected sample and tx is updated. 
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and t’S(p) are delays for subpath p in sample S before and after sizing

gate g, respectively. Then the negative and positive bounds are given by: 

delta_neg(g,S) = (3)

 delta_pos(g,S) = . (4)

In other words, we find the maximum and minimum values of the

change in delay of candidate subpaths. As gate delay change is assumed

to be significant only in the local subcircuit (set of gates belonging to

Fi(g), Fo(g) and FoFi(g)), the computational overhead is low. In our

algorithm in Section 4.1, we only need either of delta_neg or delta_pos

for most samples. A delta_neg or delta_pos computation for a sample

involves gate delay computation and propagation in the local subcircuit

twice, one each before and after gate sizing. Therefore, the cost of arrival

time bound computation across all the samples for the percentile delay

recomputation is approximately twice that of performing Monte Carlo

analysis on the local subcircuit with smart samples. The runtime for this

is negligible compared to that of a single STA run for most practical cir-

cuits. 

5.   Results

Our simulation results are based on a 90nm industrial technology

library. In our implementation we only consider channel length variation

as a source of process variation for simplicity. However, this is not a lim-

itation of our approach. The inter-die spatially correlated intra-die and

uncorrelated random components of channel length variation are consid-

ered. The overall standard deviation is 10% of nominal channel length.

This amount of process variation increases absolute variability, but more

importantly serves to highlight the accuracy comparison of the tech-

niques considered. The number of grids in the spatial correlation model

for individual circuits is varied linearly with post-placement area starting

from 2 by 2 for the smallest circuit to 16 by 16 for the largest circuit. This

corresponds to a grid area of approximately 40µm by 40µm for all the

circuits. We compare our proposed SH-QMC approach with random

sampling and LHS based techniques. Simulations are performed on

ISCAS85 benchmark circuits [15], and 5 large circuits. These are Viterbi

Decoder 1(VD1), Viterbi Decoder 2(VD2), USB2.0 Core (USB), Ether-

net MAC Core (ETHER) and VGA Controller Core (VGA), with gate

counts varying from approximately 15,000 to 90,000. We perform syn-

thesis and APR on all the circuits using commercial tools.

Our comparisons are based on the error in estimating statistical

moments of arrival time distribution for a given method w.r.t the

moments from a golden of 40,000 Monte Carlo runs. Consider for exam-

ple a given trial MC1 of size 100 samples. This gives a circuit arrival time

distribution. From this, moments µ1 and σ1 (mean arrival time and stan-

dard deviation in arrival time) are obtained and error (magnitude of devi-

ation from the golden) calculated for both. From repeated trials (each of

100 samples in this example), we get 2 distributions for error. The nature

of the error distributions show the efficiency of the technique. For exam-

ple, as we increase the number of samples from 100 to 200 in the above

example and repeat the experiments, the error distribution is expected to

get tighter and closer to zero. In particular, the 95th percentile of the error

gets closer to zero and we use this value as a criterion to compare differ-

ent techniques. The minimum number of samples required by a technique

such that the 95th percentile of error distribution is less than 5% for both

mean arrival time and standard deviation of arrival time is our perfor-

mance metric for the technique. 

 Table 1 compares the number of samples required for random sam-

pling, an LHS-based technique and our proposed SH-QMC approach.

The proposed approach achieves on an average 23.8X reduction (lowest

4.7X up to 44X) in number of samples w.r.t random sampling, whereas

LHS achieves a modest improvement of 1.7X on average (lowest 1X up

to 2.5X). The improvements are consistent across the benchmark circuits

studied. In Section 3.3, we mention that critical paths are identified

within a slack of s% for computing timing criticality Pcrit. We investi-

gated the sensitivity of the results to the parameter s and found that vary-

ing s from 1-5% showed no changes in the number of samples required to

meet the stated accuracy objective, indicating that the proposed tech-

nique is stable with respect to this parameter. Figure 7 visually presents

the 95th percentile of error of random sampling, LHS and SH-QMC for

min tS' p( ) tS p( ) p P g( ) 0,∈∀–{ }

max tS' p( ) tS p( ) p P g( ) 0,∈∀–{ }

Table 1. Comparison of random sampling, LHS based and SH-QMC 

approaches based on sample size. The last two columns show the speedup of 

LHS and SH-QMC respectively, over random sampling.

Circuit No of 

gates

RS 

count

LHS 

count

SH-QMC 

count

LHS 

speedup

SH-QMC 

speedup

C432 256 1120 1120 240 1 4.7

C499 544 1760 1360 40 1.29 44

C880 500 1760 1440 80 1.22 22

C1908 603 1440 960 80 1.50 18

C2670 780 1600 1200 80 1.33 20

C3540 1163 2320 1440 160 1.61 14.5

C5315 1692 2160 1120 80 1.93 27

C6288 3834 1840 880 80 2.09 23

C7552 2152 3040 1280 80 2.38 38

VD1 14503 1360 800 80 1.70 17

VD2 34082 2000 880 80 2.27 25

USB 32898 2240 1200 80 1.87 28

ETHER 57327 2080 1600 80 1.30 26

VGA 90831 2000 800 80 2.50 25
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Figure 7. Error comparison of random sampling, LHS and SH-QMC 

for a VGA circuit (90831 gates) w.r.t. golden of MC count 40,000. 

Table 2. Runtime comparison of SHQMC with SSTA. AT = circuit delay

Circuit No of 

gates

Mean AT 

Error(%)

σ AT Error 

(%) 

SSTA  

Run-

time(s)

SH-QMC 

Runtime(s)

SSTA SH-

QMC

SSTA SH-

QMC

Multi 

thread

Single 

thread

VD1 14503 1.56 0.08 2.43 1.80 0.92 0.83 2.9

VD2 34082 1.66 0.34 2.37 2.12 3.79 2.42 8.7

USB 32898 1.36 0.53 3.48 1.85 4.37 4.22 14.2

ETHER 57327 0.35 0.05 1.8 2.3 8.18 6.2 19.9

VGA 90831 0.40 0.08 0.03 1.80 9.93 6.85 22.1
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Figure 8. Performance comparison of traditional SSTA with multi-

threaded SH-QMC for VGA circuit (90831 gates) as function of number 

of grids in process variation model. 
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our largest circuit VGA (90831 gates) w.r.t. the golden model. Though

we have two error distributions (corresponding to mean and standard

deviation of arrival time), our simulations show that the error in estimat-

ing standard deviation always dominates the error in mean. The error

plotted in Figure 7 is therefore for the standard deviation of arrival time. 

Table 2 compares the runtime of SH-QMC and traditional SSTA. For

both mean and standard deviation of arrival time the error for SH-QMC

in the table is the average absolute deviation from their values in the

golden model; for traditional SSTA this is the error w.r.t the golden. The

golden model is MC with 40,000 samples. One drawback of Monte Carlo

techniques in general is that every time an experiment is performed, the

error w.r.t golden is different. This means that the error in one particular

MC experiment is sometimes higher than the average value mentioned.

However, the 95th percentile of the absolute error distribution is still less

than 5% for all the circuits in the table. This translates to an error of 3-7ps

in absolute time for different circuits, which is a reasonable target for the

given process technology. All our simulations were performed on a sin-

gle Quad Core processor. For SH-QMC, we perform two different exper-

iments, in one we spawn 4 threads to use the parallelism in the Quad

Core machine, and in the other we run a single thread on the machine.

The former uses the parallelism in sample evaluation, which is straight-

forward in MC methods but not true of traditional SSTA. Parallelizing

traditional SSTA is non-trivial and would incur runtime cost. We con-

sider circuits with more than 10,000 gates for meaningful runtime com-

parisons. SH-QMC with multi-threading performs better than traditional

SSTA in runtime. Also, further speedup in SH-QMC can be achieved in a

straightforward manner using parallel processing on more than one pro-

cessor. Figure 8 compares the performance of traditional SSTA with SH-

QMC for the VGA circuit as a function of number of grids in the process

variation model. This illustrates that SH-QMC scales better than tradi-

tional SSTA. Figure 9 is a typical case comparison of efficiency in esti-

mating a high percentile statistic in arrival time distribution obtained

from our approach w.r.t a traditional SSTA approach. The error in

estimating the 99th percentile arrival time for SH-QMC is better than tra-

ditional SSTA at more than 72 samples for the USB2.0 Core circuit

(32898 gates) considered. In general, our approach estimates the 99th

percentile arrival time better than traditional SSTA for all benchmark cir-

cuits studied at a low number of samples. Figure 10 compares the proba-

bility distribution curve of arrival time of the USB circuit for SH-QMC

(96 samples) and a traditional SSTA approach, w.r.t the golden. Our tech-

nique captures the mean arrival time (marked with vertical lines) and the

overall shape of the distribution better than the traditional SSTA

approach.

Table 3 presents our results for the incremental evaluation of the 95th

percentile and 99th percentile delay after a gate size change using our

approach in Section 4. In our experiments, we select 100 gates at random

for a given circuit. Each gate is sized up individually and the percentile

delays recomputed. Our simulations show that on average only 1.4% and

0.7% of samples need to be reevaluated for exact recomputation of the

95th percentile and 99th percentile delays after performing SH-QMC. 

6.   Conclusions

This paper presents a Stratification + Hybrid Quasi Monte Carlo (SH-

QMC) approach to improve the efficiency of MC based statistical static

timing analysis. The proposed approach uses easily computable timing

criticality information, and achieves on average 23.8X and upto 44X

reduction in the number of samples required for timing estimation com-

pared to a random sampling approach. With multithreading on a quad

core processor for SH-QMC, the approach is faster than traditional SSTA

for comparable accuracy. Also, further speedup of SH-QMC is straight-

forward using parallel processing across machines. In addition, SH-QMC

scales better than traditional SSTA with circuit size. Our approach esti-

mates the 99th percentile arrival time better than traditional SSTA for

benchmark circuits studied using only a low number of samples. We pro-

posed an incremental approach to recompute a percentile delay metric

after ECO. The results show that on average only 1.4% and 0.7% of orig-

inal samples need to be evaluated for exact recomputation of the 95th per-

centile and 99th percentile delays after ECO. 
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Figure 9. Comparison of 99
th

 percentile error of SH-QMC vs. 

traditional SSTA w.r.t golden of 40,000 MC count for USB circuit. 
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Figure 10. Arrival time distribution of SH-QMC (96 samples) and 

traditional SSTA w.r.t golden(40,000 MC) for USB circuit. 

Table 3. Performance of incremental evaluation of 95th and 99th percentile 

delay with gate size change for SH-QMC with 80 samples. AT=Arrival Time

Circuit No of 

gates

Avg. Incremental evaluations 

per gate

Avg. Incremental evaluations per 

gate/sample size(%)

95th percentile 

AT

99th percentile 

AT

95th percentile 

AT

99th percentile 

AT

VD1 14503 1.515 0.51 1.89 0.64

VD2 34082 0.54 0.515 0.68 0.64

USB 32898 1.625 0.57 2.03 0.71

ETHER 57327 0.96 0.535 1.20 0.67

VGA 90831 0.84 0.505 1.05 0.63
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