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Abstract
Increasing process variation in the nanometer regime motivates

the use of statistical static timing analysis tools for timing verifica-
tion. As device dimensions get smaller, signal integrity effects such
as crosstalk noise become more significant. Therefore, it is neces-
sary to accurately model the impact of crosstalk noise on the circuit
delay. Process variations cause variability in the crosstalk alignment
which leads to the variability in the delay noise. However, most of
the existing approaches model delay noise as a worst-case determin-
istic quantity. In this work, we capture the variability of delay noise
by first deriving the closed-form expressions of mean and standard
deviation of the delay noise distribution. Next, we obtain the corre-
lation information of the delay noise and use it to represent the
delay noise distribution in canonical form. Delay noise, in canonical
form, can easily be integrated with existing SSTA tools. We show
experimental results that verify the accuracy of our approach. 
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1.   INTRODUCTION
Imprecise control of lithography equipment and channel doping

can lead to a significant variability of the device dimensions and
threshold voltages. In nanometer regime, the variability in manufac-
turing process has not scaled commensurate with the device dimen-
sions. Consequently, the variability of circuit performance has been
rapidly increasing as we continue shrinking device dimensions. To
account for the variability in the timing verification of the circuit,
we can perform traditional static timing analysis (STA) at multiple
process, voltage and temperature (PVT) corners. However, with an
increase in variability, the number of corners that are needed to
accurately model the circuit performance has grown rapidly. There-
fore, statistical static timing analysis (SSTA) which models gate
delays and circuit performance as random variables, with a proba-
bility distribution function (PDF), has emerged as an efficient alter-
native to corner-based STA. Most of the techniques proposed in
SSTA can be classified as either path-based or block-based. Path-
based SSTA algorithms ([2],[3]) compute the delay distribution of
the critical paths in the circuit and are accurate since they preserve
paths correlation information. However, path-based approaches suf-

fer from an explosion in the total number of paths that have to be
enumerated. On the other hand, block-based SSTA ([4],[5],[12])
requires only a single PERT-like traversal of the circuit graph and is
more efficient than path-based SSTA. 

Scaling of device dimensions has also led to a considerable
reduction in gate delays. However, due to less aggressive intercon-
nect scaling, wire delays have not reduced in proportion to gate
delays and wire delays, especially the global interconnect delays,
now contribute significantly to the total circuit delay. Due to para-
sitic capacitive coupling between wires, wire delay depends on the
switching activity of neighboring wires. As the spacing between
wires continues to shrink, the magnitude of the coupling capaci-
tance increases and it now dominates the wire ground capacitance.
Therefore, the magnitude of noise that is coupled on a victim net
due to switching transitions of aggressor nets has become signifi-
cant. If the aggressor-victim pair switch in the same direction, cou-
pling noise can speedup the victim transition and reduce the victim
delay. On the other hand, if the aggressor-victim pair switch in
mutually opposite directions, coupling noise can slowdown the vic-
tim transition and increase the victim delay. This change in victim
delay due to coupling noise is referred to as delay noise and it con-
tributes to a significant portion of the circuit delay. Therefore, accu-
rate modeling of delay noise is necessary for timing signoff analysis
of high performance designs.

It has been observed that delay noise strongly depends on the
aggressor-victim input skew or the difference between arrival times
at the inputs of aggressor-victim drivers (see Figure 1). Process
variations translate into delay variations and the delay variability of
upstream gates translates into uncertainty in the arrival times at the
input of aggressor-victim drivers. Therefore, due to the variability
in aggressor-victim input skew, delay noise can no longer be treated
as a deterministic quantity. Sources such as aggressor-victim inter-
connect variation also contribute to the variability of delay noise.
However, a majority of the timing analysis techniques used today
model crosstalk induced delay noise as a deterministic quantity. 

 Overlap between the aggressor-victim timing windows com-
puted in STA was used in [1] to identify whether the aggressor can
couple noise onto the victim. In block-based SSTA, however, the
end points of statistical timing windows are random variables which
are obtained by performing recursive ‘max’ and ‘min’ atomic oper-
ations in a topological order. In [7], the authors extend the above
idea to SSTA by expanding the nominal timing window by  on
both sides, where  is the standard deviation of early and late
arrival times. Overlap between the expanded timing windows of the
aggressor-victim pair is used to identify whether noise is coupled
onto the victim net. Since, the worst-case delay noise is applied
whenever the expanded windows overlap, the above technique
leads to a pessimistic estimation of delay noise. 

The mutual dependence of delay noise and timing windows leads
to a ‘chicken-and-egg’ problem. However, in [8] the authors pro-
pose an iterative approach for crosstalk aware SSTA as a fixpoint on
a lattice and theoretically proved its convergence. In [9] the cou-
pling capacitance is modeled as a random variable which depends
on the skew between aggressor-victim arrival times. In [13] the
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authors provide a closed-form expression for computing the PDF of
delay noise given the aggressor-victim input arrival time distribu-
tions. However, delay noise was assumed to be independent of input
arrival time distributions and no correlation information of the delay
noise was preserved. The lack of correlation information makes it
difficult to integrate the delay noise distribution accurately into an
statistical timing analysis tool. 

A canonical first order model was used in ([5],[6]) which cap-
tures the first order sensitivities of delay to the (normally distrib-
uted) sources of variation and preserves the correlation information
among all timing quantities. In this work, we show how the first
order SSTA framework can be extended to accurately capture the
variation in delay noise. We model statistical delay noise as a ran-
dom variable and express it in the canonical form by computing its
first order sensitivities to the variation sources. Given a delay
change curve which captures the dependence of delay noise on the
aggressor-victim input skew and an input skew distribution in
canonical form, we obtain closed-form expressions of the resulting
delay noise distribution. To compute the ‘noisy’ victim output
arrival time, we must add the delay noise to the ‘noiseless’ victim
output arrival time. In order to do so, we express delay noise in the
canonical form by matching the first two moments and computing
the correlation information. Since delay noise and victim output
arrival time are both expressed in canonical form, we can use the
statistical ‘sum’ operation to compute the noisy victim output
arrival time with delay noise. 

 In this work, we propose the use of a statistical skew window
whose end points are obtained by subtracting the end points of the
aggressor input timing window from the late victim input arrival
time. Using the skew window and the delay change curve, we ana-
lytically obtain the delay noise distribution in canonical form. In
order to further reduce pessimism in our analysis, we propose to
fragment the skew window into smaller segments. Using the frag-
mented skew window and the delay change curve, we then obtain
the distribution of delay noise. The proposed technique matches
well with Monte-Carlo simulations and we observe a significant
reduction in pessimism of delay noise when compared to prior
approaches which do not model delay noise as a statistical quantity. 

The rest of the paper is organized as follows: In Section 2, we
analyze the problem of computing the delay noise distribution in the
presence of variation in detail. In Section 3, we present an analytical
technique to compute the delay noise distribution in canonical form,
given a single aggressor-victim input skew distribution and a DCC.
In Section 4, we extend the analytical technique such that worst-
case delay noise computation can be performed within the current
SSTA framework with statistical timing windows. In Section 5, we
present experimental results and in Section 6, we conclude this
paper.

2  PROBLEM DESCRIPTION
 In this section, we examine the problem of modeling the delay

noise distribution in the presence of process variations. The amount
of delay noise that is coupled to a victim by an aggressor depends
on several factors such as aggressor-victim slew rates, driver
strengths, the ratio of coupling capacitance to ground capacitance
and the input skew. Also, an aggressor can couple noise only when
its transition is temporally close to the victim transition. Therefore,
the magnitude of delay noise strongly depends on the aggressor-vic-
tim input skew. The HSPICE simulation plot in Figure 1 shows the
delay noise as a function of the input skew and is referred to as the
Delay Change Curve (DCC). The DCC can be derived either by

using SPICE based methods [10] or by using analytical methods
[11] in which the noise pulse coupled on the victim is approximated
by a two piece model and the DCC is obtained analytically by
curve-fitting. Process variation leads to uncertainty in signal arrival
times at the aggressor-victim inputs. Therefore, delay noise which is
a function of a variable input skew is no longer deterministic. How-
ever, a majority of statistical timing analysis techniques model the
worst-case delay noise as a deterministic quantity and this can often
lead to pessimistic results. 

The goal of this work is to model delay noise in current SSTA
framework where delays are expressed in a canonical form

(1)

where  is the nominal delay,  is the of sensitivity of delay to
the process parameter  which are standard normal random vari-
ables.  is the random component of the delay noise distribution
and is also a standard normal random variable. Principal Compo-
nent Analysis (PCA) can be used to transform the set of process
parameters into a set of mutually independent normal random vari-
ables. The early and late arrival time distributions are propagated by
performing statistical ‘min’ and ‘max’ operations recursively in a
topological order ([5],[6]). 

In [15], it has been shown that the worst-case delay noise occurs
when the victim input transition occurs at the latest point in its tim-
ing window. Therefore, for computing the worst-case delay noise,
we are only interested in the distribution of late victim input arrival
time. Given the statistical timing window at the input of the aggres-
sor, we subtract the early and late aggressor input arrival time distri-
butions from the late victim input arrival time distribution to obtain
the skew window (as shown in Figure 2). In this work, using this
statistical skew window and the DCC, we derive closed-form
expressions for the mean and variance of the delay noise distribu-

Figure 1. Delay change curve captures the dependence of delay 
noise on input skew
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Figure 2.  Skew window obtained by subtracting the early and late 
aggressor inp. arrival times from the late victim inp. arrival time.
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tion. Note that the use of a single skew window can lead to pessi-
mistic bounds on the delay noise distribution. Therefore, we
propose to divide the skew window into smaller segments to further
reduce the amount of pessimism in our analysis. 

Since delay noise strongly depends on the input skew, in this
work, we model the dominant source of variation in delay noise
which is the variability in the input skew. Other sources such as
variation in the aggressor-victim coupled interconnect also contrib-
utes to variability of the delay noise. However, their contribution to
delay noise variability can be quite small. For instance, it has been
reported in [12], that interconnect variation causes only a 10%
( ) variability in the magnitude of the peak noise voltage.
Also, in [13] the authors show that the variability in delay noise due
to other sources of variation can be assumed to be independent of
the input skew distribution, without much loss of accuracy. There-
fore, in this work we focus on the dominant source of variation in
delay noise which is the variation in the input skew distribution.
Also, the ‘chicken-and-egg’ problem occurring due to the mutual
dependence of delay noise and timing windows can be solved using
iterations [8]. Hence, in this work we focus on accurately modeling
the delay noise distribution on the victim within a single iteration of
the delay noise computation loop. 

3.   STATISTICAL DELAY NOISE
In this section, we analytically compute the delay noise distribu-

tion in canonical form, given a single input skew distribution in
canonical form and a quadratic model of the DCC. We first show
that the relative ratios’ of sensitivities of delay noise distribution is
identical to that of the input skew distribution. We then obtain
closed form expressions for computing the mean and standard devi-
ation of delay noise distribution. The results obtained in this section
will be used later in Section 4 to compute the worst-case delay noise
in SSTA framework where we have statistical skew windows. 

3.1  Correlations in delay noise
Since the DCC captures the dependence of delay noise on the

input skew, it is easy to see that the delay noise distribution must be
correlated with the input skew distribution. However, in this subsec-
tion, given a quadratic DCC model we show that the correlations in
the input skew are preserved exactly in the delay noise distribution.
This fact allows us to represent the delay noise distribution in a
canonical form. Delay noise distribution in canonical form pre-
serves the necessary correlation information and can easily be inte-
grated in traditional block-based SSTA methods. 

Theorem 1. Given a quadratic DCC and an input skew distribu-
tion in canonical form, the relative ratios’ of sensitivities of delay
noise distribution to process parameters is the same as that of
input skew distribution. 

Proof: Without loss of generality, we assume an input skew dis-
tribution 

(2)
having a mean  and sensitivities  and  with respect two
independent standard normal random variables  and . Since

 and  are independent and have unit variance, it is easy to see
that the covariance of the input skew  with  is given by

(3)
The delay noise obtained from the DCC has a quadratic dependence
on the input skew , that is 

. (4)
Substituting (2) in (4), we obtain

(5)

The covariance of delay noise with parameter  is given by 

(6)

where E is the expectation operator. Substituting (5) in (6), we get

(7)

Since  and  are independent, the expectation of cross-product
terms containing  is zero. Equation (7) reduces to 

(8)

Using the linearity of expectation operator, we rewrite (8) as

(9)

The odd moments of a standard normal random variable are zeros
and the even moments evaluate to one. Therefore, the first term in
(9) disappears and we finally obtain the result 

(10)
Note that the covariance of the delay noise obtained in (10) is the
same as the covariance of input skew obtained in (3) scaled by a
constant factor (i.e. ). Performing a similar analysis with
process parameter , we obtain

(11)

Since the covariance of delay noise with respect to process parame-
ters are a scaled version of the covariance of the input skew, from
(3), (10) & (11) we obtain 

(12)

Since the ratios between covariance remains constant, the correla-
tion information in the input skew is preserved in delay noise. Note
that this result is independent of the number of process parameters
that are considered in the input skew distribution as every covari-
ance is scaled by the same factor. 

Given an input skew distribution and a quadratic DCC, using
Theorem 1 we can obtain the correlations of the delay noise distri-
bution. To express the delay noise in canonical form, we only need
to compute the mean and the standard deviation of the delay noise
distribution. 

3.2  Canonical Delay Noise Distribution
In this sub-section, given a quadratic model of the DCC and the

input skew distribution in canonical form, we analytically compute
the mean and standard deviation of the delay noise distribution.
Suppose that the input skew distribution is given by Equation (2).
Since the process parameters are normal random variables, the input
skew distribution  is therefore normally distributed with mean 
and standard deviation  given by

. (13)
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Suppose that the piece-wise quadratic DCC has the following
functional form

(14)

Since the delay noise is a function of only the input skew and the
functional dependence is captured by the DCC, we can appeal to the
basic theory of probability and statistics [14] to obtain the PDF of
delay noise  as a function of the input skew distribution

, (15)

where  and  are the smaller and larger roots of the two qua-
dratic pieces of the DCC, respectively

. (16)

Note, that the delay noise distribution obtained in (15) is not nec-
essarily gaussian. However, as observed in [13], the delay distribu-

tion behaves like a normal distribution when the variance  of the
input skew distribution is small and the mean  falls on the “linear”
part of the DCC. Using the PDF of delay distribution from (15), it is
possible to compute the first and the second moment of delay noise
in closed form (refer to Appendix A). The canonical form of delay
noise can be constructed by matching the first two moments of
delay noise obtained analytically. Correlations of the delay noise
distribution are assigned by using the sensitivities of the input skew
distribution to process parameters.

4  DELAY NOISE IN SSTA FRAMEWORK
In the previous section, we obtained closed-form expressions for

the mean and variance of the delay noise distribution given a single
input skew distribution. It was also observed that the correlations in
the input skew are preserved in the delay noise distribution. How-
ever, in block-based SSTA framework, we no longer have a single
skew distribution at the input of the victim driver which can be used
to compute the delay noise distributions. Instead, we have statistical
timing windows at every node where the early and late arrival times
are canonical distributions obtained by performing statistical ‘min’
and ‘max’ operations respectively. In this section, we propose the
use of a statistical skew window for computing the delay noise dis-
tribution. To further reduce pessimism in our analysis, instead of

using a single skew window, we propose the use of multiple smaller
statistical skew windows. We now look at the computation of a
skew window for an aggressor-victim pair and explain how it can be
used to compute the corresponding delay noise distribution. 

4.1  Delay noise from skew window
It has been shown in [15] that regardless of the aggressor transi-

tion, the worst-case delay noise occurs when the victim input transi-
tion occurs at the latest point in its timing window. In other words,
adding the worst-case delay noise to the late victim input arrival
time will result in the maximum slowdown (increase in the victim
output timing window). Therefore, for computing the worst-case
delay noise, we are only interested in the distribution of late victim
input arrival time. Given the statistical timing window at the input
of the aggressor, we subtract the early and late aggressor input
arrival time distributions from the late victim input arrival time dis-
tribution to obtain the skew window. The arrival time distributions
of end points of the skew window are referred to as early and late
skew distributions. 

The arrival times are normal random variables in canonical form.
Note that the mean of the difference of the two normal distributions
is given by the differences in their individual means. Therefore, the
skew window that was obtained by using the early and late arrival
times of the aggressor bounds the mean of any feasible input skew
distribution. This is true because there exists no aggressor input
arrival time distribution whose mean is greater than the mean of the
late arrival time distribution, or less than the mean of early arrival
time distribution. Since we always use the late victim arrival time
distribution to compute the skew window, we conclude that the
mean values of all feasible skew distributions must lie within the
skew window. 

We now look at how the skew window can be used to compute
the distribution of delay noise. As shown in Figure 3, the skew win-
dow can align with the DCC in three different ways. Case A occurs
when the mean of late skew distribution is less than the worst-case
skew value of the DCC (viz. ). Case B occurs when the mean of
late skew distribution is greater than  and the mean of early skew
distribution is less than . Lastly, Case C occurs when the mean of
early skew distribution is greater than . Since any skew distribu-
tion which lies within the skew window is feasible, for case B, the
delay noise is modeled by its worst-case value . Note that in
Case A, the DCC is an increasing function of skew. Hence, for any
feasible skew distribution with a variable mean and fixed variance,
the corresponding (mean) delay noise will keep increasing as we
keep shifting the mean of skew distribution to the right. Therefore,
the mean delay noise will be maximized when the mean of the feasi-
ble skew distribution coincides with that of the late skew distribu-
tion. Using the above fact, we propose to use the analytical results
from Section 2 and the late skew distribution to compute the delay
noise distribution in canonical form. Similarly, for Case C, we use
the early skew distribution to obtain the delay noise distribution.
Thus, given the statistical timing windows from block-based SSTA,
we can analytically compute the delay noise distribution. Also,
since the delay noise is computed in canonical form, we can use sta-
tistical ‘sum’ operation and add it to the late victim output arrival
time distribution to obtain the noisy output arrival time distribution.

4.2  Multiple skew windows
Delay noise computation by using the skew window assumes a

worst-case delay noise for the Case B. This worst-case assumption
could prove to be pessimistic, especially when there are only a few
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paths terminating on the aggressor input. For every path that termi-
nates on the aggressor, we obtain a corresponding skew distribution
by subtracting the path delay distribution from the late victim input
arrival time distribution (as shown in Figure 2). As pointed out ear-
lier, the mean values of each of these skew distributions is bounded
by the skew window. Suppose we arrange the skew distributions in
the order of increasing mean. If the number of paths terminating on
the aggressor are small, then it is possible that there is a significant
gap between the means of two consecutive paths. Under such cir-
cumstances, the probability of the occurrence of the worst-case
delay noise can be reduced considerably. 

Instead of using a single skew window, we propose using multi-
ple skew windows [16] as a technique to reduce the amount of pes-
simism in the computation of delay noise distribution. Suppose we
fragment the single skew window, which starts at the mean of early
skew distribution and ends at the mean of the late skew distribution,
into 5 smaller skew windows. If we have a path whose mean delay
falls within any of the 5 smaller skew windows, then we assign the
path to that particular skew window. In other words, the mean of the
path distribution is bounded by the smaller skew window. There-
fore, the end points of the smaller skew window are characterized
by the path delay distribution. These smaller skew window can be
used exactly in the same manner as earlier (i.e. Case A, Case B, &
Case C). This approach of using multiple skew windows allows us
to identify those cases where the worst-case skew is not feasible due
to fewer number of paths terminating on the aggressor. 

5  RESULTS
In this section, we will show experimental results that verifies the
accuracy and effectiveness of our proposed approach for modeling
the delay noise distribution in a block-based SSTA framework. A
prototype noise analysis tool was implemented in C++ and a
0.13μm standard cell library was used for synthesis and technology
mapping of MCNC benchmark circuits. The designs were placed
and routed by using a commercial APR tool. The distributed RC
parasitics were extracted by using a commercial parasitic extraction
tool. For every aggressor-victim pair, the DCC’s were analytically
generated on the fly. In our analysis, we assume a  variability
of 30% for the gate length variations. 

 The accuracy of the analytical results for computing the mean
and standard deviation of delay noise is verified against Monte-
Carlo simulations in Figure 4. A normal input skew distribution is
created whose standard deviation is fixed at 10ps and whose mean
is varied from -50ps to 200ps. Using the DCC in Figure 1 and the
analytical results from Section 2, we obtain the mean and standard
deviation of delay noise. The accuracy of the results are verified

with Monte-Carlo, where the input skew distribution is simulated
using 10,000 samples. As expected, it can be seen that the mean
delay noise peaks when the mean input skew is aligned at worst-
case skew (around 30ps). It is interesting to note that the standard
deviation of delay noise seems to be minimized at the point where
the mean delay noise peaks. 

In Table 1, we show the circuit delay distribution obtained by
incorporating statistical delay noise in block-based SSTA. The first
column shows the mean and standard deviation of the circuit delay
with no noise. In the second column, we use the approach suggested
in [7] and assume worst-case delay noise whenever the statistical
aggressor-victim timing windows overlap. This worst-case delay
noise assumption can lead to an unreasonably large amount of delay
noise. For instance, for circuit i9, it can be seen that the mean circuit
delay increases by about 60% when compared to the mean nominal
circuit delay. In the third column, the circuit delay distribution is
obtained by modeling statistical delay noise using the proposed
approach with a single statistical skew window. Note that the per-
centage increase in mean circuit delay of circuit i9 is less than 20%
of the mean nominal circuit delay. In the fourth column, we see that
the use of ten smaller skew windows instead of a single skew win-
dow leads to a further reduction in the mean circuit delay. With the
usage of smaller skew windows, the percentage increase in the
mean circuit delay of i9 is less than 13% of the mean nominal cir-
cuit delay. On an average, by using a single statistical skew window,
the mean delay noise decreases by 54.6%. Furthermore, we obtain
an average reduction of 23.4% in the mean delay noise by the usage
of 10 smaller skew windows for every aggressor.

6  CONCLUSIONS
In this work, we model the variability in delay noise which

occurs due to the variability in the crosstalk alignment. We analyti-
cally compute the mean and standard deviation of the delay noise
distribution. We also proved that, for a quadratic DCC, the correla-
tions in input skew distribution are captured in the delay noise dis-
tribution and the ratios’ of the sensitivities of both distributions are
identical. Using the correlation information and by matching the
first two moments, we represent the delay noise distribution in
canonical form which allows us to integrate delay noise into a stan-
dard statistical timing analysis tool. The accuracy of the analyticalFigure 4. Comparison of analytical delay noise distribution with that 

obtained from Monte-Carlo simulations. 

3σ μ⁄

ckt 

Nominal
Circuit Delay

with
No Delay 

Noise (in ps)

Circuit Delay 
with

Worst-Case 
Delay Noise

Circuit Delay 
with 

Statistical 
Delay Noise 
(1 windows)

Circuit Delay 
with 

Statistical 
Delay Noise

(10 windows)

Mean Std. Mean Std. Mean Std. Mean Std.

i1 458.56 12.59 678.7 11.9 576.1 11.3 554.6 11.50
i2 595.14 20.1 891.2 18.8 743.75 19.8 718.8 19.97
i3 445.4 3.93 659.1 3.63 564.1 2.94 543.9 3.68
i4 683.2 14.32 979.5 15.5 852.5 14.52 818.9 14.64
i5 780.9 5.48 1234.9 7.54 979.1 6.95 932.0 6.92
i6 734.4 18.5 1347.4 12.1 968.31 7.42 916.4 6.64
i7 701.5 28.7 1344.5 28.4 964.1 14.1 911.1 14.7
i8 836.2 25.4 1253.3 22.8 1052.3 23.2 998.3 21.4
i9 1047.3 44.78 1677.5 44.9 1251.7 47.8 1182.5 47.96
i10 2424.4 65.15 3136.2 58.7 2640.2 61.15 2558.8 61.25

Table 1. Circuit Delay distribution accounting for Delay Noise in 
Block-Based SSTA.
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results derived was verified against Monte-Carlo simulations. It was
shown that the amount of pessimism in the delay noise distribution
obtained is significantly less than that obtained by assuming a
worst-case value. In future work, we plan on accounting the other
sources of variation such as the victim slew variations and the inter-
connect variation while modeling delay noise.
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APPENDIX

A. First and Second Moments of delay noise 
The delay noise distribution in Equation (15) is given by the sum

of two terms. The moments of delay noise is given by the sum of the
moments of both the terms in (15). In this Appendix, we derive the
first and second moments only for first quadratic piece

 and note that the derivation of the moments for the
second piece is analogous. 

While computing the expectation of , we first perform a
transformation of the variable  to 

.
The limits of the integration now become   

,

where  is the peak delay noise in DCC. The first moment of
the first term in the PDF of delay noise is given by

 (17)

where  is the indefinite integral given by the following,

Similarly, the second moment of the first term in the PDF of
delay noise can be computed as 

, (18)

where the indefinite integral  is given by 
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